
John Tobin

NWO Veni Fellow
Leiden Observatory

Leiden, The Netherlands

The VLA Nascent Disk and Multiplicity 
(VANDAM) Survey:

The Perseus Molecular Cloud

VANDAM Team:
John Tobin (PI), Leslie Looney (Illinois), Zhi-Yun Li (Virginia), Claire Chandler (NRAO),
Mike Dunham (CfA), Kaitlin Kratter (Arizona), Dominique Segura-Cox (Illinois), Sarah Sadavoy (MPIA), 
Laura Perez (NRAO), Carl Melis (UCSD), Robert Harris (Illinois), Lukasz Tychoniec (Leiden/AMU-Poland)

Image: Bill Saxton (NRAO)http://home.strw.leidenuniv.nl/~tobin/VANDAM/



John Tobin

NWO Veni Fellow
Leiden Observatory

Leiden, The Netherlands

The VLA Nascent Disk and Multiplicity 
(VANDAM) Survey:

The Perseus Molecular Cloud

VANDAM Team:
John Tobin (PI), Leslie Looney (Illinois), Zhi-Yun Li (Virginia), Claire Chandler (NRAO),
Mike Dunham (CfA), Kaitlin Kratter (Arizona), Dominique Segura-Cox (Illinois), Sarah Sadavoy (MPIA), 
Laura Perez (NRAO), Carl Melis (UCSD), Robert Harris (Illinois), Lukasz Tychoniec (Leiden/AMU-Poland)

Image: Bill Saxton (NRAO)http://home.strw.leidenuniv.nl/~tobin/VANDAM/



● 264 hour VLA large program 

– 8 mm/1 cm (207 hours) and 4 cm/6.4 cm (57 hours)

– A and B configurations, 0.06” (15 AU) resolution 

– Perseus region (d~230 pc), 92 YSOs (79 detected) 
● 43 Class 0, 37 Class I sources, 12 Class II

– Luminosities range 0.1 Lsun to 30 Lsun 

● Goals:

– Measure multiplicity fractions down to 15 AU

– Resolve disks in dust continuum, measure dust masses 

– Protostellar jet properties

–  ...and changes with evolution

VLA Nascent Disk And Multiplicity 
(VANDAM) Survey



● High-sensitivity at 8 mm – 1 cm with 8 GHz bandwidth

● Routine observations with < 0.1” resolution at 8 mm

● Probing to two emission processes at 8 mm

– Thermal free-free + thermal dust

– Protostars stand out
● High optical depths at ~1.3 mm may hide close 

companions

● 8 mm traces densest regions, i.e. disks

– Envelope contribution minimal

Why the VLA?
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Multiple Star Formation
● Multiplicity key component of star and               
  planet formation

● CMF → IMF scaling

● Stable planetary systems

● Evolution of multiples different?

● Large fraction of MS stars are multiple

● Most protostars form as multiples

● Typically found at R > 600 AU

● Field star separations must have evolved

● Where/how are the companions born?

● Few proto-binaries known to have                     
   separations < 500 AU

● Lack of multiplicity suggested (Maury+2010)

● Observations with enough resolution lacking

Protostars

Raghavan+10
50 < R < 5000 AU Chen+13

Lada 2006



Protostellar Disks: Big or Small?
Large, massive – Gravitaitionally Unstable Small, low-mass, and/or no rotational support

400 AU

~20 AU

Adapted from
Kratter+2010

e.g., Vorobyov 2010, Kratter+2010

● Youngest protostellar disks have long eluded direct observation
● Only four known Class 0 disks: L1527, VLA 1623, HH212, RCrA IRS7B

Continuum of disk sizes?

Little or no magnetic braking (e.g. TSC 1984)
Significant magnetic braking? Allen+2003,
Galli2006, Mellon & Li 2008, et al. 



