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Abstract

Young massive clusters are dense aggregates of young stars that form the fundamen-
tal building blocks of galaxies. There are several specimens in the Milky Way Galaxy
and the local group, but they are particularly abundant in starburst and interacting
galaxies. The few young massive clusters that are close enough to resolve are of prime
interest for studying the stellar mass function and the ecological interplay between
stellar evolution and stellar dynamics. The distant unresolved clusters are effectively
used to study the star-cluster mass function, and they provide excellent constraints on
the formation mechanisms of young cluster populations. Young massive clusters are
expected to be the nurseries for many unusual objects, including a wide range of exotic
stars and binaries. So far only a few such objects have been found in young massive
clusters, although their older siblings, the globular clusters, are unusually rich in stellar
exotica.

In this review we limit ourselves to star clusters younger than 100 Myr and more
massive than 104 M⊙, irrespective of the cluster size or environment. In particular
we study clusters which are older than than a current crossing time. We summarize
the current knowledge of young massive star clusters, and discuss the state of the art
in observations and dynamical modeling. We summarize the global properties of the
currently known young massive star clusters in the local group and beyond, and discuss
the nomenclature and range of numerical techniques utilized in simulations of young
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massive star clusters. In order to make this review readable by observationally oriented
astronomers as well as by theorists and computational astrophysicists, we also review
the cross-disciplinary terminology.
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1 Introduction

Stars form in clusters (Lada & Lada 2003). In the Milky Way Galaxy, evidence for this
statement comes from the global clustering of spectral O-type stars (Parker & Goodwin
2007), of which ∼ 70% reside in young clusters (Gies 1987) and ∼ 50% of the remaining
field population are directly identified as runaways (de Wit et al. 2005). de Wit et al. (2005)
found that only ∼ 4% of O-type stars can be considered as having formed outside a cluster
environment. However, after further analysis it was recently shown that a few of those may
also be runaway stars (Gvaramadze & Bomans 2008, Schilbach & Röser 2008). Further
evidence that clusters are the primary mode of star formation comes from the observed
formation rate of stars in embedded clusters (∼ 3×103 M⊙ Myr−1 kpc−2; Lada & Lada 2003)
which is comparable to the formation rate of field stars (∼ 3–7×103 M⊙ Myr−1 kpc−2; Miller
& Scalo 1979). In addition, some 96% of the stars in the nearby Orion B star-forming region
are clustered (Clarke, Bonnell & Hillenbrand 2000).

In nearby young starburst galaxies at least 20%, and possibly all, of the ultraviolet light
appears to come from young star clusters (Meurer et al. 1995); this also seems to be the case
for the observed Hα and B-band luminosities in interacting galaxies, such as the Antennae
(Fall, Chandar & Whitmore 2005) and NGC 3256 (Zepf et al. 1999). The fossil record of
an early episode of star formation is evidenced by the present-day population of globular
clusters, although the first (population III) stars seem not to have formed in clusters (Abel,
Bryan & Norman 2002).

1.1 Scope of this review

According to the Oxford English Dictionary (2009) a globular star cluster (hereafter GC)
is “a roughly spherical cluster of stars, typically seen in galactic halos, containing large
numbers of old, metal-poor stars.” This definition succinctly defines the properties—shape,
mass, spatial distribution, stellar content and metallicity—normally associated with globular
clusters, although it is somewhat too restrictive about the metalicity. In these terms, a
“young” globular cluster is a high-redshift (z ∼ 5) object, probably undetectable with current
technology against the background of its parent galaxy (Brodie & Strader 2006)a. In current
usage, however, the term “young globular cluster” has acquired a rather different meaning,
referring instead to young, massive clusters that might some day come to exhibit properties
comparable to the globular clusters observed today. Accordingly, for purposes of this review,
our working definition of a young massive star cluster is “a roughly spherical cluster of stars,
found in both galactic disks and halos, containing large numbers of young stars”. Any young
cluster massive enough to survive for a Hubble time—regardless of its current location—
meets our criteria for inclusion. Within the current context we cannot make a connection
between cluster properties and environment, but from the discussion around Fig. 8 it is clear
that environment has at least some influence on the global cluster characteristics (see §2.2).

Obviously, with this definition, young massive clusters cannot be the progenitors of the
present-day GCs. We will refer to these alleged siblings as young massive clusters or YMCs
throughout this review. In fact, it is unclear to what extent today’s YMCs will ever have

aGlobular clusters at z ∼ 5 are expected to be 2 magnitudes brighter than the detection limit of the
James Webb Space Telescope.
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properties similar to those of the (old) GCs. While we can reasonably expect that after (say)
10 Gyr they will be roughly spherical in shape and will have surface brightness distributions
similar in character to those of the old GCs, other properties are not so easy to assess. For
example, it is not known to what extent the future kinematic properties of these clusters, as
a population, will resemble those of today’s GC systems. Young clusters, such as those in
the Antennae (Fall, Chandar & Whitmore 2005), that formed in galaxy mergers may well
come to populate the halo of the resultant galaxy (Kravtsov & Gnedin 2005), but it is less
clear that the same is true of clusters currently forming in quiescent galactic disks.

The uncertainties increase when we consider in more detail the internal properties of
clusters. Except for a few nearby cases, such as Westerlund 1 and the Arches cluster (see
Tab. 2 in §2.3.1), observations of YMCs are limited to stellar masses >∼ 1 M⊙, whereas the
most massive stars observed in GCs are less than 1 M⊙. Thus there is no guarantee that the
stellar mass function in YMCs below ∼ 1M⊙ resembles the initial mass functions of known
GCs, although we note that the stellar mass function in nearby open clusters is consistent
with the distribution of low-mass stars in GCs (Chabrier 2003).

Finally, the initial binary fractions inferred for GCs are generally small, whereas YMCs
appear to be binary-rich (see §6.1). However, the known binaries in massive clusters tend
to be found among massive stars. The binary properties of low-mass stars are unknown.
Again, the absence of any overlap in the observed stellar mass spectra makes it difficult to
compare binary parameters in YMCs with those in GCS.

Our objective in this review is to summarize the current state of knowledge of young
massive star clusters, the key physical processes governing their evolution and survival, and
the extent to which we expect them to evolve into systems comparable to the old GCs
observed in many galaxies today.

We will focus on observations of clusters younger than about 100 Myr and more massive
than 104 M⊙. The age limit is somewhat arbitrary, but represents roughly the epoch at which
a cluster can be said to have survived its birth and the subsequent early phase of vigorous
stellar evolution (see §5), and to be entering the long-term evolutionary phase during which
its lifetime is determined principally by stellar dynamical processes and external influences
(see §3). The mass limit is such that lower mass clusters are unlikely to survive for more than
a few gigayears, and therefore will never become part of an old “globular cluster” population.
Based on the lifetimes presented in §5 (in particular in Eq. 18), we estimate that a cluster
with an initial number of stars N ≃ 105 M⊙ will survive for a typical GC age of ∼ 10 Gyr.
However, since young clusters more massive than 105 M⊙ are relatively rare, we relax our
criterion in this review to include star clusters with masses as low as 104 M⊙.

We place no limits on cluster size, metallicity, or galactic location, for the practical reason
that this would reduce still further our already small sample of young massive clusters, even
though it may be clear that clusters like Arches and Quintuplet are unlikely to survive for
more than a gigayear. The size distribution of YMCs, however, appears to be consistent with
them evolving into GCs (Máız-Apellániz 2002), so the absence of a limit has little material
effect on our discussion.

In this review we will use the terms young, dense, and massive in relation to star clusters.
Although not precise, these descriptions do have specific connotations. “Young” means star
clusters that have survived the early, violent mass-loss phase during the first 100 Myr (see §5).
“Dense” indicates that in some clusters the stars are packed together so closely that stellar
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collisions start to play an important role (see §3.4.2). In terms of the Safronov number,b

young dense clusters have Θ <∼ 102. As a practical matter, we consider clusters to be dense if
their relaxation time (Eq. 15) is less than ∼ 108 years (Portegies Zwart, McMillan & Makino
2007). “Massive” indicates that we expect the cluster to survive for ∼ 10 Gyr, into the
“old globular cluster” regime. Tab. 1 summarizes the main parameters of the three different
populations of star clusters.

cluster age mto M rvir ρc Z location tdyn trh
[Gyr] [M⊙] [M⊙] [pc] [M⊙/pc3] [Z⊙] [Myr] [Myr]

OC <∼ 0.3 <∼ 4 <∼ 103 1 <∼ 103 ∼ 1 disk ∼ 1 <∼ 100
GC >∼ 10 ∼ 0.8 >∼ 105 10 >∼ 103 < 1 halo >∼ 1 >∼ 1000
YMC <∼ 0.1 >∼ 5 >∼ 104 1 >∼ 103 >∼ 1 galaxy <∼ 1 <∼ 100

Table 1: Comparison of fundamental parameters for star cluster families relevant to this
review: open cluster (OC), globular cluster (GC), and young massive cluster (YMC). The
numbers in the columns are intended to be indicative of the population and are rounded-off,
and should be used with care, but they provide some flavor of the various cluster types. The
second column gives cluster age, followed by the turn-off mass (in M⊙), the total cluster
mass (in M⊙), the virial radius rvir, the core density, and the metalicity. The last three
columns give the location in the Galaxy where these clusters are found, and the dynamical
and relaxation time scales.

Figs. 1 and 2 compare the distributions of massive open star clusters, YMCs, and GCs
in the Milky Way Galaxy. Their positions in the galaxy (Fig. 1) are quite distinct, but
considering that YMCs are relatively massive compared to open clusters and are therefore
observable to a larger distances, their locations do seem to resemble the open cluster distri-
bution, rather than that of the GCs. However, in the mass-radius diagram (Fig. 2), YMCs
seem more closely related to GC.

1.2 Properties of Cluster Systems

The Milky Way Galaxy contains some 150 GCs, with mass estimates ranging from ∼ 103 (for
AM4, a member of the Sgr dwarf spheroidal galaxy) to 2.2× 106 M⊙ (for NGC 5139, Omega
Centauri)c. If we assume constant M/L = 2, the current total mass in GCs is ∼ 3.5×107 M⊙,
or ∼ 0.07% of the baryonic mass of the Galaxy and 0.005% of the total mass (including
dark matter). The luminosity function of GCs in the Galaxy peaks at MV ≈ −7.4 mag,

bThe Safronov (1969) number Θ is defined as the square of the ratio of the escape velocity from the stellar
surface to the rms velocity in the cluster:

Θ =
1

2

(

v⋆,esc

vrms

)2

. (1)

cThese estimates are made assuming a constant mass-to-light ratio M/L = 2, with data from
the (Harris 1996) catalog of Milky Way GCs http://www.physics.mcmaster.ca/Globular.html.
Another useful catalog for Milky Way globular cluster data is available online
http://www.astro.caltech.edu/∼george/glob/data.html (Djorgovski & Meylan 1993)
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Figure 1: Left: Distribution of young (< 100 Myr) and old (> 3 Gyr) open clusters in the
Galactic plane, based on the catalog of Dias et al. (2002). The old open clusters are found
preferentially towards the Galactic anti-center and above the plane. The young massive
clusters seem to be concentrated in the same quadrant as where the Sun resides, which
probably is an observational selection effect. Right: Distribution of globular clusters, data
from the catalog (Harris 1996).
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Figure 2: Radius-mass diagram of Milky Way open and globular clusters. Dashed and dotted
lines represent constant half-mass density and half-mass relaxation time, respectively.

corresponding to a typical mass of ∼ 2 × 105 M⊙, and has a (Gaussian) width of ≃ 1.2 mag
(Harris 2001). The total initial mass for GCs is estimated to be ∼ 4−8×108 M⊙ (Fall & Zhang
2001). Apparently, more than 90% of all globular star clusters have been disrupted during
the last ∼ 12 Gyr (Chernoff & Weinberg 1990), and the inferred total mass in disrupted
clusters is comparable to the total mass of the Galactic stellar halo (Bell et al. 2008, see also
§ 5).

If all stars form in clusters, then all field stars must once have belonged to a cluster,
and the observed old star clusters—the globular clusters and old open clusters—are the
survivors. If GCs supplied the halo with stars, then the population of open star clusters
must supply the disk. The open cluster databases of Kharchenko et al. (2005) and Piskunov
et al. (2008), with 81 clusters, are probably complete to a distance of ∼ 600 pc and have a
mean mass of ∼ 500 M⊙. With an open cluster birth rate of 0.2–0.5 Myr−1 kpc−2 (Battinelli
& Capuzzo-Dolcetta 1991, Piskunov et al. 2006), the implied total star formation rate in open
clusters is ∼ 2 × 102 M⊙ Myr−1 kpc−2, which is somewhat lower than independent estimates
of the Galactic formation rate of stars in clusters Kennicutt (1998). (We note that, for an
average cluster age of ∼ 250 Myr these estimates imply a total of about 23,000–37,000 open
star clusters currently in the Galaxy.) However, the formation rate of embedded clusters
is considerably higher—2 − 4 Myr−1 kpc−2 (Lada & Lada 2003)—and with a similar cluster
mean mass the total star formation rate in embedded clusters is ∼ 3× 103 M⊙ Myr−1 kpc−2,
comparable to the formation rate of field stars in the disk (3−7×103 M⊙ Myr−1 kpc−2; Miller
& Scalo 1979). Although the uncertainties are large, this suggests that the majority of stars
are formed in embedded clusters, but only a small fraction (∼ 10%) survive the embedded
phase to become open clusters.
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Figure 3: Top view of the Milky Way Galaxy, with the known spiral pattern (Vallée 2008)
and young star clusters more massive than & 104 M⊙ identified. Basic cluster parameters
are listed in Tab. 2. The location of the Sun is indicated by ⊙, and its orbit by the dotted
circle. Dashed lines indicate circles of 1 kpc and 2 kpc around the sun.

These estimates are sensitive to the underlying assumptions made about the star-formation
history of the Galaxy and the duration of the embedded phase, as well as to observational se-
lection effects. For example, the open cluster sample used by Battinelli & Capuzzo-Dolcetta
(1991) is based on a luminosity limited sample of 100 clusters from the Lynga (1982) catalog,
which claims to be complete to a distance of 2 kpc, but the mass of open clusters in this
catalog between 600 pc and 2kpc averages several 103 M⊙. The much higher mean mass of
open clusters at large distance indicates that care has to be taken in using these catalogs, as
there appear to be selection effects with respect to distance. Another problem arises from
confining the analysis to a distance of 600 pc around the sun, since the cluster sample does
not include any nearby spiral arms, where many young clusters form; Lada & Lada (2003)
considered a sample of clusters within 2 kpc of the sun, which therefore includes many objects
in the Perseus and Sagittarius arms (Fig. 3). These differences complicate direct comparison
of cluster samples.
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1.3 Terminology

The study of star clusters has traditionally been plagued by conflicting terminology used by
theorists and observers. In this section we attempt to clarify some terms, with the goal of
making this review readable by both observers and theorists.

1.3.1 Cluster center

Determining the center of a star cluster sounds like a trivial exercise, but in practice it is
not easy. As with many other fundamental parameters in astrophysics, the center of a star
cluster is not well defined observationally, although theorists have reached some consensus
about its definition.

von Hoerner (1963) defined the center of a simulated (N -body) cluster as a density-
weighted average of stellar positions:

xd,j =

∑

i xiρ
(j)
i

∑

i ρ
(j)
i

. (2)

Here ρ
(j)
i is the density estimator of order j around star i, and xi is the (3-dimensional)

position vector of star i.
In direct N -body simulations (see §4.1.3), alternatives to Eq. 2 are preferred due to the

computational expense of determining the local density ρ
(j)
i . The center of mass, often used

in simple estimates, is generally not a good measure of the cluster center, as distant stars
tend to dominate. This has led to approximate, but more efficient, estimators, such as the
“modified” density center (Portegies Zwart et al. 2001), which iteratively determines the
weighted mean of the positions of a specified Lagrangian fraction (typically ∼ 90%) of stars,
relative to the modified density center. In general, it agrees well with the density center
defined above.

Observationally it is considerably harder to define the cluster center, both because of the
lack of full 3-dimensional stellar positions, and also because of observational selection effects,
including low-luminosity stars, crowding and the broad range in luminosities of individual
stars. Both number-averaged and luminosity-averaged estimators are found in the literature.
In principle, the 2-dimensional equivalent of Eq. 2 could be used, but observers often prefer
the point of maximal symmetry of the observed projected stellar distribution. An example
is the technique adopted by McLaughlin et al. (2006) to determine the center of GC 47 Tuc.

1.3.2 Size scales

Massive star clusters tend to be approximately spherically symmetric in space, or at least
circular on the sky, so the radius of a cluster is a meaningful measure of its size. Theorists
often talk in terms of Lagrangian radii—distances from the center containing specific frac-
tions of the total cluster mass. For observers, a similar definition can be formulated in terms
of isophotes containing given fractions of the total luminosity. The half-mass radius (rhm;
the 50% Lagrangian radius) is the distance from the cluster center containing half of the
total mass. Observationally, the projected half-light radius, or effective radius reff , is often
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used, although the total cluster light, which is obviously required to define the Lagrangian
radii, can be hard to determine with confidence.