VANDAM Class 0 Disk Candidates
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VANDAM Class I Disk Candidates
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VANDAM Disk Candidates
● Resolved structures consistent with disks for 16/70 Class 0/I

– ~11/43 for Class 0 (youngest) sources; 6/37 Class I
● Power-law disk models indicate 8 mm radii 10 AU – 30 AU

● Need to be confirmed kinematically 

● Multi-wavelength dust continuum and molecular line needed

– MASSES survey with SMA (PI: Mike Dunham)

– Molecular line complement to VANDAM
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VANDAM Disk Candidates Sizes

● Dust emission more compact at 8 mm vs 870 micron; 0.26” vs 0.62”

– Surface brightness sensitivity limit/radial drift of dust grains

– Also seen in Class II disks (e.g., Perez+2012)
● Disk candidates likely larger than apparent size

ALMA
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VANDAM 'Disk' Masses

● Masses from 8 mm emission corrected for free-free contribution

– Extrapolation from 4 cm and 6.4 cm data

– Assume Ossenkopf & Henning 1994 at 1.3 mm, β = 1 to 8 mm

0.027 M
sun

0.079 M
sun

Tobin+2016 in prep.



A Brief Aside: 8 mm Polarization

Cox et al. In prep.



Multiple System Formation

~400 AU

● Disk fragmentation – form in disk directly

– Replenishment needed to grow companion – early formation
● Turbulent fragmentation – form in cloud and migrate in

– Rapid migration needed – 2000 AU → 200 AU in 10 kyr 

Turbulent FragmentationDisk Fragmentation

~400 AU

Offner+2010

Kratter+2010



Evidence for Fragmenting Disks
● Evidence of fragmentation within resolved structures found

– 3/43 Class 0 systems
● Gravitationally unstable disks likely transient (Stamatellos+2009)

– Fragmentation greatly reduces disk mass

– Unstable disks only last ~30 kyr

● Candidate ~0.3 Msun disk, with rotation observed

– Evidence for substantial optical depth at 1.3 mm

1.3 mm
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Perseus Separation Distribution

●  Perseus Class 0 and Class I Separation Distribution
● Excess relative to field at ~75 AU and  > 1000 AU

Peak at scale
of disks

Resolution
limit

Tobin+2015 in prep.

Field
solar-type
stars
Raghavan+10



Perseus Separation Evolution

● Class 0 (youngest) sources still have two peaks
Tobin+2015 in prep.



Perseus Separation Evolution

●  Lack of wide multiples toward Class I (more-evolved) sources
● Evolution of separations?

● Fraction of < 100 AU systems ~constant
● Wide systems drift apart?

Tobin+2015 in prep.



Multiplicity Statistics

● Multiplicity Fraction (MF) and Companion Star Fraction (CSF) 
depend on scales of interest

● 15 AU to 10000 AU

– Class 0 – MF = 0.58 – CSF = 1.13

– Class I  – MF = 0.2   – CSF = 0.2 – due to wide Class 0/I pairs  
● 15 AU to 2000 AU

– Class 0 – MF = 0.35 – CSF = 0.43 

– Class I  – MF = 0.31 – CSF = 0.31 
● 15 AU to 1000 AU

– Class 0 – MF = 0.27 – CSF = 0.29 

– Class I  – MF = 0.31 – CSF = 0.31
Tobin+2015 in prep.



Multiple System Formation

~400 AU

Turbulent Fragmentation

Disk Fragmentation

Offner+2010

Kratter+2010

vs.

Turbulent/RotationDisk

● Need to know if close systems have 
circumbinary disks
● ALMA crucial for further characterization



Protostellar Jets



Protostellar Jets: SVS13C

Tychoniec+2016 in prep.



Protostellar Jets: SVS13C
Spectral Index Spectral Index Error

Tychoniec+2016 in prep.



Protostellar Jets: IRAS4A

Tychoniec+2016 in prep.



Free-Free Jet vs. Source Properties

Tychoniec+2016 in prep.



Free-Free Jet vs. Source Properties
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Tychoniec+2016 in prep.
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Free-Free Jet vs. Source Properties

Slope=0.29

Slope=0.71

Slope=0.72

Tychoniec+2016 in prep.



Summary
● Unbiased surveys crucial for disk and multiplicity studies

● Large sample of protostellar disk candidates revealed by VLA

● Multiplicity of Class 0/I protostars well-characterized

– Both disk and turbulent fragmentation are possible

– Closest know Class 0 protostellar multiples identified
● New views of protostellar jets, a few possible synchrotron shocks

● ALMA Survey of 330 Orion protostars approved (0.85 mm/30 AU)

– VLA proposed for 100 Class 0 (8 mm/30 AU)
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