Arguably more useful cluster scales are the virial radius rvir, the core radius rc, and the
tidal radius rt. The virial radius is defined as

rvir ≡
GM2

2|U | . (3)

Here M is the total cluster mass, U is the total potential energy and G is the gravitational
constant. This is clearly a theoretical definition, as neither the total mass nor the potential
energy are actually observed. The potential energy may be obtained directly from the stellar
masses and positions in an N -body simulation (see §4), or from a potential–density pair by
U = 2π

∫

ρ(r)φ(r)r2 dr.
From an observational point of view, the parameter η ≡ 6rvir/reff is generally introduced

to determine the dynamical mass of star clusters. In virial equilibrium (U = −2T , here T is
the total kinetic energy of the cluster stars), T/M = 1

2
vrms

2 = 3
2
σ1D

2 for an isotropic system.
The line-of-sight velocity dispersion σ1D can be directly measured, yielding the cluster mass

Mvir = η

(

σ1D
2reff
G

)

. (4)

Fig. 4 presents the dependence of η on the parameters of some typical density profiles: the
concentration c ≡ log(rt/rc) of a King (1966) model or γ in an Elson, Fall & Freeman (1987,
hereafter EFF87) surface brightness profile,

Σ(r) = Σ0

(

1 +
r2

a2

)−γ/2

, (5)

where a is a scale parameter and the 3-dimensional density profile has a logarithmic slope
of −γ3D = −(γ + 1) for r ≫ a, rc and rt are the core radius and tidal radius of the cluster,
respectively (see below).

A Plummer (1911) density profile has γ = 4, rvir/reff = 16/3π, and therefore η ≃ 10.
The value η = 9.75, corresponding to rvir = 1.625reff , is a reasonable and widely used choice
for clusters with relatively shallow density profile (γ & 4 or W0 . 8). For γ ≤ 2 the EFF87
profile has infinite mass, and the ratio rvir/reff drops sharply for γ . 2.5. The choice for
η = 9.75 should be made cautiously, since many young clusters tend to have relatively shallow
density profiles with 2 . γ . 3, for which η <∼ 9 (see Fig. 4 and also §2.3). In addition, mass
segregation can have a severe effect on η, resulting in a variation of more than about a factor
of 3 (Fleck et al. 2005).

Observers generally define the cluster core radius, rc, as the distance from the cluster
center at which the surface brightness drops by a factor of two from the central value.
Unfortunately, theorists use at least two distinct definitions of rc, depending on context.
When the central density ρc and velocity dispersion 〈v2〉 are easily and stably defined, as is
often the case for analytic, Fokker–Planck, and Monte-Carlo models (see §4.1), the definition

rc =

√

3〈v2〉
4πGρc

(6)
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Figure 4: The ratio rvir/reff and the parameter η used to convert an observed 1-D velocity
dispersion and half-light radius into a dynamical mass (Eq. 4) for Eq. 5 (left) and King (1962)
and King (1966) models (right). The dashed line in the left panel indicates the analytical
result for a Plummer (1911) model (γ = 4 in Eq. 5).

(King 1966) is often adopted. For typical cluster models this corresponds roughly to the
radius at which the three-dimensional stellar density drops by a factor of 3, and the surface
density by ∼ 2.

In N -body simulations, however, both ρc and 〈v2〉 are difficult to determine, as they are
subject to substantial stochastic fluctuations. As a result, a density-weighted core radius is
used instead. Specifically, for each star a local density ρi is defined using the star’s k nearest
neighbors (Casertano & Hut 1985), where k = 12 is a common choice. A density center is
then determined, either simply the location of the star having the greatest neighbor density,
or as a mean stellar position, as in Eq. 2, except that the density estimator is ρ2

i . [The square
is used rather than the first power, as originally suggested by Casertano & Hut (1985), to
stabilize the algorithm and make it less sensitive to outliers.] The core radius then is the
ρ2

i -weighted rms stellar distance from the density center:

rc =

√

∑

i ρ
2
i r

2
i

∑

i ρ
2
i

. (7)

Despite their rather different definitions, in practice the two “theoretical” core radii (Eqs. 6
and 7) behave quite comparably in simulations.

For simple models, the values of rc and rvir determine the density profile, which is gen-
erally assumed to be spherically symmetric. This is the case for the empirical King (1962)
profiles and dynamical King (1966) models, both of which which fit the observed surface
brightness distribution of many Milky Way GCs. The dynamical King models are parame-
terized by a quantity W0 representing the dimensionless depth of the cluster potential well.

13



Figure 5: EFF87 model fits (with power-law index γ) to King surface brightness profiles
(characterized by King concentration parameter c = log10 rt/rc). The fits of Eq. 5 to the
King profiles/models is done within the cluster half-mass radius.

Centrally concentrated clusters have W0
>∼ 8, whereas shallow models have W0

<∼ 4. The
empirical and dynamical King profiles are in good agreement for W0

<∼ 7.
Galactic GCs are well fit by King models, but the observed surface brightness profiles

of young clusters in, for example, the LMC are not. They are much better represented by
EFF87 profiles (Eq. 5), which have cores (different from the King-model cores) and power-
law halos. For a King model with concentration c & 1 (W0 & 5), the surface brightness drops
to approximately half of its central value at r = rc, as defined by Eq. 6, so the observed core
radius is a good measure of the core radius of the underlying three-dimensional stellar density
distribution. The core radius of the often by observers adopted EFF87 surface brightness
profile is

rc = a
(

22/γ − 1
)1/2

. (8)

Here a is the scale parameter in the density profile. Thus, when an EFF87 surface brightness
profile is fit to an observed cluster, Eq. 8 can be used to determine with good confidence the
3-dimensional core radius rc of Eq. 6.

In Fig. 5 we compare the EFF87 profiles with the empirical King profiles and (projected)
King models, by fitting Eq. 5 to each within the inner half-mass radius. For c→ ∞ the King
(1962) surface brightness profile tends to a power-law with index −2, which has (logarith-
mically) infinite mass. The King (1966) model in that case becomes an isothermal sphere
(ρ ∝ r−2), also with (linearly) infinite mass, corresponding to γ = 1 in Eq. 5.

The tidal radius is the distance from the center of a star cluster where the gravita-
tional pull from the cluster equals that of the parent Galaxy (von Hoerner 1957). It is a
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Figure 6: Equipotential surface for a star cluster in a galactic tidal field. The galactic center
is to the right. The Jacobi surface is presented by the two crossing lines, to the right of
which is the L1 Lagrangian point and to the left is L2. (Image taken with courtesy from
Fig. 3 of Heggie 2001).

1-dimensional concept which, when calculated in all directions results in the Jacobi surface

(see Fig. 6), which is often expressed in a radius rJ from the cluster center. The Jacobi radius
rJ is defined as the radius of a sphere with a volume identical to the enclosed volume of the
Jocobi surface. For clarity and simplicity, the latter is often related to the Roche radius, as
is used in relation to interacting star on a circular orbit. In practice all these radii indicate
at what distance from the cluster center a star finds itself unbound from the collective (Read
et al. 2006). Stars, however, do not usually escape from a cluster in a random direction, but
along the Lagrangian radii nearest the star cluster, L1 (in the direction towards the center
of the host galaxy) and L2 (away from the host Heggie 2001).

1.3.3 Time scales

The dynamics of any self-gravitating system is defined by two fundamental time scales, the
dynamical timescale tdyn, and the relaxation timescale trl.

The dynamical time scale is the time required for a typical star to cross the system; it is
also the time scale on which the system (re)establishes dynamical equilibrium. A convenient
formal definition in terms of conserved quantities is

tdyn =
GM5/2

(−4E)3/2
, (9)

where E ≡ T + U is the total energy of the cluster. In virial equilibrium, 2T + U = 0 and
this expression assumes the more familiar form (Spitzer 1987)

tdyn =

(

GM

r3
vir

)−1/2

(10)
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∼ 2 × 104 yr

(

M

106 M⊙

)−1/2 (

rvir

1 pc

)3/2

, (11)

The relaxation time, trl, is typically much longer than tdyn. It the time scale on which two-
body encounters transfer energy between individual stars and cause the system to establish
thermal equilibrium. The local relaxation time is (Spitzer 1987):

trl =
〈v2〉3/2

15.4G2mρ ln Λ
, (12)

where m is the local mean stellar mass and ρ is the local density. The value of the parameter
Λ ranges from Λ ∼ 0.11N for systems without a stellar mass function (Giersz & Heggie 1994)
to Λ = 0.4N for the theoretical case where all stars have the same mass and are distributed
homogeneously with an isotropic velocity distribution (Spitzer 1987).

For a cluster in virial equilibrium we can replace all quantities by their cluster-wide
averages, writing 〈v2〉 = GM/2rvir and ρ̄ ≈ 3M/8πr3

vir, where we ignore the distinction
between virial and half-mass quantities, so rhm ≈ rvir. We thus obtain the “half-mass”
two-body relaxation time (Spitzer 1987):

trh ≃ 0.065〈v2〉3/2

G2〈m〉ρ̄ ln Λ
(13)

= 0.14
N1/2rvir

3/2

G1/2〈m〉1/2 ln Λ
(14)

≈ N

7 ln Λ
tdyn , (15)

where 〈m〉 ≡ N/M is the global mean stellar mass. If, for simplicity, we adopt ln Λ = 10 as
appropriate for the range in cluster masses of interest in this review, Eq. 13 becomes

trh ∼ 2 × 108 yr

(

M

106M⊙

)1/2 (

rvir

1pc

)3/2 (〈m〉
M⊙

)−1

. (16)

Finally, we note that in real stellar systems the one-parameter simplicity of Eq. 15 is
broken by the introduction of a third time scale independent of the dynamical properties
of the cluster—the stellar evolution time scale tS ∼ 10 Myr for YMCs. This simple fact
underlies almost all of the material presented in this review.

2 The properties of star clusters

The formation of clusters with masses comparable to present-day globular clusters is not
restricted to the early universe. Even before the Hubble Space Telescope (HST) era, ground-
based observations revealed numerous “bluish knots” and “super-star clusters” in M82 (van
den Bergh 1971) and the relatively local ongoing galaxy merger NGC 7252 (Schweizer 1982)
and in the starburst dwarf galaxy NGC 1569 (Arp & Sandage 1985). These and later
well studied examples are promising candidates for the latest generation of “young globular
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clusters” (Whitmore 2003, Larsen 2006). As discussed in §1 it is unclear whether, or to what
extent, these young blue objects are actually related to the old globular clusters observed in
the Milky Way Galaxy and many others. We review here some observational characteristics
and attempt to assess the similarities and differences between the young and old populations.
In § 2.1 we briefly visit some key results that were acquired from studies of young populations
of clusters and in § 2.3 we present an overview of the properties of individual clusters from
literature. Since there are too many clusters known that follow our definition of YMCs, we
restrict ourselves to a sample of well studied clusters, for which at least the age, mass and
radius have been determined. For more in depth reviews on observations of populations of
YMCs we refer to Whitmore (2003) and Larsen (2006).

2.1 General characteristics

Traditionally, astronomers have drawn a clear distinction between the relatively young Milky
Way open clusters associated with the Galactic disk, and the old globular clusters that reside
mostly in the halo (see Fig. 1 and Tab. 1). This division does not hold outside the Milky Way.
This is particularly evident in the Magellanic clouds, which host a wealth of YMCs that have
received considerable attention since the 1960s (Hodge 1961). Their ages are comparable to
many Milky Way open clusters (up to a few hundred megayears), but their masses and core
densities exceed those of open clusters in the Milky Way, in some cases by several orders of
magnitude (e.g. Elson & Fall 1985, see Tab. 1).

The discussion regarding the difference between open and globular clusters goes back a
long while, and the complications regarding the identification of YMCs is well illustrated by
R 136, a the central stellar conglomerate in the Tarantula nebula of the LMC. R 136 (see
Fig. 7 and Tab. 3) was initially thought to be a single stellar object at least 2000 times more
massive and about 108 times brighter than the Sun. In 1985, using speckle interferometry,
Weigelt & Baier unambiguously resolved it into a group of stars. R 136 is now known to
contain ∼ 105 young stars, rather than one single extraordinary object (Massey & Hunter
1998, Andersen et al. 2009). It had already been noted that massive young clusters, such
as R136, could be responsible for the giant HII regions found in other galaxies (Kennicutt
& Chu 1988). The HST has later confirmed many extra-galactic YMCs, starting with the
discovery in the interacting galaxy NGC 1275 (Holtzman et al. 1992).

With HST it is now possible to distinguish star clusters at distances of several tens of
megaparsecs. One example is the cluster A1 in NGC 5194 (M51), shown in the right-hand
panel of Figure 7. It may be viewed as a twin of R136, shown on the left. The two clusters
have comparable ages of only a few megayears, masses of ∼ 105 M⊙, and very compact
structures, with core radii of less than one parsec (Bastian et al. 2008). Since such clusters
are small and their distances generally large, they are hard to find; the large number of
objects already known suggests that there must be many clusters similar to R 136 waiting
to be found.

YMCs are not only found in galaxies with violent star formation histories, but also in
quiescent spirals (e.g. Larsen & Richtler 2000, Larsen 2004), and there are many similarities
between the young cluster populations in these different environments. For example, the
luminosity function (LF), defined as the number of clusters per unit luminosity (dN/dL)
is well described by a power-law with index close to −2 (e.g. Whitmore & Schweizer 1995,
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Figure 7: Images of two young (few megayears) massive (∼ 105 M⊙) clusters. Left: A region
of 50×50 pc2 around the cluster R136 in the 30 Doradus region of the LMC, at a distance of
∼ 50 kpc. Right: The star cluster A1 in the interacting galaxy M51 at a distance of 8.4 Mpc,
with the scale of the R136 image indicated. Credit: NASA, ESA, and The Hubble Heritage
Team (STScI/AURA).

Miller et al. 1997, Larsen 2002, de Grijs et al. 2003), and slightly steeper for the bright LFs
(Whitmore et al. 1999, Larsen 2002, Gieles et al. 2006a).

A similar result is found from the the relationship between the luminosity of the brightest
cluster in a galaxy (Lmax) and star formation rate (SFR) of the host galaxy, or the total
number of clusters above a fixed detection limit in that galaxy (Ncl). Whitmore (2003)
showed that Lmax scales almost linearly with Ncl; roughly as Lmax ∝ Ncl

0.75 (see also Larsen
2002, Weidner, Kroupa & Larsen 2004, Gieles et al. 2006a). This suggests that Lmax is the
result of the size of the sample, and therefore determined by statistics, rather than physics.
That is, there is a larger probability to find bright clusters in galaxies with a large number
of clusters, or a high a SFR. The relation between Lmax and Ncl corresponds to a power-law
index of −2.4, supporting the finding that the bright end of the LF is steeper than −2 (since
the Lmax method traces the brightest clusters).

2.2 The cluster initial mass function

It is tempting to interpret the LF as the underlying cluster mass function. It is non-trivial,
however, to make this translation, since it consists of clusters with different ages, and because
clusters fade quickly during their first ∼ 1 Gyr due to stellar evolution. Larsen (2009) showed
that the Lmax clusters have a large range of ages, with the brightest ones on average being
younger than the fainter ones. This implies a dependence of M/L on Lmax, in a way that
the mass of the most massive cluster (Mmax) increase much slower with Ncl and the SFR.

Determinations of cluster initial mass functions (CIMFs) are rare, since it is hard to
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acquire the ages of the clusters, which are needed to select the youngest and to convert
luminosity into mass. And even then, converting the present day mass to an initial mass
requires detailed knowledge of the cluster’s history. Several determinations of CIMFs have
also found power-law functions with indices close to −2 (Zhang & Fall 1999, McCrady &
Graham 2007, Bik et al. 2003), and other studies have found evidence for a truncation of
this power-law at the high mass end (Gieles et al. 2006b, Bastian 2008, Larsen 2009). The
functional form of the initial mass function for young star clusters is well represented by a
Schechter (1976) distribution

φ(M) ≡ dN

dM
= AM−β exp(−M/M∗). (17)

Here β ≃ 2 and the Schechter massM∗ is equivalent to the more familiar L∗ for the luminosity
function of galaxies. For Milky-Way type spiral galaxies M∗ ≈ 2 × 105 M⊙ (Gieles et al.
2006b, Larsen 2009). For interacting galaxies and luminous infrared galaxies Bastian (2008)
obtainsM∗ & 106 M⊙. In the top panel of Fig. 8 we compare cluster mass functions for several
galaxies to the Schechter function Eq. 17. The bottom panel compares the corresponding
logarithmic slopes of the data with the Schechter function. Clearly the mass function of the
Antennae clusters extends to higher masses, and this is not only due to the larger number of
clusters, since the slope is also flatter at large masses. Thus the value of M∗ depends on the
local galactic environment; it is possible to form more massive clusters in starburst galaxies
than in quiescent environments.

Indirect indications for the necessity of an upper mass also follow from statistical argu-
ments. If we temporarily ignore the (exponential) truncation, i.e. we adopt a power law with
β = 2 without the exponential part in Eq. 17, we can relate the cluster formation rate to
the masses of the most massive clusters observed. Based on an overall star formation rate of
5000 M⊙ Myr−1 kpc−2 in the solar neighbourhood (Miller & Scalo 1979), comparable to the
average values found in external Milky Way type spirals (Kennicutt 1998), and assuming
that ∼ 10% of this mass ends up in bound star clusters, then the total mass formed in
10 Myr in clusters within 4 kpc of the Sun is ∼ 2×105 M⊙. For our assumed power-law mass
function, the most massive cluster contains ∼ 10% of the total mass, so the mass of the most
massive cluster is a few ×104 M⊙. Within a 4 kpc circle we find Westerlund 1, with a mass
of ∼ 6 × 104 M⊙ (see Tab. 2), in reasonable agreement with expectations.

Assuming the same star formation rate out to a distance of RG ∼ 8 kpc, which is a
conservative assumption since the star formation rate toward the Galactic center is probably
higher, the expected most massive cluster becomes a factor of 82/42 higher, or about 105 M⊙.
Over a time span of 1 Gyr, clusters with masses of ∼ 107 M⊙ should have formed within that
same distance, but if such a cluster existed it would most likely have been discovered already,
unless it has been disrupted. For a quiescent environment like the Milky Way Galaxy, the
maximum mass cluster that can form must be considerably smaller than in a starburst
environment. Similar arguments hold for external galaxies, where the entire disk can be
seen, and it is found that the high-mass end of the cluster mass function falls off more
steeply than a power-law with exponent −2 (see Fig. 8).
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Figure 8: Top: Comparison of mass functions of clusters younger than ∼ 1 Gyr in different
galaxies. The results are taken from Larsen (2009) (LMC, cluster rich spirals and cluster poor
spirals); Gieles (2009) (M51); Zhang & Fall (1999) (the Antennae galaxies) and Vansevičius
et al. (2009) (two versions of the M31 cluster mass function). The cluster mass functions
in spirals are compared to a Schechter function (Eq. 17) with M∗ = 2.5 × 105 M⊙; for the
Antennae, M∗ = 106 M⊙ is used. Bottom: the corresponding logarithmic slopes of the mass
functions.
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Figure 9: Specific U -band luminosity (TL) for various cluster populations, as a function of
ΣSFR of the parent galaxy. The dashed line shows a power-law fit (TL ∝ ΣSFR

0.8) and the
dotted line is a linear relation. Data from Larsen & Richtler (2000).

2.2.1 The cluster formation efficiency

The number of globular clusters in a galaxy is often expressed in terms of the specific
frequency, the number of globular clusters per unit luminosity of the host. For young clusters,
this is probably not a very meaningful quantity, since these clusters form with a power-law
mass function (or Schechter function, as in Eq. 17), and the luminosity of the host galaxy
depends strongly on the age of the field star population. For this reason, Larsen & Richtler
(2000) introduce the specific luminosity, TL = 100Lclusters/Lgalaxy for samples of cluster
populations in different galaxies. They show that, in the U -band, TL increases strongly with
the star formation rate per unit area (ΣSFR, see Figure 9). This suggests that galaxies with
high ΣSFR are more favorable for forming star clusters. A compelling property of this figure
is that both axes are independent of distance.

2.3 Data on individual young and massive clusters

In this section we summarize observational results on individual YMCs (see also §6.4 for a
number of well studied cases). We start with the Milky Way Galaxy star clusters (§2.3.1),
followed by clusters within the Local Group (§2.3.2), and finally those beyond the Local
Group (§2.3.3). We summarize the literature of clusters for which we found at least the
cluster age, (photometric) mass and half-light (or effective) radius. For clusters of with
more structural parameters ware known, such as the density profile, we determine the virial
radius using the relation presented in Fig. 4. For clusters of with only an estimate of reff
was available we used the ratio rvir/reff = 1.7 to determine rvir. From rvir and Eq. 11 we
subsequently determine tdyn. We clearly assumed here that the observed clusters are in virial
equilibrium, which results in an overestimate for tdyn for unbound (expanding) clusters.
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2.3.1 In the Milky Way

According to our definition in §1, the Milky Way hosts several YMCs. Probably the best
known are the Arches and Quintuplet clusters near the Galactic center (Figer et al. 2002,
Figer, McLean & Morris 1999). The Arches cluster, with an age of only 1 or 2 Myr and a
central density of ∼ 105 M⊙ pc−3, has been the topic of much debate. Because of its extreme
stellar density and the galactic environment in which it resides, it may provide important
clues about the universality of the stellar IMF. Some studies have claimed that the IMF
is truncated below a few M⊙ (Stolte et al. 2005, Kim et al. 2006), and shows evidence for
mass segregation (Stolte et al. 2002). Espinoza, Selman & Melnick (2009) suggest that
the apparent mass segregation could simply be an observational bias, and that a Salpeter
MF in the core cannot be ruled out (see also Harfst, Portegies Zwart & Stolte 2009, who
reconstruct the cluster’s initial conditions by iterative N -body simualtions.). The differential
extinction across the cluster and the total visual extinction of AV ≈ 30 magnitudes make
this a challenging cluster to study.

Currently the most massive young cluster known in our Galaxy is Westerlund 1 (Clark
et al. 2005). Due to its relative proximity (∼4 kpc), its lower extinction (although still a
considerable AV ≈ 10 magnitudes), and slightly lower intrinsic stellar density, it represents a
somewhat easier target than the Arches and Quintuplet for studies of the mass function. The
IMF and structural parameters of Westerlund 1 and the somewhat less massive NGC 3603
have been investigated by several space-based instruments, and from the ground using adap-
tive optics. As in the case of the Arches cluster, as observations have improved the measured
mass function in Westerlund 1 also appears to be consistent with a Salpeter distribution (e.g.
Brandner et al. 2008, Harayama, Eisenhauer & Martins 2008)d.

Data from individual clusters, supplemented by the recent overview by Pfalzner (2009),
are presented in Table 2. As illustrated in Figure 2 of Pfalzner (2009), young star clus-
ters appear to show two evolutionary sequences: a compact configuration starting from a
radius of ∼ 0.5 pc, to which we refer as dense clusters, and a second sequence with radii
∼ 5 pc, which we call associations. A more quantitative distinction may be found in the ra-
tio Age/tdyn. Clusters older than their dynamical time scale (Age/tdyn > 1) are associations,
while the dense clusters (almost) all have Age/tdyn < 1. More physical interpretations of
these sequences are discussed in §5.

2.3.2 In the Local Group

An extensive overview of structural parameters, with age estimates, of clusters in the Mag-
ellanic clouds, was presented by Mackey & Gilmore (2003b,a). McLaughlin & van der Marel
(2005) subsequently extended and improved this catalog. In Tab. 3 we summarize the prop-
erties of the 12 known YMCs in the Magellanic clouds. Comparison with Tab. 2 reveals the
striking absence of Milky Way YMCs with ages between 10 and 100 Myr, whereas in the
SMC and LMC, all YMCs except R136 have ages in this range. This may well be an obser-
vational effect: due to extinction in the Milky Way, it is hard to discover clusters without

dWe here use the term “Salpeter” as a possibly hypothetical universal mass function, since from the
observations of individual clusters it is not possible to make the distinction between the palette of flavors of
mass functions adopted by theorists.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Name Ref Age logMphot logMdyn rc reff γ rvir tdyn Age/tdyn

[Myr] [pc] [pc] [pc] [Myr]
Arches 1,2,3 2.00 4.30 − 0.20 0.40 − 0.67 0.06 34.81
CYgOB 4 2.50 4.40 − − 5.20 − 8.67 2.40 1.04
DSB2003 4 3.50 3.80 − − 1.20 − 2.00 0.53 6.59
NGC 3603 5 2.00 4.10 − 0.15 0.70 2.00 1.17 0.17 11.94
NGC 6231 6 2.00 4.00 − − 3.00 − 5.00 1.67 1.20
NGC 6611 4 3.00 4.40 − − 5.90 − 9.83 2.90 1.03
Quintuplet 7 4.00 4.00 − 1.00 2.00 − 3.33 0.91 4.41
RSGC 01 7 9.00 4.50 − − 1.30 − 2.17 0.27 33.66
RSGC 02 8 17.00 4.60 − − 2.70 − 4.50 0.71 23.83
RSGC 03 9 18.00 4.50 − − 5.00 − 8.33 2.02 8.92
Trumpler 14 10,4 2.00 4.00 − 0.14 0.50 2.00 0.83 0.11 17.63
Wd 1 11,12 3.50 4.50 4.80 0.40 1.00 4.00 1.70 0.19 18.76
Wd 2 4 2.00 4.00 − − 0.80 − 1.33 0.23 8.71
hPer 4 12.80 4.20 − − 2.10 − 3.50 0.78 16.51
χPer 4 12.80 4.10 − − 2.50 − 4.17 1.13 11.33
IC 1805 4 2.00 4.20 − − 12.50 − 20.83 11.26 0.18
I Lac 1 4 14.00 3.40 − − 20.70 − 34.50 60.28 0.23
Lower Cen-Crux 4 11.50 3.30 − − 15.00 − 25.00 41.72 0.28
NGC 2244 4 2.00 3.90 − − 5.60 − 9.33 4.77 0.42
NGC 7380 4 2.00 3.80 − − 6.50 − 10.83 6.69 0.30
ONC 13 1.00 3.65 − 0.20 2.00 2.00 3.33 1.36 0.74
Ori Ia 4 11.40 3.70 − − 16.60 − 27.67 30.65 0.37
Ori Ib 4 1.70 3.60 − − 6.30 − 10.50 8.04 0.21
Ori Ic 4 4.60 3.80 − − 12.50 − 20.83 17.85 0.26
Upper Cen-Crux 4 14.50 3.60 − − 22.10 − 36.83 52.82 0.27
U Sco 4 5.50 3.50 − − 14.20 − 23.67 30.52 0.18

Table 2: Properties of YMCs (top) and associations (bottom) in the Milky Way, with the
distinction based on age/tdyn. 1: Figer, McLean & Morris (1999); 2: Figer et al. (2002);
3: Stolte et al. (2002); 4: Pfalzner (2009); 5: Harayama, Eisenhauer & Martins (2008); 6:
Sana et al. (2006); 7: Figer et al. (2006); 8: Davies et al. (2007); 9: Clark et al. (2009); 10:
Ascenso et al. (2007); 11: Mengel & Tacconi-Garman (2007); 12: Brandner et al. (2008); 13:
Hillenbrand & Hartmann (1998);
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nebular emission.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Gal Name Ref Age MV logMphot logMdyn rc reff γ rvir tdyn Age/tdyn

[Myr] [mag] [pc] [pc] [pc] [Myr]
LMC NGC 1711 1,2 50.1 −9.05 4.33 − 2.13 4.18 2.78 7.68 2.17 23.10
LMC NGC 1818 1,2 25.1 −9.62 4.42 − 2.45 4.73 2.76 8.69 2.35 10.67
LMC NGC 1847 1,2 26.3 −10.95 4.94 − 2.05 4.08 2.05 1.41 0.08 312.52
LMC NGC 1850 1,2 31.6 −12.65 5.72 6.00 2.55 5.67 2.18 5.27 0.25 127.06
LMC NGC 2004 1,2 20.0 −9.70 4.41 − 1.57 3.75 2.53 6.69 1.61 12.39
LMC NGC 2100 1,2 15.8 −10.35 4.59 − 1.22 3.30 2.44 5.61 1.00 15.78
LMC NGC 2136 1,2 100.0 −8.70 4.34 − 1.99 3.09 3.79 5.32 1.24 80.76
LMC NGC 2157 1,2 39.8 −9.17 4.34 4.98 2.35 3.85 3.45 6.77 1.78 22.41
LMC NGC 2164 1,2 50.1 −8.67 4.19 5.16 1.91 3.63 2.96 6.62 2.04 24.59
LMC NGC 2214 1,2 39.8 −8.67 4.14 5.42 2.14 5.23 2.26 6.62 2.16 18.43
LMC R136 1,2 3.0 −13.62 5.52 − 0.32 0.69 2.43 1.16 0.03 92.91
M31 Vdb0 3 25.1 −10.03 4.85 − 1.40 7.40 − 12.33 2.43 10.35
M31 B015D 4 70.8 −9.94 4.85 − 0.46 23.44 − 39.07 13.68 5.17
M31 B040 4 79.4 −9.36 4.65 − 0.58 21.88 − 36.47 15.53 5.11
M31 B043 4 79.4 −8.96 4.49 − 0.76 5.13 − 8.55 2.12 37.46
M31 B066 4 70.8 −8.65 4.34 − 0.43 10.00 − 16.67 6.86 10.32
M31 B257D 4 79.4 −9.52 4.71 − 3.20 41.69 − 69.48 38.13 2.08
M31 B318 4 70.8 −8.92 4.45 − 0.81 8.32 − 13.87 4.59 15.44
M31 B327 4 50.1 −9.13 4.45 − 0.20 6.31 − 10.52 3.03 16.55
M31 B448 4 79.4 −9.47 4.70 − 0.59 25.12 − 41.87 18.04 4.40
SMC NGC 330 5,2 25.1 −10.30 4.70 5.80 2.61 5.13 2.58 9.28 1.88 13.34

Table 3: Same as Table 2, but now for the Local Group. 1: Mackey & Gilmore (2003b);
2: McLaughlin & van der Marel (2005); 3: Perina et al. (2009); 4: Barmby et al. (2009); 5:
Mackey & Gilmore (2003a);

2.3.3 Outside the Local Group

Young massive star clusters have been observed and identified well beyond the Local Group,
providing exciting new opportunities for studies of star formation and population synthesis.
Numerous population studies of extra-galactic star clusters have used broad-band photom-
etry to study the LF, and hence derive age and mass distributions. Here we focus on
individual YMCs which have been studied in detail, and for which structural parameters
such as radii and density profiles have been determined. In Tab. 4 we present a compilation
of the parameters of YMCs in galaxies in the Local Group and beyond.

2.4 Correlations

Based on Tables 2–4, Fig. 10 shows the evolution of core radius rc and effective (half-light)
radius reff with cluster age. The striking increase of rc with time was reported by Mackey &
Gilmore (2003b) for clusters in the LMC and by Bastian et al. (2008) for massive clusters
in M51 and from a compilation of literature data. Brandner et al. (2008) found that reff
increase with age for YMCs in the Milky Way.

There may be a rather strong selection bias toward dense objects in the studies of Mackey
& Gilmore (2003b) and Bastian et al. (2008), i.e., there may be young clusters with large rc
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Figure 10: (reff , right) as a function of time for the clusters in Table 2, 3 & 4.

which simply have not been classified as star clusters. This becomes immediately apparent
when we look at reff of young clusters from the study by Pfalzner (2009, see also Tab. 2). The
value of rc is not determined for these objects, resulting in a gap at the top left of Fig. 10.
These low-density associations are probably not identified as genuine star clusters at large
distances, and are therefore excluded from the sample.

The lack of dense (rc . 0.5 pc and reff . 1 pc) clusters older than 10 megayear in Fig. 10
is probably real. In that case, the increase of a factor of 5 − 10 in both rc and reff has
dramatic implications for the evolution of these clusters, since it implies that in a very short
time the densities drop by two or three orders of magnitudes. This may be explained in part
by black-hole dynamics in the young star cluster (see §3.4.3 for further discussion). However,
if very young clusters are mass segregated, the observed rc (measured from the projected
luminosity profile, see §1.3.2) could be considerably smaller than the real rc (Fleck et al.
2006, Gaburov & Gieles 2008). This topic, and the various physical mechanisms that drive
cluster expansion at these ages, are discussed in more detail in §3 and §5.

The three clusters with rc ≃ 0.7 pc and t & 20 Myr are NGC 1569-B, NGC 1569-30 and
NGC 5236-502. NGC 1569 is a starburst dwarf galaxy, and cluster #502 in NGC5236 (M83)
lies very close to the galactic nucleus. The YMCs in starburst dwarf galaxies (NGC 1705 and
NGC 1569) are small (in terms of reff) even though they are older than 10 Myr (see Fig. 10,
right panel). They are also massive, implying that they are among the densest survivors
of the early evolutionary phases of gas removal and stellar evolution (see §3). The stellar
populations in the dwarf starburst galaxies NGC 1705 and NGC 1569 are characterized
by somewhat low metallicities (approximately half solar), but it is unlikely that this could
explain the high densities of these objects. More likely the starburst dwarfs and the centers
of galaxies are simply more efficient in forming dense massive clusters, as argued by Billett,
Hunter & Elmegreen (2002) on the basis of a comparison of cluster populations in spirals
and dwarf starbursts.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Gal Name Ref Age MV logMphot logMdyn rc reff γ σ1D rvir tdyn Age/tdyn

[Myr] [mag] [pc] [pc] [km s−1] [pc] [Myr]
ESO338-IG 23 1 7.08 −15.50 6.70 7.10 − 5.20 − 32.50 4.18 0.14 41.67
M51 3cl-a 2 15.85 −11.10 5.04 − 1.60 5.20 2.00 − 7.00 0.51 13.80
M51 3cl-b 2 5.01 −12.25 5.91 − 0.86 2.30 2.60 − 8.67 1.15 35.50
M51 a1 2 5.01 −12.15 5.47 − 0.65 4.20 1.90 − 5.45 0.23 9.86
M82 MGG 9 3,4,5 9.55 −13.42 5.92 6.36 − 2.60 − 15.90 4.33 0.15 64.76
M82 A1 6,5 6.31 −14.85 5.82 5.93 1.30 3.00 3.00 13.40 5.70 0.31 27.02
M82 F 7 60.26 −14.50 6.70 6.08 − 2.80 3.00 − 3.83 0.09 788.09
NGC 1140 1 8 5.01 −14.80 6.04 7.00 − 8.00 − 24.00 5.70 0.30 7.23
NGC 1487 2 9 8.51 − 5.20 5.30 0.71 1.20 − 11.10 5.09 0.39 80.35
NGC 1487 1 9 8.32 − 5.18 6.08 0.97 2.30 − 13.70 2.67 0.07 28.92
NGC 1487 3 9 8.51 − 4.88 5.78 0.71 2.10 − 14.30 5.09 0.08 24.01
NGC 1569 A 10,11,12 12.02 −14.10 6.20 5.52 − 2.30 − 15.70 3.70 0.14 135.27
NGC 1569 C 13 3.02 − 5.16 − − 2.90 − − 4.40 0.23 7.25
NGC 1569 B 14 19.95 −12.85 5.74 5.64 0.70 2.10 2.50 9.60 8.67 0.17 139.42
NGC 1569 30 11,12 91.20 −11.15 5.55 − 0.75 2.50 2.50 − 13.33 0.69 394.24
NGC 1705 1 7 15.85 −13.80 5.90 5.68 − 1.60 − 11.40 6.00 0.26 217.57
NGC 2403 II 13 4.47 − 5.35 − − 11.80 − − 10.00 0.88 1.63
NGC 4038 S2 1 9 8.91 − 5.47 5.95 0.60 3.70 − 11.50 13.33 0.45 21.21
NGC 4038 W99-1 15 8.13 −14.00 5.86 5.81 − 3.60 − 9.10 2.33 0.08 31.57
NGC 4038 W99-16 15 10.00 −12.70 5.46 6.51 − 6.00 − 15.80 6.00 0.26 11.39
NGC 4038 W99-2 9 6.61 − 6.42 6.48 1.30 8.00 − 14.10 6.00 0.31 14.76
NGC 4038 W99-15 9 8.71 − 5.70 6.00 0.16 1.40 − 20.20 1.50 0.05 116.04
NGC 4038 S1 1 9 7.94 − 5.85 6.00 0.58 3.60 − 12.50 6.00 0.17 30.50
NGC 4038 S1 2 9 8.32 − 5.70 5.90 0.72 3.60 − 11.50 6.17 0.42 26.87
NGC 4038 S1 5 9 8.51 − 5.48 5.60 1.35 0.90 − 12.00 4.17 0.20 170.77
NGC 4038 2000 1 9 8.51 − 6.23 6.38 0.42 3.60 − 20.00 5.00 0.34 50.62
NGC 4038 S2 2 9 8.91 − 5.60 5.60 0.40 2.50 − 9.50 3.83 0.29 44.35
NGC 4038 S2 3 9 8.91 − 5.38 5.40 0.60 3.00 − 7.00 2.00 0.11 26.19
NGC 4214 I-D 13 8.91 − 5.30 − − 15.30 − − 3.50 0.35 2.07
NGC 4449 N-1 13 10.96 − 6.57 − − 16.90 − − 4.83 0.42 9.48
NGC 4449 N-2 13 3.02 − 5.00 − − 5.80 − − 34.33 8.85 2.13
NGC 5236 805 16 12.59 −12.17 5.29 5.62 0.70 2.80 2.60 8.10 43.83 16.83 32.51
NGC 5236 502 16 100.00 −11.57 5.65 5.71 0.70 7.60 2.14 − 32.67 17.16 329.63
NGC 5253 I 13 11.48 − 5.38 − − 4.00 − − 19.67 2.75 21.91
NGC 5253 VI 13 10.96 − 4.93 − − 3.10 − − 50.00 15.38 18.27
NGC 6946 1447 16 11.22 −13.19 5.64 6.25 1.15 10.00 2.10 8.80 27.50 4.10 36.58
NGC 2403 I-B 13 6.03 − 4.82 − − 26.30 − − 55.00 12.13 0.36
NGC 2403 I-C 13 6.03 − 4.42 − − 19.60 − − 25.50 4.30 0.35
NGC 2403 I-A 13 6.03 − 5.06 − − 20.60 − − 36.17 12.05 0.68
NGC 2403 IV 13 4.47 − 5.07 − − 30.00 − − 139.83 33.64 0.29
NGC 4214 VI 13 10.96 − 4.93 − − 35.90 − − 59.83 23.65 0.46
NGC 4214 V 13 10.96 − 5.73 − − 83.90 − − 67.33 17.82 0.33
NGC 4214 VII 13 10.96 − 5.33 − − 40.40 − − 28.17 1.16 0.62
NGC 4214 I-A 13 3.47 − 5.44 − − 16.50 − − 9.67 1.42 0.85
NGC 4214 I-B 13 3.47 − 5.40 − − 33.00 − − 6.67 0.52 0.29
NGC 4214 II-C 13 2.00 − 4.86 − − 21.70 − − 23.00 7.18 0.17
NGC 5253 IV 13 3.47 − 4.72 − − 13.80 − − 5.17 0.60 0.48

Table 4: Same as Table 2, but now for objects outside the Local Group. 1: Östlin, Cumming
& Bergvall (2007); 2: Bastian et al. (2008); 3: McCrady, Gilbert & Graham (2003); 4:
Bastian et al. (2006); 5: McCrady & Graham (2007); 6: Smith et al. (2006); 7: Smith &
Gallagher (2001); 8: Moll et al. (2007); 9: Mengel et al. (2008); 10: Ho & Filippenko (1996);
11: Hunter et al. (2000); 12: Anders et al. (2004); 13: Máız-Apellániz (2001); 14: Larsen
et al. (2008); 15: Mengel et al. (2002); 16: Larsen & Richtler (2004);
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3 Dynamical processes in star clusters

Studies of the dynamical evolution of a young star cluster split naturally into two phases:
(1) the first few megayears, during which stars are still forming and the cluster contains
significant amounts of ambient gas, and (2) later times, when the cluster is largely gas-free.
As a practical matter, we make a further distinction between early phase 2 and late phase 2,
depending on the relative importance of stellar mass loss and internal dynamical evolution
on the overall evolution of the cluster. An upper limit on the dividing line between phase 1
and phase 2 is the time of the first supernovae in the cluster, some 3 Myr after formation
(Eggleton 2006), which expel any remaining gas not already ejected by winds and radiation
from OB stars. The dividing line between early and late phase 2 may be placed anywhere
between 100 Myr and 1 Gyr, depending on the initial mass, radius, and density profile of the
cluster and the stellar mass function.

The evolution of the cluster during the first phase is a complex mix of gas dynamics, stellar
dynamics, stellar evolution, and radiative transfer, and is currently incompletely understood
(Elmegreen 2007, Price & Bate 2009). Unfortunately this leaves uncertain many basic (and
critical) cluster properties, such as the duration and efficiency of the star-formation process,
and hence the cluster survival probability and the stellar mass function at the beginning of
phase 2 (see §5).

The second phase is the “N -body simulation” stage familiar to many theorists. As dis-
cussed in more detail below, the processes driving the dynamical evolution here are well
known and readily modeled, allowing significant inroads to be made into the task of inter-
preting cluster observations. However, since the outcome of phase 1 provides the initial con-
ditions for phase 2, the proper starting configuration for these simulations remains largely a
matter of conjecture. Theoretical studies generally consist of throughput experiments, map-
ping a set of assumed initial conditions into the subsequent observable state of the cluster
at a later age.

Setting aside the many uncertainties surrounding the early (phase 1) evolution of the
cluster, in this section we mainly describe the assumed state of the cluster at the start of
phase 2 and the physical processes driving its subsequent evolution. For better or worse, N -
body simlations generally assume quite idealized initial conditions (summarized in Tab. 5),
with a spherically symmetric, gas-free cluster in virial equilibrium, with all stars already on
the zero-age main-sequence.

3.1 Initial conditions

In the absence of a self-consistent understanding of cluster evolution during phase 1, assump-
tions must be made about the following key cluster properties before a phase 2 calculation
can begin (Kroupa 2008). It must be noted that, in almost all cases, the choices are poorly
constrained by observations.

• The stellar mass function φ(m) = dN/dm is typically taken to be a “standard” dis-
tribution derived from studies of the solar neighborhood (e.g. Miller & Scalo 1979,
Salpeter 1955, Kroupa 2001) although it has been suggested that the mass functions of
some YMCs may be deficient in low-mass stars and/or “top-heavy” (Smith & Gallagher
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Table 5: Commonly adopted initial conditions for particle-based simulations of YMCs.

cluster parameter min max
property
number of stars N 103 106

mass function single power law: φ(m) ∝ m−2.35 0.1M⊙ 100M⊙

equilibrium Q = −T/U 0.5
density distribution Plummer, King
tidal field rt/rJ 0.25 1
concentration W0 1 16
Binary fraction fb 0 1
mass ratio ψ(q) = 1 0 1
eccentricity Ξ(e) = 2e 0 1
orbital period Γ(P ) ∝ 1/P RLOF hard

2001, Stolte et al. 2002), in the sense that the slope d logN/d logm of the mass function
at the high-mass end is shallower (i.e. less negative) than the standard Salpeter value
of −2.35.

In addition to the mass function, in many cases minimum and maximum stellar masses
are imposed. This is necessary for a pure power law, since the total mass would
in general otherwise diverge, and often desirable for other distributions, for which
convergence is not an issue. Often the minimum mass mmin is chosen on the high side,
mmin

>∼ 1M⊙, to emulate a more massive cluster simply by ignoring the low-mass stars.
This may suffice if one is interested in clusters younger than 100 Myr (early phase 2),
but for older clusters the lower-mass stellar population is important, e.g. to reproduce
the proper relaxation time. The maximum mass mmax rarely poses a practical problem,
although there may be some interesting correlations between the total cluster mass and
the mass of the most massive star (Weidner & Kroupa 2004)

• Mass Segregation. Traditionally, dynamical simulations have begun without initial
mass segregation—that is, the local stellar mass distribution does not vary systemati-
cally with location in the cluster. There is no good reason for this, other than simplicity.
Evidence for initial mass segregation can be found in some young clusters (e.g. Hillen-
brand & Hartmann 1998, Sabbi et al. 2008), simulations of star formation (e.g. Klessen
2001, Bonnell & Bate 2006), and dynamical evolution during phase 1 (McMillan, Ves-
perini & Portegies Zwart 2007; Allison et al. 2009). Several prescriptions have been
used recently for initial mass segregation (Šubr, Kroupa & Baumgardt 2008; Baum-
gardt, De Marchi & Kroupa 2008; Vesperini, McMillan & Portegies Zwart 2009). They
differ in detail, but lead to similar conclusions, namely that initial mass segregation
may be critical to cluster survival (Gaburov & Gieles 2008; Vesperini, McMillan &
Portegies Zwart 2009), since mass loss from centrally concentrated massive stars can
be much more destructive than the same mass loss distributed throughout the body of
the cluster (see §5).

• Virial Ratio. Simulations generally begin with a cluster in virial (dynamical) equi-
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librium, with virial ratio Q ≡ −T/U = 1/2. As with most of the other simplifying
assumptions described here, the principal reason for this choice is reduction of the di-
mensionality of the initial parameter space, but there is no compelling physical reason
for it. The gas expulsion that marks the end of phase 1 is expected to leave the cluster
significantly out of equilibrium, and quite possibly unbound (e.g. Hills 1980). The time
scale for a cluster to return to virial equilibrium may be comparable to the time scale
on which mass loss due to stellar evolution subsequently modifies the cluster structure
(see §5.1).

• Spatial Density and Velocity Distributions. The initial density profiles of young star
clusters are poorly constrained. Several standard models are used to model the stellar
distribution: Plummer (1911) and truncated Maxwellian (King 1966) profiles are the
most common. Other distributions, such as isothermal and homogeneous spheres, are
also used (e.g. Scally, Clarke & McCaughrean 2005). King models provide good fits to
many observed globulars, although their relation to YMCs is unclear (see §2). In the
absence of strong observational constraints, the stellar velocity distribution is normally
taken to be non-rotating and isotropic, with (for a Plummer model) the dispersion
following the local potential with the assumed virial ratio (see §1.3.2).

• Tidal Field. Clusters to not exist in isolation, but rather are influenced by the local tidal
field of their parent galaxy. In many cases (see §5.3.1), the field is modeled explicitly as
an external potential or its quadrupole moment relative to the cluster center; however
simple “stripping radius” prescriptions are also widely used. In practice incorporating
a simple stripping radius instead of a self-consistent tidal field reduces the cluster
lifetime with about a factor of two, at least if the stripping radius is taken identical
to rJ. This effect can be compensated by adopting a larger cut-off radius (for example
of 2rJ). With few exceptions (e.g. Baumgardt & Makino 2003, Giersz & Heggie 2009),
the parameters of the tidal field are held fixed in time, corresponding (for sperical or
axisymmetric galactic potentials) to an orbit at fixed galactocentric radius. For a given
orbit and cluster mass, the initial ratio of the cluster limiting radius (e.g. the “tidal”
radius of a King 1966, model, see §1.3.2) to the Jacobi radius of the cluster in the
local tidal field is a free parameter, often taken to be of order unity. In these cases the
formal edge of the cluster in the King (1966) model (rt) is then taken identical to the
Jacobi radius (rJ). For a Plummer sphere, which extends to infinity, the tidal radius
is often set as an artificial cut off at some relatively large distance.

• Binary Fraction. Binary stars are critical to cluster evolution during phase 2 (e.g.
Hurley, Aarseth & Shara 2007; Portegies Zwart, McMillan & Makino 2007). It is
not so clear how important they are during phase 1, when major structural changes
are induced by mass loss and mass segregation (Clarke, Bonnell & Hillenbrand 2000;
Bate, Bonnell & Bromm 2003). There are few, if any, observational constraints on the
overall binary fraction in YMCs. Open clusters in the field typically have high binary
fractions, approaching 100% in some cases (e.g. Mason et al. 2009; Bosch, Terlevich &
Terlevich 2009). On the other hand, most recent studies of binaries in globular clusters
suggest binary fractions of between ∼ 6% and ∼ 15% (Bellazzini et al. 2002, Sollima
et al. 2007, Milone et al. 2008, Sommariva et al. 2009).
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• Binary Secondary Masses. The mass of the secondary star in a binary is typically
selected uniformly between some minimum mass and the mass of the primary (more
massive) star (Duquennoy & Mayor 1991). With this choice, a binary tends to be more
massive than the average cluster star, and this results in additional mass segregation
of the binary population. This effect can be removed if desired by randomly selecting
primary stars and splitting them into primary and secondary components, in which
case adding binaries does not affect the mass function of cluster members (single stars
and binaries), but it does introduce a deviation from the initial stellar mass function
among binary components (Kroupa 1995).

• Binary Orbital Elements. In general, the choices made for binary elements tend to
be defensive, given the lack of observational guidance. Apart from the introduction of
a whole new set of initial parameters, the presence of primordial binaries also intro-
duces new mass, length, and time scales to the problem, greatly complicating direct
comparison between runs having different initial conditions.

The intrinsic initial distributions of binary periods are unknown, and are generally
assumed to follow those observed in the solar neighborhood (Duquennoy & Mayor
1991). This appears to be consistent with a Gaussian in logP with a mean of logP =
4.8 and a dispersion of σlog P = 2.3 in days. But flat in logP is also often adopted
Abt (1983). Observations of YMCs are of little help, as there are at most a handful of
binaries with measured orbital parameters in YMCs, and those have very short orbital
periods and high-mass components. The eccentricity distribution is usually taken to
be thermal (Duquennoy & Mayor 1991). Binary orbital orientation and initial phase
are chosen randomly.

• Higher order multiples. Primordial multiple stars are rarely included to phase-2 dy-
namical simulations. There are a few examples of calculations with primordial triples
(van den Berk, Portegies Zwart & McMillan 2007) or hierarchical planetary systems
(Spurzem et al. 2009). The complications of adding primordial multiples greatly in-
crease the already significant challenges of including binary dynamics and evolution.

3.2 Multiple stellar populations

The discovery of multiple populations of main-sequence stars and giants in an increasing
number of globular clusters (Piotto et al. 2005, Piotto 2008) and young (1–3Gyr) clusters in
the LMC (Milone et al. 2009) has led to the realization that star clusters are not idealized
entities with single well defined stellar populations. In some clusters, the observed stellar
populations appear to be separated by less than ∼ 108 years, well within our age range
for young clusters. If similar processes are operating today, multiple populations should be
expected in at least some observed young star clusters. For the unresolved extragalactic
clusters, multiple populations will be hard to confirm, but for clusters in the local group
this should be possible. At present, however, only one cluster, Sandage-96, exhibits a young
(10–16 Myr) population together with a relatively old (32–100 Myr) population (Vinkó et al.
2009) (see also §6).
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The discovery of a younger population indicates that a second epoch of star formation
must have taken place early in the cluster’s lifetime (see §6.1.1). The differences in light-
element abundances suggest that the second-generation (SG) stars formed out of gas con-
taining matter processed through high-temperature CNO cycle reactions in first-generation
(FG) stars.

The two main candidates currently suggested as possible sources of enriched gas for SG
formation are rapidly rotating massive stars (Prantzos & Charbonnel 2006, Decressin et al.
2007) and massive (4–9 M⊙) Asymptotic Giant Branch (AGB) stars (Ventura et al. 2001,
Karakas & Lattanzio 2007). In the former case, in order to produce the large mass of SG stars
suggested by observations (50% or more of the current mass of multiple-population clusters,
Carretta et al. 2008), a highly anomalous FG mass function, with an unusually large fraction
of massive stars, is required. In the latter scenario, the FG population has a normal IMF but
was initially at least ten times more massive than is now observed. Baumgardt & Kroupa
(2007) have studied the subsequent evolution and mixing of the two-component cluster in
the first scenario. D’Ercole et al. (2008) have presented simulations of the second, in which
the SG stars form deep in the potential well of a FG cluster destabilized by early mass loss.
Most of the FG cluster dissolves, leaving a mixed FG/SG system after a few gigayears.

It is not known whether, or to what extent, this phenomenon occurs in observed YMCs
(but see §6.4 and in particular the cluster Sandage-96). Obviously if it is, it significantly
impacts the assumptions made for simulations of phase 2. Except where noted, we will not
explicitly address the possibility of delayed SG star formation in this review.

3.3 Overview of cluster dynamical evolution

Most numerical studies start with initial conditions as described in §3.1. To the extent that
stellar mass loss can be neglected, we can understand the dynamical evolution of a star
cluster from the fundamental physics of self-gravitating systems, driven by relaxation.

3.3.1 Evaporation

The relaxation time (Eq. 15) is the time scale on which stars tend to establish a Maxwellian
velocity distribution. A fraction ξe of the stars in the tail of that distribution have velocities
larger than vesc and consequently escape. Assuming that this high-velocity tail is refilled
every trh, the dissolution time scale is tdis = trh/ξe. For isolated clusters, vesc = 2 vrms.
For a Maxwellian velocity distribution, a fraction ξe = 0.0074 has v > 2 vrms, and hence
tdis = 137 trh. For tidally limited cluster ξe is higher since vesc is lower. For a typical cluster
density profile ξe ≈ 0.033, implying tdis ≈ 30 trh (Spitzer 1987).

The escape fraction ξe is often taken to be constant (e.g. Gnedin & Ostriker 1997), but it
depends on rhm (through vrms) and also on the strength of the tidal field, or rJ (through vesc).
Effectively, ξe depends on the ratio rhm/rJ (e.g. Spitzer & Chevalier 1973, Wielen 1988).
Gieles & Baumgardt (2008) show that ξe ∝ (rhm/rJ)

3/2 for rhm/rJ
>∼ 0.05 (the so-called

tidal regime). From Eq. 15 we then find, for clusters on circular orbits in the tidal regime,
that tdis ∝ N/ω, apart from the slowly varying Coulomb logarithm. Here ω ≡ VG/RG is the
orbital angular frequency in the galaxy, where RG and VG are, respectively, the galactocentric
distance and the velocity around the galaxy center. For a flat rotation curve, tdis ∝ RG for
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a cluster of given mass (e.g. Chernoff & Weinberg 1990, Vesperini & Heggie 1997). This
linear dependence of tdis on RG makes it difficult to explain the universality of the globular
cluster mass function via dynamical evolution of a power-law initial cluster mass function
(Vesperini et al. 2003), but this will not be discussed further here.

Baumgardt (2001) showed that tdyn enters into the escape rate and found, for equal-mass
stars, tdis ∝ trh

3/4tdyn
1/4. Baumgardt & Makino (2003) found that this scaling also holds for

models of clusters with a stellar mass spectrum, stellar evolution, and for different types of
orbits in a logarithmic potential. Their result for tdis can be summarized as

tdis ≈ 2 Myr

(

N

ln Λ

)3/4
RG

kpc

(

VG

220 km s−1

)−1

(1 − ε), (18)

where ε is the eccentricity of the orbit. If the Coulomb logarithm is taken into account, the
scaling is approximately tdis ∝ N0.65 in the range of about 103 to 106 M⊙ (Lamers, Gieles &
Portegies Zwart 2005).

3.3.2 Core collapse

Self-gravitating systems are inherently unstable, and no final equilibrium state exists for
a star cluster. The evaporation of high-velocity stars and the internal effects of two-body
relaxation, which transfers energy from the inner to the outer regions of the cluster, result
in core collapse (Antonov 1962, Lynden-Bell & Wood 1968, Cohn 1980, Lynden-Bell &
Eggleton 1980, Makino 1996). During this phase, the central portions of the cluster accelerate
toward infinite density while the outer regions expand. The process is readily understood
by recognizing that, according to the virial theorem, a self-gravitating system has negative
specific heat—reducing its energy causes it to heat up. Hence, as relaxation transports energy
from the (dynamically) warmer central core to the cooler outer regions, the core contracts
and heats up as it loses energy. The time scale for the process to go to completion (i.e. a
core of zero size and formally infinite density) is tcc ∼ 15trh for an initial Plummer sphere
of identical masses. Starting with a more concentrated King (1966) distribution shortens
the time of core collapse considerably (Quinlan 1996), as does a broad spectrum of masses
(Inagaki & Saslaw 1985).

In systems with a mass spectrum, two-body interactions accelerate the dynamical evo-
lution by driving the system toward energy equipartition, in which the velocity dispersions
of stars of different masses would have m〈v2〉 ∼ constant. The result is mass segregation,
where more massive stars slow down and sink toward the center of the cluster on a time
scale (Spitzer 1969)

ts ∼
〈m〉
m

trl . (19)

Portegies Zwart & McMillan (2002) and Gürkan, Freitag & Rasio (2004) find that, for a
typical Kroupa (2001) mass function, the time scale for the most massive stars to reach the
center and form a well defined high-density core is ∼ 0.2trl, where trl is the relaxation time
of the region of interest (see Eq. 12), containing a significant number of massive stars—the
core of a massive cluster, or the half-mass radius of a smaller one (in which case trl = trh,
see Eq. 15). For dense clusters, ts may be shorter than the time scale for stellar evolution, or
for the first supernovae to occur (Portegies Zwart et al. 1999).
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Thus, a collisional stellar system inevitably evolves toward a state in which the most
massive objects become concentrated in the high-density central core (see §3.4.2). Dynam-
ical evolution provides a natural and effective mechanism for concentrating astrophysically
interesting objects in regions of high stellar density.

3.4 Internal Heating

On longer time scales, clusters that survive the early phases of mass loss enter a phase
driven by the competition between relaxation and a variety of internal heating mechanisms
(phase 2). High central densities lead to interactions among stars and binaries. Many of
these interactions can act as energy sources to the cluster on larger scales, satisfying the
relaxation-driven demands of the halo and temporarily stabilizing the core against collapse
(Goodman & Hut 1989; Gao et al. 1991; McMillan, Hut & Makino 1990, 1991; Heggie &
Aarseth 1992; Fregeau et al. 2003). On long time scales, these processes lead to a slow
(relaxation time) overall expansion of the cluster, with rvir ∝ t2/3, a result that follows from
simple considerations of the energy flux through the half-mass radius (Hénon 1965).

While these processes are important to the long-term dynamical evolution, their relevance
is somewhat different during the first 100 Myr (Portegies Zwart, McMillan & Makino 2007),
which is largely dominated by stellar mass loss (early phase 2) and the segregation of the
most massive stars. Often, their major effect is to enhance the rate of collisions and the
formation of stellar exotica. We now consider in turn the following processes: (1) binary
heating (§3.4.1), (2) stellar collisions (§3.4.2), and (3) black-hole heating (§3.4.3).

3.4.1 Binary Interactions

Irrespective of the way they form, binaries are often described by dynamicists as either
“hard” or “soft.” A hard binary has binding energy greater than the mean stellar kinetic
energy in the cluster (Heggie 1975): |Eb| > 1

2
〈mv2〉 ≈ 1

2
〈m〉vrms

2, where 〈m〉 and vrms are
the local mean stellar mass and velocity dispersion. A binary with mass mb = m1 +m2 and
semi-major axis ab has Eb = −Gmb/2ab, so hard binaries have ab < ahard, where

ahard =
Gm2

b

4〈m〉vrms
2
≈ 9.5 × 104 R⊙

(

mb

M⊙

)2 (

vrms

km s−1

)−2

. (20)

The hard–soft distinction is helpful when discussing dynamical interactions between binaries
and other cluster members. However, we note the definition of hardness depends on local
cluster properties, so the nomenclature changes with environment, and even within the same
cluster a binary that is hard in the halo could be soft in the core.

The dynamical significance of “hard” binaries (see Eq. 20) has been understood since the
1970s (Heggie 1975, Hills 1975, Hut & Bahcall 1983) When a hard binary interacts with
another cluster star, the resultant binary (which may or may not have the same components
as the original binary) tends, on average, to be harder than the original binary, making
binary interactions a net heat source to the cluster. Soft binaries tend to be destroyed by
encounters. For equal-mass systems, the mean energy liberated in a hard-binary encounter is
proportional to Eb: 〈∆Eb〉 = γEb, where γ = 0.4 for “resonant” interactions (Heggie 1975),
and γ ∼ 0.2 when wider “flybys” are taken into account (Spitzer 1987).
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The liberated energy goes into the recoil of the binary and single star after the interaction.
Adopting terminology commonly used in this field, we write the binary energy as Eb = −hkT ,
where 3

2
kT = 〈1

2
mv2〉 and h ≫ 1, so the total recoil energy, in the center of mass frame of

the interaction, is γhkT . For the general case mb

mb+m
of this energy goes to the single star

(with mass m) and m
mb+m

to the binary, which for an equal-mass stars reduces to 2
3

for the

single star and 1
3

for the binary. Neglecting the thermal motion of the center of mass frame,
we identify three regimes:

1. If 2
3
γhkT < 1

2
mvesc

2 = 2mvrms
2 = 6kT , i.e. h < 45, neither the binary nor the single

star acquires enough energy to escape the cluster. Binaries in this stage are bounced
from the core to fall back by dynamical friction in a process that we call “binary
convection”.

2. If 2
3
γhkT > 6kT but 1

3
γhkT < 4mvrms

2 = 12kT , i.e. 45 < h < 180, the single star
escapes, but the binary is retained. We refer to such a binary as a “bully.”

3. If h > 36/γ = 180, both the binary and the single star are ejected. Such a binary is a
“self-ejecter.”

These numbers are only illustrative, and for a binary with more components more massive
than average, as is often the case, the threshold for bullying behavior drops, while that for
self-ejection increases.

Tab. 6 places these considerations in a more physical context. Note that, since the closest
approach between particles in a resonant interaction may be as little as a few percent of the
binary semi-major axis (Hut & Inagaki 1985, McMillan 1986b), the hardest binaries may
well experience physical stellar collisions rather than hardening to the point of ejection; and
a collision tends to soften the surviving binary. Alternatively, before their next interaction,
they may enter the regime in which internal processes, such as tidal circularization and/or
Roche-lobe overflow, become important. The future of such a binary may be determined by
the internal evolution of its component stars, rather than by further encounters.

Table 6: Terminology (first column) and characterization (second and third columns) for the
various stages of a binary (see text). The subsequent columns give the orbital separation a
of a binary (in units of AU) with a total mass m1 +m2 ≡ mb = 10〈m〉 or mb = 100〈m〉, in
a cluster with a mass of M = 105 M⊙ and virial radius rvir = 1 pc and rvir = 10 pc.

Binary relation Eb M = 105 M⊙ Unit
[kT] rvir = 1pc rvir = 10pc

mb = 10 mb = 100 mb = 10 mb = 100 〈m〉
hard Eb >

3
2
kT 1 7.2 × 104 7.2 × 106 7.2 × 105 7.2 × 107 AU

bully vrec > vescm/mb 10 1.7 × 103 1.7 × 106 1.7 × 104 1.7 × 107 AU
tenured tenc > trh 100 52 58 53 5.8 AU
self-eject vrec > vescmb/m 100 0.016 1.6 33 3.3 × 103 AU

The binary encounter time scale is tenc = (nσvrms)
−1, where n is the local stellar density

and σ is the encounter cross section (see Eq. 23). If we arbitrarily compute the binary
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interaction cross section as that for a flyby within 3 binary semi-major axes, consistent with
the encounters contributing to the Spitzer (1987) value γ = 0.2, and again assume equal
masses (mb = 2m), we find

tenc ∼ 8htrl, (21)

where we have used Eq. 12 and taken ln Λ = 10. Thus the net local heating rate per binary
during the 100% efficient phase (#1 above), when the recoil energy remains in the cluster
due to “binary convection” is

Ebin = γhkT tenc
−1 ∼ 0.1kT/trl, (22)

that is, on average, each binary heats the cluster at a roughly constant rate. During the
“bully” phase, the heating rate drops almost to one-third of this value, the true value of
one-third is not reached since the ejected single stars still give energy via indirect heating.
For “self-ejecting” binaries, the heating rate is zero.

Binary–binary interactions also heat the cluster, although the extra degrees of freedom
complicate somewhat the above discussion. If the binaries differ widely in semi-major axes,
the interaction can be handled in the three-body approximation, with the harder binary
considered a point mass. If the semi-major axes are more comparable, as a rule of thumb
the harder binary tends to disrupt the wider one (Bacon, Sigurdsson & Davies 1996).

Numerical experiments over the past three decades have unambiguously shown how initial
binaries segregate to the cluster core, interact, and support the core against further collapse
(Heggie & Aarseth 1992; McMillan, Hut & Makino 1990). The respite is only temporary,
however. Sufficiently hard binaries are ejected from the cluster by the recoil from their last
interaction (self-ejection, see Tab. 6), and binaries may be destroyed, either by interactions
with harder binaries, or when two or more stars collide during the interaction. For large
initial binary fractions, this binary supported phase may exceed the age of the universe or
the lifetime of the cluster against tidal dissolution. However, for low initial binary fractions,
as now appears to have been the case for the globular clusters observed today (Heggie &
Giersz 2008, Giersz & Heggie 2009), the binaries can be depleted before the cluster dissolves,
and core collapse resumes (Fregeau et al. 2003).

Thus binary dynamics drives the evolution of the cluster while, simultaneously, the com-
bination of cluster dynamics and internal stellar processes determine the internal evolution
of each binary. This interplay between stellar evolution and stellar dynamics is sometimes
referred to as star-cluster ecology (Heggie 1992) or the binary zoo (Davies et al. 2006) or
stellar promiscuouity (Hurley & Shara 2002).

3.4.2 Stellar Collisions

In systems without significant binary fractions—either initially or following the depletion
of core binaries—core collapse may continue to densities at which actual stellar collisions
occur. In young clusters, the density increase may be enhanced by rapid segregation of the
most massive stars in the system to the cluster core. Since the stellar escape speed greatly
exceeds the rms speed of cluster stars (θ < 100 in Eq. 1), collisions lead to mergers of the
stars involved, with only small fractional mass loss (Benz & Hills 1987, Freitag & Benz
2001). If the merger products did not evolve, the effect of collisions would be to dissipate
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kinetic energy, and hence cool the system, accelerating core collapse (Portegies Zwart et al.
1999). However, when accelerated stellar evolution is taken into account, the (time averaged)
enhanced mass loss can result in a net heating effect (Chatterjee, Fregeau & Rasio 2008).

The cross section for an encounter between two objects of masses m1 and m2 and radii
r1 and r2, respectively, is

σ = πr2

[

1 +
2G(m1 +m2)

rv2

]

(23)

(Hills & Day 1976), where v is the relative velocity between the two objects, and r = r1 + r2.
For r ≪ G(m1 +m2)/v

2, as is usually the case for the star clusters discussed in this review,
the encounter is dominated by the second term (gravitational focusing), and Eq. 23 reduces
to

σ ≈ 2πr
Gm

v2
, (24)

which is nearly independent of the properties of the other stars.
Encounters (collisions) between single stars are unlikely, unless one (or both) of the stars

is very large and/or very massive, or the local density is very high. The presence of primoridal
binaries increases the number of stars in a cluster, and therefore increases the chance of a
traffic accident. Hard binaries (see §3.4.1) are also in the gravitational focusing regime, so
the earlier binary interaction cross section is obtained by setting r = a in Eq. 24. As just
discussed, such an encounter can lead to the hardening of the binary and ejection of the single
star and possibly also the binary, but it may also lead to a hydrodynamical encounter, i.e. a
physical collision between two of the stars. Due to the large extend of the hydrodynamical
mess which typically results from the collision between two stars, it is quite likely that the
third star is engulved also to participate in the colliding (Fregeau et al. 2004). Since binaries
generally have semi-major axes much greater than the radii of the component stars, such
binary-mediated collisions play important roles in determining the stellar collision rate in
YMCs (Portegies Zwart & McMillan 2002). The rate of increase of the star’s mass due to
collisions then is

dM

dt
≈ ρcσv ≈ 2πGMr∗ρc/v

= 0.6

(

m

100M⊙

) (

a

100R⊙

) (

ρc

106M⊙/pc3

) (

10km s−1

v

)

M⊙/Myr . (25)

Thus a massive star (m ∼ r∗ ∼ 1) in a dense stellar core (ρc ∼ 106 M⊙/pc3) will experience
numerous collisions during its ∼ 3 − 5 Myr lifetime. Binary encounters can substantially
increase this rate (Portegies Zwart & McMillan 2002), leading to significant numbers of
mergers in lower-density, binary rich environments. Massive binaries in young dense clusters
tend to be collision targets rather than heat sources (Gürkan, Freitag & Rasio 2004).

In a sufficiently dense system, repeated stellar collisions can lead to a so-called “collision
runaway” (Portegies Zwart et al. 1999), in which a massive star or collision product suffers
repeated mergers and grows enormously in mass before exploding as a supernova (Portegies
Zwart & McMillan 2002; Portegies Zwart et al. 2004; Gürkan, Freitag & Rasio 2004). This has
frequently been cited as a possible mechanism for producing intermediate-mass black holes
(IMBHs) in star clusters. However, while the dynamics is simple, numerous uncertainties in
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the stellar evolution and mass loss of the resultant merger product have been pointed out
in the recent literature, suggesting that the net growth rate, and hence the final mass of
the resulting IMBH, may be much lower than suggested by purely dynamical simulations—
perhaps as little as a few hundred solar masses (Yungelson et al. 2008, Glebbeek et al. 2009,
Vanbeveren et al. 2009). An alternative formation mechanism for more massive IMBHs,
involving gas accretion onto a seed ∼ 100 M⊙ black hole during a second round of star
formation early in the cluster’s lifetime (Vesperini et al. 2009), and by repeated collisions
between stellar-mass black holes during the late phase 2 of the evolution of the star cluster
(Miller & Hamilton 2002).

3.4.3 Black Hole Heating

An IMBH in a star cluster can be an efficient source of energy to the stellar system. Stars
diffuse by two-body relaxation deeper and deeper into the IMBH’s potential well, and even-
tually are tidally disrupted and consumed by the black hole (Bahcall & Wolf 1976). The
energy lost during the process heats the system. The heating rate for an IMBH of mass
MBH in a cluster core of density ρc and velocity dispersion vc is

Ebh ∼ G5〈m〉ρ2
cM

3
BH ln Λ

v7
c

. (26)

Although cores are promising environments for the formation of IMBHs, they may not be
the best place to look for evidence of massive black holes today. Dynamical heating by even
a modest IMBH is likely to lead to a cluster containing a fairly extended core (Baumgardt,
Makino & Hut 2005). Comparing the outward energy flux from stars relaxing inward in
the (Bahcall–Wolf) cusp surrounding the IMBH to the outward flux implied by two-body
relaxation at the cluster half-mass radius, Heggie et al. (2007) estimate the equilibrium
ratio of the half-mass (rhm) to the core (rc) radius in a cluster of mass M . Calibrating to
simulations, they conclude that for systems with equal mass, except of course the black holes

rhm

rc
∼ 0.23

(

M

MBH

)3/4

. (27)

Trenti et al. (2007) has suggested that the imprint of this process can be seen in his
“isolated and relaxed” sample of simulated open clusters having relaxation times less than
1 Gyr, a half-mass to tidal radius ratio rhm/rt < 0.1, and an orbital ellipticity of less than
0.1. Roughly half of the clusters in this sample have core radii substantially larger than
would be expected on the basis of simple stellar dynamics and binary heating. However,
Hurley (2007) has argued that such anomalously large core to half-mass ratios may also be
explained by the presence of a stellar-mass BH binaries heating the cores of these clusters
(see also Merritt et al. 2004, Mackey et al. 2007, 2008). Many of the above discussed results
and much of our physical understanding of the dynamical evolution of star clusters has been
developed and calibrated by means of simulations.
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4 Simulating star clusters

The evolution of a young star cluster is a complex problem combining stellar dynamics,
gas dynamics, and stellar evolution, all contributing in important ways to the cluster’s
appearance and long-term survival probability (see also §3 and §5). Over the past decade,
significant progress has been made in modeling many of these processes simultaneously in
numerical simulations of clusters during phase 2 (see § 3). A striking omission is the self-
consistent treatment of the interaction between stars and gas during phase 1. We focus here
on simulations of phase-2 clusters, first describing treatments of stellar dynamics (§ 4.1),
then turning to the inclusion of other physical processes into the mix (§ 4.2).

4.1 Dynamical algorithms

A broad spectrum of numerical methodologies is available for simulating the dynamical
evolution of young star clusters. In approximate order of increasing algorithmic and physical
complexity, but not necessarily in increasing numerical complexity, the various methods may
be summarized as follows.

• Static Models are self-consistent potential–density pairs for specific choices of phase-
space distribution functions (Plummer 1911, King 1966, Binney & Tremaine 2008).
They have been instrumental in furthering our understanding of cluster structure, and
provide a framework for semi-analytical treatments of cluster dynamics. However,
they do not lend themselves to detailed study of star cluster evolution, and we will not
discuss them further here, instead referring the reader to the discussion in §1.3.2, or
to (Spitzer 1987).

• “Continuum” Models treat the cluster as a quasi-static continuous fluid whose phase-
space distribution function evolves under the influence of two-body relaxation and
other energy sources (such as binary heating) that operate on relaxation time scales
(see Eq. 13).

• Monte–Carlo Models treat some or all components of the cluster as pseudo-particles
whose statistical properties represent the continuum properties of the system, and
whose randomly chosen interactions model relaxation and other processes driving the
long-term evolution.

• Direct N -body Models follow the individual orbits of all stars in the system, auto-
matically including dynamical and relaxation processes, and modeling other physical
processes on a star-by-star basis.

We now consider the last three categories in more detail.

4.1.1 Continuum methods

The two leading classes of continuum models are gas-sphere (Lynden-Bell & Eggleton 1980,
Bettwieser & Sugimoto 1984, Deiters & Spurzem 2001) and Fokker–Planck (Cohn 1979;
Shapiro 1985; Chernoff & Weinberg 1990; Drukier, Fahlman & Richer 1992; Takahashi 1996,
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1997; Takahashi & Portegies Zwart 1998) methods. They have mainly been applied to
spherically symmetric systems, although axisymmetric extensions to rotating systems have
also been implemented (Einsel & Spurzem 1999; Kim et al. 2002; Kim, Lee & Spurzem 2004),
and some limited experiments with rudimentary binary treatments have also been performed
(Gao et al. 1991).

Both approaches start with the collisional Boltzmann equation as the basic description
for a stellar system, then simplify it by averaging the distribution function f(x,v) in different
ways. Gas-sphere methods proceed in a manner closely analogous to the derivation of the
equations of fluid motion, taking velocity averages to construct the moments of the distri-
bution: ρ =

∫

d3v f(x,v), u =
∫

d3v vf(x,v), σ2 = 1
3

∫

d3v v2f(x,v), etc. Application of a
closure condition leads to a set of equations identical to those of a classical conducting fluid,
in which the conductivity depends inversely on the local relaxation time. Fokker–Planck
methods transform the Boltzmann equation by orbit-averaging all quantities and recasting
the equation as a diffusion equation in E−J space, where E is stellar energy and J is angu-
lar momentum. Since both E and J are conserved orbital quantities in a static, spherically
symmetric system, two-body relaxation enters into the problem via the diffusion coefficients.

These methods have been of enormous value in developing and refining theoretical insights
into the fundamental physical processes driving the dynamical evolution of stellar systems
(Bettwieser & Sugimoto 1984). However, as the degree of realism demanded of the simulation
increases—adding a mass spectrum, stellar evolution, binaries, etc.—the algorithms rapidly
become cumbersome, inefficient, and of questionable validity (Portegies Zwart & Takahashi
1999). As a result, they are generally not applied to the young stellar systems of interest here.
The major approaches currently used for simulating young massive clusters are particle-based
Monte–Carlo or direct N -body codes.

4.1.2 Monte-Carlo methods

Depending on one’s point of view, Monte–Carlo methods can be regarded as particle algo-
rithms for solving the partial differential equations arising from the continuum models, or
approximating the long-term average gravitational interactions of a large collection of par-
ticles. The early techniques developed in the 1970s and 1980s (Spitzer & Hart 1971, Henon
1973, Spitzer 1975, Stodolkiewicz 1982, 1986) fall into the former category, but recent stud-
ies, in particular (Giersz 1998; Joshi, Rasio & Portegies Zwart 2000; Freitag & Benz 2001;
Giersz 2001; Fregeau et al. 2003; Giersz 2006; Fregeau & Rasio 2007), adopt the latter view.
The hybrid Monte–Carlo scheme of (Giersz 1998, 2001, Giersz & Spurzem 2003) combines a
gas-sphere treatment of the “background” stellar population with a Monte–Carlo realization
of the orbits and interactions of binaries and other objects of interest. With their hybrid
method they have performed the first simulations of an entire globular cluster, from a very
early (although gas depleted) phase to complete dissolution (Heggie & Giersz 2008, Giersz
& Heggie 2009).

Monte-Carlo methods are designed for efficient computation of relaxation effects in col-
lisional stellar systems, a task which they accomplish by reducing stellar orbits to their
orbital elements—energy and angular momentum—effectively orbit averaging the motion of
each star. Relaxation is modeled by randomly selecting pairs of stars and applying interac-
tions between them in such a way that, on average, the correct rate is obtained. This may
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be implemented in a number of ways, but interactions are generally realized on time scales
comparable to the orbit-averaged relaxation time. As a result, Monte-Carlo schemes can be
orders of magnitude faster than direct N -body codes. For example, Joshi, Rasio & Portegies
Zwart (2000) report a CPU time scaling for their Monte-Carlo scheme of O(N1.4) for core-
collapse problems, compared to N3 for N -body methods, as discussed below. To achieve
these speeds, however, the geometry of the system must be simple enough that the orbital
integrals can be computed from a star’s instantaneous energy and angular momentum. In
practice, this limits the approach to spherically symmetric systems in virial equilibrium, and
global dynamical processes occurring on relaxation (or longer) time scales.

4.1.3 N-body methods

N -body codes incorporate detailed descriptions of stellar dynamics at all levels, using direct
integration of the individual (Newtonian) stellar equations of motion for all stars (Aarseth
2003, Heggie & Hut 2003). Their major attraction is that they are assumption-free, in the
sense that all stellar interactions are automatically included to all orders, without the need
for any simplifying approximations or the inclusion of additional reaction rates to model
particular physical processes of interest. Thus, problems inherent to Monte-Carlo methods
(see §4.1.2), related to departures from virial equilibrium, spherical symmetry, statistical
fluctuations, the form of (and indeed the existence of) phase space distribution functions,
and the possibility of interactions not explicitly coded in advance, simply do not arise, and
therefore do not require fine-tuning as in the Monte-Carlo models. In addition, including
the properties of individual stars, such as stellar evolution, is relatively straightforward.

The price of all these advantages is computational expense. Each of the N particles must
interact with every other particle a few hundred times over the course of every orbit, each
interaction requires O(N) force calculations, and a typical (relaxation time) run spans O(N)
orbits (see Eq. 15). The resulting O(N3) scaling of the total CPU time means that, even
with the best time-step algorithms, integrating even a fairly small system of, say, N ∼ 105

stars requires sustained teraflops speeds for several months (Hut, Makino & McMillan 1988).
Radically improved performance can be achieved by writing better software, or by building
faster computers (or both). In fact, the remarkable speed-up of N -body codes over the last
four decades has mainly been due to advances in hardware, and in a lesser extend due to
software.

Substantial performance improvements were realized by adopting better (individual) time
stepping schemes (as opposed to earlier shared time step schemes), in which particles advance
using steps appropriate to their individual orbits, rather than a single step for all. Further
gains were made by utilizing neighbor schemes (Ahmad & Cohen 1973), which divide the
force on every particle into irregular (rapidly varying) and regular (slowly varying) parts, due
(loosely speaking) to nearby and more distant bodies. By recomputing the regular force at
every particle step, but extrapolating the more expensive O(N) regular force for most time
steps, and recomputing it only on longer time scales, significant improvements in efficiency
have been realized. A multi-level generalization of this approach by Dorband, Hemsendorf
& Merritt (2003) is incorporated into the collisonal NBODY6++ (Spurzem 1999).

Another important algorithmic improvement was introduced in the mid-1980s with the
development of tree codes (Barnes & Hut 1986), which reduce the force calculation com-
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plexity from O(N) to O(logN). Despite their algorithmic efficiency, tree codes have not
been widely used in modeling collisional systems. This seems principally to be because of
lingering technical concerns about their long-term accuracy in systems dominated by relax-
ation processes and their performance in clusters with large dynamic ranges in densities and
time scales, even though these objections may no longer be well founded (Moore et al. 1999,
Dehnen 2000). Very promising direct–treecode methods have recently been developed to
model the dynamical interaction between a cluster and the surrounding galactic population
(McMillan & Aarseth 1993, Fujii et al. 2007, Portegies Zwart et al. 2009).

4.1.4 Parallelization

Individual time step schemes are generally hard to optimize on parallel machines. For those
architectures, block time step schemes (McMillan 1986a, Makino et al. 2006) offer sub-
stantially better performance. By rounding each star’s “natural” step down to the nearest
negative integer power of two, such a scheme effectively discretizes the time variable, allow-
ing the possibility that large blocks of stars will be “next” on the time step list, and so can
be efficiently integrated in parallel.

The two most important parallel integration techniques are the ring and copy algorithms.
Both have advantages and disadvantages, but the execution times for each, on computers
with p processors, scale as N/p, while the communication times scale as p (Harfst et al. 2007).
Both algorithms are implemented in a range of N -body codes, including NBODY6++ (Dor-
band, Hemsendorf & Merritt 2003) and the kira integrator in Starlab (Portegies Zwart
et al. 2008). The two-dimensional lattice parallelization for direct N -body kernels has com-
parable CPU time scaling, but the communication has a weaker scaling (∝ 1/

√
p), enabling

the code to maintain satisfactory performance even on computers with p >∼ 103 processors
(Makino 2002, Bisseling 2004). So far, however, this scheme has not been implemented in a
production N -body code.

An interesting further step is to use a widely distributed grid of computers (Foster &
Kesselman 2004). In this extreme form of parallel computing the computational bottleneck
often shifts from the O(N2) force calculation (see § 4.1.3) to communication (latency and
bandwidth). However, even in the worst-case scenario the communication costs scale ∝ N ,
so, for a sufficiently large number of stars even intercontinental grid computing can be
practical (Hoekstra et al. 2008). In addition, if (as seems likely—see §4.2) future simulation
environments will combine a range of codes in addition to pure stellar dynamics to address
the evolution of YMCs in detail, grid computing may provide the solution to the problem
of limited supply of local computer resources. This is particularly relevant if the desired
algorithms for solving stellar dynamics, stellar evolution, hydrodynamics, etc, require a
diversity in computer architectures that may not be locally available.

4.1.5 Hardware acceleration

A quantum leap in gravitational N -body simulation speed come from the introduction of
special purpose computers. All N -body codes, including neighbor schemes and treecodes,
suffer from the cost of computing inter-particle forces at every step along the orbit. A tech-
nological solution in widespread use is the “GRAPE” (short for “GRAvity PipE”) series of
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machines developed by Sugimoto and co-workers at Tokyo University (Ebisuzaki et al. 1993).
Abandoning algorithmic sophistication in favor of simplicity and raw computing power, these
machines achieved high performance by mating a fourth-order Hermite integration scheme
(Makino & Aarseth 1992) with special-purpose hardware in the form of highly parallel,
pipelined “Newtonian force accelerators” implementing the computation of all inter-particle
forces entirely in hardware. Operationally, the hardware is simple to program, as it merely
replaces the function that computes the (regular) force on a particle by a call to the hard-
ware interface libraries; the remainder of the user’s N -body code is unchanged. The effect
of GRAPE on simulations of stellar systems has been nothing short of revolutionary. Today,
GRAPE-enabled code lies at the heart of almost all detailed N -body simulations of star
clusters and dense stellar systems.

Recently, Graphics Processing Units (GPUs) have achieved speeds and price/performance
levels previously attainable only by GRAPE systems (see Portegies Zwart, Belleman &
Geldof 2007; Hamada & Iitaka 2007; Belleman, Bédorf & Portegies Zwart 2008; Gaburov,
Harfst & Portegies Zwart 2009) for recent GPU implementations of the GRAPE interface).
In addition, the programming model for GPUs (as well as the GRAPE-DR, Makino 2005),
means that many other kinds of algorithms can (in principle) be accelerated, although,
in practice, it currently seems that CPU-intensive operations such as direct N -body force
summation show substantially better acceleration than, say, treecodes running on the same
hardware. It appears that commodity components may be poised to outpace special-purpose
computers in this specialized area of computational science, just as they have already done
in general-purpose computing.

4.2 The kitchen sink

Consistent with our growing understanding of the role of stellar and binary interactions in
collisional stellar systems, the leading programs in this field are “kitchen sink” packages that
combine treatments of dynamics, stellar and binary evolution, and stellar hydrodynamics
within a single simulation. Of these, the most widely used are the N -body codes NBODY

(Hurley et al. 2001, Aarseth 2003) and kira which is part of the starlab package (e.g.
Portegies Zwart et al. 2001), and the Monte-Carlo codes developed by Mirek Giersz (Giersz
1998, Heggie & Giersz 2008, Giersz & Heggie 2009), Mark Freitag (Fregeau et al. 2003;
Freitag, Rasio & Baumgardt 2006) and John Fregeau (Fregeau & Rasio 2007).

Despite the differences in their handling of the large-scale dynamics, as just outlined,
these codes all employ conceptually similar approaches to stellar and binary evolution and
collisions. All use approximate descriptions of stellar evolution, generally derived from look-
up tables based on the detailed evolutionary models of Eggleton, Fitchett & Tout (1989)
and Hurley, Pols & Tout (2000). They also rely on semi-analytic or heuristic rule-based
treatments of binary evolution (Portegies Zwart & Verbunt 1996; Hurley, Tout & Pols 2002),
conceptually similar from code to code, but significantly different in detail.

In most cases, collisions are implemented in the simple “sticky-sphere” approximation,
where stars are taken to collide (and merge) if they approach within the sum of their effective
radii. The effective radii may be calibrated using hydrodynamical simulations, and mass
loss may be included in some approximate way. Freitag’s Monte-Carlo code, geared mainly
to studies of galactic nuclei, uses a more sophisticated approach, interpolating encounter
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outcomes from a pre-computed grid of smoothed particles hydrodynamics (SPH) simulations
(Freitag & Benz 2005). An interesting alternative, though currently only operational in
AMUSE (see § 4.3), is the “Make Me A Star” package (MMAS; Lombardi et al. 2003)e and
its extension “Make Me a Massive Star” (MMAMS; Gaburov, Lombardi & Portegies Zwart
2008)f. MMA(M)S constructs a merged stellar model by sorting the fluid elements of the
original stars by entropy or density, then recomputing their equilibrium configuration, using
mass loss and shock heating data derived from SPH calculations.

Small-scale dynamics of multiple stellar encounters, such as binary and higher-order en-
counters, are often handled by look-up from pre-computed cross sections or—more commonly—
by direct integration, either in isolation or as part of a larger N -body calculation. Codes
employing direct integration may also include post-Newtonian terms in the interactions be-
tween compact objects (Kupi, Amaro-Seoane & Spurzem 2006).

4.3 Future prospects

The very comprehensiveness of kitchen-sink codes gives them the great advantage of appli-
cability to complex stellar systems, but also the significant disadvantage of inflexibility. By
selecting one of these codes, one is implicitly choosing a particular hard-coded combination
of dynamical integrator, stellar and binary evolution schemes, collision prescription, and
treatment of multiple dynamics. The structure of these codes is such that implementing a
different algorithm within the larger framework is difficult at best, and practically impossible.

However, studies of dense stellar systems force interactions between programs that were
never intended to interact with other programs, and by extension require new communica-
tion channels between the programmers responsible for them. Closely related to this effort
is the “MUSE” (MUltiscale, MUltiphysics Software Environment) projectg (Portegies Zwart
et al. 2009), and its successor AMUSE (Astrophysical MUltipurpose Software Environment),
two ambitious open-source efforts in code integration. (A)MUSE aims at the self-consistent
integration of dynamics, collisions, stellar evolution, and other relevant physical processes,
thereby realizing one vision of the MODESTh community (Hut et al. 2003, Sills et al. 2003,
Davies et al. 2006). The long-term goal is a comprehensive environment for modeling dense
stellar systems, including multiphysics/legacy codes and flexible interfaces to integrate ex-
isting software (written in many languages) within this unifying environment.

Apart from the future developments regarding the flexibility of ’lego’ simulation envi-
ronment, the builders of the GRAPE are aiming at optimizing hardware by ’returning’ to
machine-dependend implementations of the force operations in N-body codes. Particularly
promising are the recent optimizations of the inner force-calculation operations using the
IA-32 Streaming SIMD Extensions 2 (SSE2) as are described by Nitadori, Makino & Hut
(2006). In addition, (Nitadori & Makino 2008) have developed extensions of the standard
fourth-order Hermite scheme to higher (sixth and eighth) orders. Other intriguing future
prospects come from the hybridization of direct methods with hierarchical tree and particle-

eSee http://webpub.allegheny.edu/employee/j/jalombar/mmas/
fSee http://castle.strw.leidenuniv.nl/
ghttp://muse.li
hMODEST stands for MOdeling DEnse STellar systems, and can be found at

http://www.manybody.org/modest.
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mesh algorithms, an approach which is currently being developed by Nitadori and Makino
(2009, private communication), but which is not yet operational.

Although we could easily write many more pages on the various numerical issues related
to simulating young massive star clusters, we have to be realistic and return to more practical
matters. In the last theoretical SS we discuss the interplay between theory, observations and
numerical modeling of YMCs, and the extend to which they provide a basis for consistency
or contradiction.

5 The survival of star clusters

The realization that the majority of star formation occurs in embedded clusters, whereas only
a small fraction of stars in the Galactic disk currently reside in clusters (see § 1), indicates
that most clusters and associations are relatively short lived; they dissolve on time scales
comparable to the median age of open clusters in the solar neighborhood (Kharchenko et al.
2005), which is about 250 Myr (see §1.2).

Historically, studies of the lifetimes of star clusters have focused on open clusters in the
Milky Way. The scarcity of open clusters with ages >∼ 1 Gyr was reported independently
in several studies (von Hoerner 1958; van den Bergh 1957; Oort, Kerr & Westerhout 1958),
and has been attributed to their short median lifetimes (about 250 Myr; Wielen 1971),
rather than, say, a variation in the formation history or a detection bias toward young
objects. These short cluster lifetimes have been explained as due to the destructive effects of
encounters with giant molecular clouds (GMCs) (Spitzer 1958). A typical Galactic cluster
with a density of ∼ 1M⊙ pc−3 can survive the heating due to passing GMCs for about
250 Myr. The remarkable agreement between the inferred mean lifetime and the expected
survival time in the Galactic disk implicated GMCs as responsible for the destruction of open
clusters (see §5.3). The argument is further supported by the radial offset of the old (few
Gyrs) open clusters toward the anticenter of the Galactic disk and away from the plane of the
disk, where the density of GMCs is low (van den Bergh & McClure 1980), as is illustrated in
Fig. 1. The the galactic bulge and spiral structure also contribute, though in lesser extend,
to the destruction of open clusters (Weinberg 1994).

By comparing the age distributions of clusters in the Magellanic clouds with those in the
Milky Way Galaxy, the former population is found to be on average older and also more
massive than the local population (Elson & Fall 1985, Hodge 1987). The higher average
cluster mass in the sample of Magellanic cloud clusters is a consequence of the difficulty in
detecting low mass clusters. The apparent longer lifetimes of the Magellanic clusters could
imply that more massive clusters tend to live longer, although the longer lifetimes could
also be explained by the lower density of GMCs, the absence of bulges and spiral structures
and the overall weaker tidal fields in the Magellanic clouds. However, in §5.3.2 we argue
that GMCs are unlikely to play an important role in the lifetime of a YMC. The mechanism
leading to the destruction of star clusters is therefore of major importance for understanding
the evolution of star clusters from youth to old age.
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5.1 Early violent gas expulsion

Possibly the greatest discrepancy between star cluster simulations and observations lies in
the first few million years of the evolution (phase 1 in §3). Real star clusters are formed in
a complicated interaction between gas and gravity, which is imperfectly understood. Once
a primordial gas cloud starts to condense into stars dynamical evolution also begins (Bate,
Bonnell & Bromm 2003). At the end of the star formation process, probably brought about
by the developing winds of the most massive stars or the first supernovae, the residual gas
is ejected from the protostellar cluster. The gas expulsion phase is expected to be short—on
the order of several dynamical times (Eq. 11)—and places the remaining stellar population in
a super-virial state, making the young cluster vulnerable to dissolution. The sharp decrease
in the number of young and embedded star clusters at an age of a few megayears is thought
to be a consequence of this early process, and is often referred to as “infant mortality” (Lada
& Lada 2003).

5.1.1 Theoretical considerations

The total mass M = Mg + M∗ of the primordial cluster contains contributions from stars
M∗ and gas Mg. In virial equilibrium, the rms velocity of the cluster is

vrms
2 =

GM

2rvir

. (28)

which in observable quantities becomes

σ1D
2 =

GM

ηreff
, (29)

with η ≈ 10 (see §1.3.2).
The response of the cluster to the loss of the residual gas depends on the gas expulsion

time scale texp relative to the dynamical time scale tdyn of the cluster (see Eq. 9). For many
young clusters texp ≪ tdyn, in which case removing the gas shocks the cluster. In the extreme
case, the positions and velocities of the stars remains fixed during the gas expulsion phase,
and the response of the cluster to losing a fraction of gas, fe ≡ M∗/M , can be calculated
under the assumption that the mass loss is instantaneous. The rms velocity of the stars
immediately before and after gas loss is then given by Eq. 28; the stellar positions are also
unchanged. As a consequence, the cluster expands and re-establishes equilibrium at a new
virial radius given by (Hills 1980)

rvir

rvir(t = 0)
=

fe

2fe − 1
. (30)

For high star formation efficiency (fe
>∼ 0.5) the arguments leading to Eq. 30 may be reason-

able, as in this case a relatively small fraction of the stars is lost after the gass is expelled.
However, the energy argument is too simple to determine the survival probability if fe

<∼ 0.5.
Losing more than half of the total mass (fe ≤ 0.5) by explosive gas expulsion is devastating
for the cluster, leading to its complete dissolution in a few dynamical time scales. A low
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star formation efficiency may explain the majority of disrupted young and embedded clus-
ters, but even for fe

<∼ 0.5 some small portion of the cluster can in practice remain bound.
There are several independent arguments for the survival of embedded clusters even for a
star formation efficiency as low as fe

<∼ 0.1.
The most important argument against the above simple analysis (Eq. 30) is the fact that

the time scale for gas expulsion, texp, in practice is short but not instantaneous. This time
scale should not be compared to the (global) half-mass crossing time, but rather to the local
dynamical time, which depends strongly on the distance to the cluster center. For example,
the dynamical time scale in the cluster core has tcore/tdyn = (ρhm/ρc)

1/2 and this fraction
ranges from <∼ 0.01 for a concentrated cluster (W0

>∼ 12, or c > 2.7) to ∼ 0.2 for a shallow
potential (c < 1 or W0

<∼ 5). For concentrated clusters (c >∼ 2), the gas expulsion occurs more
or less instantaneously for stars in the outskirts, but stars in the core respond adiabatically
to the loss of gas. If texp > tdyn, the cluster is likely to survive; in particular, the core may
respond with just a slight expansion (of at most a factor of 2), even in extreme cases, fe

<∼ 0.1
(Geyer & Burkert 2001).

Further complications arise from the clumping of the gas and stellar distributions in
the embedded cluster (Fellhauer, Wilkinson & Kroupa 2009). It is likely that the radial
dependence of the star formation process causes the central part of the cluster to be depleted
in gas, whereas the outskirts are relatively gas rich (Bonnell, Bate & Vine 2003). This radial
variation of the star formation efficiency, combined with the process of competitive star
formation (Bonnell, Bate & Vine 2003), may actually render the cluster sub-virial after the
gas is ejected, for example if stars formed in the collapsing cloud are dynamically cold (Lada,
Margulis & Dearborn 1984). In that case, Eq. 30 depends on the fractional deviation from
virial equilibrium qvir, to become rvir/rvir(t = 0) = fe/(2fe − q2

vir), i.e. the condition for
complete disruption becomes fe = q2

vir/2 (Proszkow et al. 2009, Goodwin 2009). The cluster
survival probability then depends on the entire star formation process, not just on its overall
efficiency (Goodwin & Bastian 2006). A further deviation from the simple formulation comes
from the effect of high-velocity escapers, which can carry away a considerable fraction of the
cluster’s binding energy, leaving the remaining stars more strongly bound (Baumgardt &
Kroupa 2007).

Thus the survival probability of an embedded cluster cannot be determined by a single
parameter, such as the star formation efficiency, as the complete formation process of stars,
clumps of stars, and the entire cluster comes into play. The process whereby stars form in
massive star clusters is still poorly explored terrain within astrophysics, and the formation
of sub-clumps and clusters is even less well charted.

5.1.2 Observational constraints

What sounds convincing from a theoretical standpoint is often very hard to support with
observations. There are a number of interesting observational indications of infant mortality,
and of the associated dissolution time scales, but since the embedded phase is short (∼
1−2 Myr), many parameters are poorly constrained by observations, and the interpretations
of models tend to be sensitive to assumptions made about the initial conditions.

Many observed young clusters, particularly the extragalactic population in Tab. 4, appear
to be super-virial, which naively would lead to the early termination of the cluster’s existence.

46



Figure 11: Left: Light to dynamical mass ratio for 24 clusters found in the literature and
also given in Table 4. The blue and red points refer, respectively, to studies done in the
optical and near infrared. Different symbols correspond to different parent galaxy types.
Photometric evolution from the Bruzual & Charlot (2003) single stellar population models,
using a Chabrier IMF, in the V and K bands is indicated by the full (blue) dashed (red) lines,
respectively. Right: Dynamical mass over photometric mass for the same clusters, shown as
a function of Mphot/reff , which is a proxy of σ1D (Eq. 4). The full line is a prediction of the
effect of binaries on Mdyn, with 1-σ and 2-σ variations due to stochastic fluctuations shown
as dashed lines (Reproduced from Fig. 3 of Gieles, Sana & Portegies Zwart 2009).

This is most easily seen in the higher value of their dynamical mass Mdyn compared to the
photometric mass Mphot. The former is derived from measurements of the velocity dispersion
and the radius of the cluster and the use of Eq. 4. The latter is derived from the total
luminosity, calibrated to single stellar population models (see §2). Bastian et al. (2006)
determine Mphot and Mdyn from a compilation of 19 clusters and find that both independent
mass estimates are consistent for the somewhat older ( >∼ 50 − 100 Myr) clusters, but that
for young (∼ 10 Myr) star clusters Mdyn > Mphot. Goodwin & Bastian (2006) explain this
as a signature of the primordial gas expulsion, and hence of the process of infant mortality.

In Fig. 11 we present an updated version of Fig. 5 of Bastian et al. (2006), showing the
ratio of light to dynamical mass of 24 clusters, taken from Table 4, each of which is about
10 megayear old (see §2). The age range is quite narrow because the red supergiant phase,
which starts around 10 Myr, makes these clusters extremely bright (especially in the near
infrared), whereas younger clusters are still heavily obscured.

Many of the clusters in Fig. 11 and Tab. 4 appear to have dynamical masses too high
for their luminosities, and the intuitive explanation is that these clusters are expanding
and possibly even unbound (Goodwin & Bastian 2006). The time needed for a cluster
to completely dissolve, or to find a new virial equilibrium after gas expulsion, is about
∼ 20−30 tdyn (see for example Fig. 8 in Baumgardt & Kroupa 2007), where tdyn is the initial
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dynamical time, when the gas and the stars are still bound. Hence, to ‘catch’ an unbound
or expanding cluster at 10 Myr, the initial tdyn should be & 0.5 Myr. This corresponds
to an half-mass density of ρhm . 300M⊙ pc−3 (Eq. 11 and ρhm ≡ 3M/8πrhm

3). Clusters
with shorter initial tdyn (higher density, see Eq. 11) have expanded into the field, or found a
new equilibrium a few megayears after gas expulsion, and are not observable as super-virial
clusters at 10 Myr.i

The initial density of the clusters in Fig. 11 is unknown, but is likely to have been
higher in the passed that it is today. In addition we may attemp to estimated their initial
densities from their current densities. In Fig. 12 we show the radii and masses of the
clusters under discussion, together with lines of constant ρhm. The present day densities
are ρhm ≈ 103±1M⊙ pc−3. The densities in the embedded phase were O(1/f4

e ) higher—the
additional factor of 1/f3

e comes from the reduction in cluster mass (by a factor 1/fe), the
adiabatic expansion (contributing another factor of 1/fe, see Eq. 32) and the non-linear
response, for a total of roughly 1/f3

e . The initial dynamical times were therefore a factor of
1/f2

e shorter than tdyn after phase 1. Based on their physical ages of ∼ 10 megayears and
the fact that the gas ejection phase does not last beyond the moment of the first supernova
(within ∼ 3 Myr, see §4), these clusters have evolved for at least 10/f2

e to 100/f2
e initial

dynamical times, and hence must be bound (McCrady, Gilbert & Graham 2003; McCrady
& Graham 2007), and the observed discrepancy between Mphot and Mdyn cannot originate
from the overall expansion of the cluster.

We are still left with the question why the observed velocity dispersions in some of these
clusters are higher than would be expected from the virial theorem. Several independent
and implicit assumptions enter the derivation of Mdyn and Mphot, and each of them could
be wrong. The stellar mass function, for example, could be bottom-heavy, i.e. steeper than
Salpeter or with an excess of low-mass stars. Such a mass function would result in a velocity
dispersion in virial equilibrium higher than that of a cluster with a Salpeter IMF, with little
effect onMphot. However, to explain the observed discrepancy, the cluster mass function must
deviate substantially from the canonical mass functions. We do not favor this conjecture,
since the only star cluster for which the mass function was once anticipated to be deficient
in low-mass stars, the Arches (Stolte et al. 2005), turns out to have a rather normal mass
function at least down to 1 M⊙ (Kim et al. 2006).

Another interesting possibility is provided by the binarity of red supergiants, which dom-
inate the observed luminosity. A relatively high fraction of hard binaries (see §3.4.1) leads to
an overestimate of the cluster velocity dispersion due to the contribution from their internal
orbital motion. This leads to an overestimate of σ1D, and therefore of the mass of the cluster
(Kouwenhoven & de Grijs 2008). For typical open clusters, with σ1D ≈ 1 km s−1, this can
only account for a factor of ∼ 2 increase of Mdyn (Kouwenhoven & de Grijs 2008). However,
young star clusters are dominated by ∼ 13 − 22 M⊙ red supergiants, and a binary fraction
of ∼25% among these stars could explain an apparent dynamical mass of up to an order of
magnitude more than the photometric mass (Gieles, Sana & Portegies Zwart 2009). As a
consequence the discrepancy between Mdyn and Mphot is larger for clusters with high stellar

iThe models of Goodwin & Bastian (2006) start with a density in the embedded phase of ∼
60M⊙ pc−3(tdyn ≈ 1Myr), which according to their analysis results in a gas expulsion timescale of at
least 25 Myr.
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Figure 12: Mass-radius relation for the same 24 clusters shown in Fig. 11, using the same
color and symbol coding and rhm = (4/3)reff . Lines of constant half-mass density, ρhm ≡
3M/(8πrhm

3), are overplotted. The cluster densities imply 0.07 . tdyn/Myr . 0.7 (Eq. 9).

velocity dispersion, or with a small ratios of Mphot/reff (see Eq. 4), which is consistent with
the observations. The effect of binaries on σ1D and the ratio of Mdyn/Mphot is presented in
Fig. 11.

Star clusters with ρhm & 100M⊙ pc−3 at 10 Myr, such as those listed in Tab. 4 and shown
in Fig. 11, have survived the primordial gas expulsion phase and should be considered bound,
stable, and likely to survive for a long time (see Eq. 18). They enter the next evolutionary
phase, described in §5.2, during which stellar mass loss dominates the evolution of the cluster
(early phase 2).

5.2 Stellar mass loss

Clusters that survive phase 1 (the embedded phase, see §5.1) continue to lose mass through
stellar evolution. During this early phase 2, the most massive ( >∼ 50 M⊙) stars leave the
main-sequence within <∼ 4.0 Myr, and lose about 90% of their mass by the time they collapse
to a black hole following a supernova. A 5M⊙ star loses >∼ 80% of its mass by the time its
core forms a white dwarf at about 100 Myr. For a Kroupa (2001) IMF between 0.1 M⊙ and
100 M⊙ the total cluster mass decreases by roughly 10%, 20%, and 30% during the first 10,
100, and 500 Myr. The impact of this will be discussed below.
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5.2.1 Theoretical considerations

The time scale for mass loss depends one the mode in which it is achieved; supernova
explosions, Wolf-Rayet winds and AGB expulsion result in high mass loss rates, whereas
the general mass loss for an older stellar population is relatively slow. When the time
scales for mass loss by stellar evolution is considerably longer than tdyn, the cluster responds
isothermal, expanding through a series of virial equilibria. For small fe, Eq. 30 reduces to

δrvir

rvir

=
δM

M
, (31)

and therefore
rvir

rvir(t = 0)
=
M(t = 0)

M
. (32)

Even losing half the mass by slow stellar evolution (which for the canonical IMF would
not occur within a Hubble time), the cluster would expand by only a factor of two. Note
that in the instantaneous approximation (§5.1 and Eq. 30), such mass loss would lead to the
dissolution of the cluster.

In reality, the situation is more complicated, in particular because of the connection
between dynamical evolution and stellar mass loss. For real clusters the expansion due to
stellar mass loss is considerably more severe than suggested above, and can even result in
complete disruption if the cluster is mass segregated before the bulk of the stellar evolution
takes place (Vesperini, McMillan & Portegies Zwart 2009). Even an initially unsegregated
cluster can still undergo mass segregation during the period when the residual gas is being
ejected, and certainly during the early evolution of its stars (Applegate 1986), which can
also lead to enhanced expansion at later times. The expansion of a mass segregated cluster,
however, will not be homologous, as the massive (segregated) core stellar population tends
to lose relatively more mass than the lower-mass halo stars. The result is a more dramatic
expansion of the cluster core, with less severe effects farther out.

This effect is illustrated in Fig. 13, which presents the results of an isolated N = 128k
body simulation, run on a GRAPE-4 (Makino & Taiji 1998) using the starlab software
environment (Portegies Zwart et al. 2001). The figure shows the evolution of the core radius
with and without stellar evolution. Without stellar evolution the core tends to shrink, and
eventually reaches core collapse (Bettwieser & Sugimoto 1984), whereas with stellar mass
loss the core expands (Portegies Zwart, McMillan & Makino 2007).

The combined effects of mass loss by stellar evolution and dynamical evolution in the
tidal field of a host galaxy was studied extensively by Takahashi & Portegies Zwart (2000),
Baumgardt & Makino (2003), Fukushige & Heggie (1995). They showed that when clusters
expand to a radius of ∼0.5 rJ they lose equilibrium and most of their stars overflow rJ (see
§1.3.2) in a few crossing times.

We conclude that in early phase 2 the overall evolution of the cluster is completely
dominated by expansion due to stellar mass loss. However, since most of the mass loss comes
from massive stars in the core, the core expansion is considerably larger than expected for the
global mass function. The early phase 2 lasts until the response of the cluster to stellar mass
loss deminishes and from that moment the cluster can continue to expand until it completely
dissolves or until the cluster core starts to contract again due to internal dynamical effects,
at which point late phase 2 begins.
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Figure 13: Evolution of the core radius during phase 2 of an N -body simulation (N =
128k, rvir = 3.2 pc, King W0 = 12, Mass function is Salpeter between 1 M⊙ and 100 M⊙

Portegies Zwart, McMillan & Makino 2007). After about 3 Myr stellar mass loss dominates
the evolution of the cluster core radius. The dotted curve (top curve) is the result of the
full simulation, with both stellar evolution and binary dynamics included; the irregular
dashed curve is calculated with the same initial realization but without stellar evolution.
The wiggely solid curve (bottom) is calculated wihtout stellar mass loss and without binary
dynamics by collapsing the binaries in single objects. The smooth dashed line shows the
expected expansion of the core, assuming adiabatic mass loss for a Salpeter initial mass.
The smooth solid curve is computed assuming mass loss by stellar evolution from a Salpeter
mass function with a lower limit of 15 M⊙, rather than the 0.1 M⊙ used in the simulation.

5.2.2 Observational constraints

As we have just seen, rapid dissolution due to stellar evolution mass loss occurs when
rhm/rJ

>∼ 0.5. All the clusters in Fig. 12 have, within a factor of two, rhm/rJ ≈ 0.03,
suggesting that they are probably all stable against stellar mass loss. Pfalzner (2009) rec-
ognizes two evolutionary sequences in young Galactic star clusters, from which she draws a
similar conclusion. The first sequence of dense “starburst clusters”, containing the Arches
cluster, NGC 3603 and Trumpler 14, starts at a density of ∼ 105M⊙ pc−3 at an age of a few
megayears. These clusters appear to expand at constant mass, up to an age of 10–20 Myr,
where we find the the red supergiant clusters RSGC01 and RSGC02. At that age the cluster
density has dropped to ∼ 103M⊙ pc−3. The second sequence of “leaky clusters” (which is
identical to our definition of associations, see § 2.1) starts at the same age but with a much
lower densities of ∼ 10M⊙ pc−3, and expand while M ∝ 1/rhm to densities comparable to
the field star density. The clusters in Fig. 12 may be compared with the red supergiant
clusters in the Milky Way, i.e. the end point of the dense cluster sequence. The associations
discussed by Pfalzner (2009, she refers to them as “leaky” clusters) and listed in Table 2
have dynamical times that exceed the cluster age, and are expected to be unstable against
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Figure 14: Evolution of observed core radii values of clusters, compared to the results of
an N -body simulation including mass loss due to stellar evolution. For the simulation, the
projected surface density profile was constructed and rc was determined using Eq. 5 (full
line). The dashed line shows the 3D core radius discussed in §1.3.2.

mass loss by stellar evolution.
In §2 we discussed the remarkable increase in the observed core radii of clusters with

ages 1–50 Myr (Mackey & Gilmore 2003b, Bastian et al. 2008). Earlier studies argued that
this effect was the result of early gas expulsion (phase 1), but as discussed in §2 the time
scale for gas expulsion is too short to affect the growth of rc over such a long period. Mass
loss from the young stellar population (early phase 2) can contribute to some extent to the
observed trend, but its effect is probably too weak to explain it completely (Mackey et al.
2007). A more likely solution is dynamical heating from relatively massive objects, such as
massive stars and stellar mass black holes, sinking to the cluster center (Merritt et al. 2004).

An additional effect not yet discussed is the difference between the observed rc, usually
resulting from a fit to the surface brightness profile (Eq. 5), and the 3D dynamical core
radius described in §1.3.2. If a young star cluster is mass segregated, possibly already from
its formation process, then the light is dominated by the few massive stars in the core, which
can lead to an underestimate of rc (Fleck et al. 2005, Gaburov & Gieles 2008). Mackey
et al. (2007, 2008) showed that when taking this into account, a remarkable increase of rc is
“observed,” while the “real” core radius changes only very little.

We illustrate this in Fig. 14. The same data points as in Fig. 10 are shown, together
with the results of an N -body simulation (lines), where the 3D core radius, as defined in
§1 and the rc resulting from a fit of the EFF87 profile (Eq. 5) to the projected light in the
simulated cluster. The cluster consists of N = 32k single stars initially distributed according
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to a (King 1966) profile with W0 = 8 and rvir = 2.5 pc. Before stellar evolution was turned
on, we evolved the cluster for 0.20trh to mimic some degree of primordial mass segregation,
in which stars with masses & 5 M⊙ are more centrally concentrated than the less massive
stars. Since the massive stars dominate the light, the observed rc is almost a factor of five
smaller than the 3D version at t = 0. The observed rc increase by nearly a factor of ten in
a few tens of megayears, while the 3D core radius expands only by a factor of two. After
∼ 30 Myr the two quantities roughly agree.

Primordial mass segregation has a profound effect on the evolution of a star cluster, but
possibly much more relevant for this review is its consequences for cluster observations. The
assumption that a young ( <∼ 10 Myr) cluster is not mass segregated, when in reality it is,
can dramatically alter observationally derived quantities, such as the cluster size, velocity
dispersion, density profile, and central density.

5.3 External perturbations and evaporation

5.3.1 Theoretical considerations

One important external disruptive factor, first considered by Spitzer (1958, see §5.1), is
encounters between clusters and giant molecular clouds. Since GMCs are typically more
massive than clusters, the cluster is more affected by an encounter than the cloud (Theuns
1991). The cluster lifetime due to heating by passing clouds is inversely proportional to the
volume density of molecular gas, ρgas, and proportional to the density of the cluster:

tGMC
dis ≈ 1 Gyr

(

0.03M⊙ pc−3

ρgas

) (

ρhm

10M⊙ pc−3

)

. (33)

This result is typical of disruption by external tidal perturbations operating on short time
scales ( <∼ tdyn), also known as tidal shocks (e.g. Ostriker, Spitzer & Chevalier 1972). Here
0.03M⊙ pc−3 is the molecular gas density in the solar neighborhood and the constant is taken
from Gieles et al. (2006c), which is an update from the seminal result by Spitzer (1958). The
dependence of tdis on ρgas indicates that the lifetimes of star clusters scales roughly inversely
with the observable surface density of molecular gas, Σgas.

This result enables us to make order of magnitude estimates of the lifetimes of clusters
in other galaxies. In spiral galaxies, YMC disruption by GMC encounters is especially
important during the early stages of cluster evolution, since clusters form in the thin gaseous
disk where ρgas is high. Older clusters are typically more associated with the thick disk, where
ρgas is low and GMC encounters are less frequent. Since young (.1 Gyr) clusters in spiral
galaxies have only a small range in radii (e.g. Larsen 2004), more massive clusters tend to
have higher densities, making them less vulnerable to encounters with GMCs, which explains
their longer lifetimes compared to their lower-mass counterparts (Gieles et al. 2006c). It is
not clear whether the lack of a mass-radius relation is a universal property imprinted at
cluster formation, or the result of evolution.

5.3.2 Observational constraints

Several studies (Zepf et al. 1999, Larsen 2004) discuss the lack of any clear correlation
between the size of a cluster and its mass or luminosity. For the 24 clusters in Tab. 4 we
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tentatively overplot lines of constant density in Fig. 12, which could indicate some sort of a
trend with ρhm ≈ 103±1 M⊙.

In Fig. 12 we limited ourselves to a narrow range of cluster ages, whereas most literature
studies did not enforce this age limit and considered clusters with a large age spread. The
existence of a mass-radius relation would be important for understanding cluster disruption,
since tGMC

dis ∝ ρhm (§5.3.1). If clusters form with a constant density, i.e. a mass-radius
relation of the form rhm ∝ M1/3, then their destruction time due to GMC encounters is
independent of cluster mass. Additional complications arise from the time dependence of
a mass-radius relation. Clusters older than the ones shown in Fig. 12 seem to have a near
constant radius, i.e. rhm = constant, which could be the consequence of evolutionary effects,
such as mass segregation and stellar mass loss. This would lead to a destruction time scale
by GMCs (tGMC

dis ) that is dependent of the cluster mass: tGMC
dis ∝ M/r3

hm. In any case, the
YMCs listed in Tab. 4 are unlikely to be destroyed by passing GMCs in a short time-scale,
as tGMC

dis exceeds a Hubble time due to their high densities.
While considering mass loss from star clusters it is convenient to distinguish between two

fundamental processes: evaporation and tidal stripping. Evaporation is the steady loss of
stars from the cluster driven by the continuous repopulation by relaxation of the high-velocity
tail of the Maxwellian velocity distribution (see § 3.3.1, Eq. 13 and, e.g. Ambartsumian 1938,
Spitzer 1940). This process has been the subject of numerous comprehensive numerical
studies (Spitzer 1987, Aarseth 2003, Heggie & Hut 2003, Baumgardt & Makino 2003).

Tidal stripping is the prompt removal of stars that find themselves outside the cluster
Jacobi radius (rJ, see 1.3.2) due to internal processes such as stellar mass loss or a change in
the external tidal field, for example as the cluster approaches pericenter in its orbit around
its parent galaxy. On a ∼ 100 Myr time scale, and for clusters with masses >∼ 104 M⊙,
relaxation is unlikely to be important, and so tidal stripping dominates the cluster mass
loss.

Until the 1990s, the main targets of cluster disruption studies were the open clusters in
the Milky Way and the YMCs in the Magellanic clouds. Since then, HST observations have
established the properties of large populations containing more massive clusters in quiescent
spiral galaxies (e.g. Larsen & Richtler 2000), interacting galaxies (e.g. Whitmore et al. 1999,
Bastian et al. 2005), and merger products (e.g. Miller et al. 1997). The primary tool used
in studies of cluster disruption is the cluster age distribution. Different groups give different
weights to the various factors described in §5.1 in interpreting the results, but empirical
cluster disruption studies follow one of two basic models, in which the disruption is either
externally or internally driven.

In the externally driven model, the dissolution time follows a simple scaling relation with
cluster mass and environment, following the age and mass distributions of luminosity-limited
cluster samples in different galaxies (Boutloukos & Lamers 2003). Variations in dissolution
time scales are explained by differences in the tidal field strength (Lamers, Gieles & Portegies
Zwart 2005) and the GMC density (Gieles et al. 2006c).

The internally driven model assumes that internal processes dominate the cluster disrup-
tion and that roughly 80–90% of all remaining clusters are destroyed during each decade in
age, resulting in a (mass limited) age distribution that declines inversely with time (∝ t−1).
The main assumptions are that the majority (80 − 90%) of clusters dissolve within a few
hundred megayears and that the disruption rate does not depend on mass. This model
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Figure 15: Age distribution of SMC clusters based on the catalog of Chiosi et al. (2006).
The sample is split into small and large clusters/associations, with the boundary at a radius
of 6 pc. The histograms are made using a 0.5 dex bin width with different starting values
(boxcar averaging).

however, is calibrated against the cluster population in the Antennae galaxies, as discussed
in §5.1 (Fall, Chandar & Whitmore 2005; Whitmore, Chandar & Fall 2007), and while it is
quite consistent with these observations, it is not clear how applicable it is to other galactic
environments.

The various cluster dissolution models have led to some controversy, resulting in a number
of spirited discussions at conferences and in the literature. Chandar, Fall & Whitmore (2006)
demonstrated that the age distribution of SMC clusters declines ∝ t−0.85, which is consistent
with their resuls for the Antennae. Gieles, Lamers & Portegies Zwart (2007) are able to
reproduce these results only if they impose an incompleteness in the detection of clusters,
which is consistent with the arguments of de Grijs & Goodwin (2008). As a consequence
Gieles, Lamers & Portegies Zwart (2007) conclude, using the same data sample used by
Chandar, Fall & Whitmore (2006), that the age distribution of massive ( >∼ 103.5 M⊙) clusters
in the LMC younger than a few hundred megayears is not affected by internal processes,
contradicting the findings of Chandar, Fall & Whitmore (2006).

The conclusions of Gieles, Lamers & Portegies Zwart (2007) are supported by Boutloukos
& Lamers (2003), who show that for a constant formation rate of clusters and without
disruption, the age distribution of a luminosity-limited cluster sample declines ∝ t−ζ(β−1),
where −β is the index of the cluster initial mass function. The parameter ζ describes how
the cluster fades with age, due to stellar evolution: Fλ(t) ∝ t−ζ , where Fλ is the flux at
wavelength λ of a cluster with constant mass. For the U and V-bands ζ ≈ 1.0 and 0.7,
respectively, which for β = 2 results in t−η, with 0.7 . η . 1.0, due to fading alone. If the
distribution of cluster masses is described by a Schechter function (see Eq. 17 in §2.2) the
age distribution of a luminosity-limited sample is not affected by disruption and is as steep
as 0.9 . η . 1.4.
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The internal disruption model for the age distribution relies on the assumption that
the cluster formation history is constant within the age range considered (a few hundred
megayears). Bastian et al. (2009) demonstrate that in the Antennae a variable cluster
formation rate can (at least) partly explain the decline in the number of clusters with age,
without the need to invoke rapid cluster disruption.

The discussion of the distribution of the number of clusters with age is complicated by
the distinction between associations and dense clusters (see §2.3.1 and §5.1.2), which may
be hard to distinghuish at large distances. This is illustrated in Fig. 12, which shows the
age distribution of clusters and associations in the central region of the SMC (Chiosi et al.
2006). The sample is divided into two subsamples of ∼ 200 clusters each, based on size.
The age distribution of the large (reff > 6pc) clusters falls off much more rapidly than
that of the more compact clusters. The median radii of the two samples are 4.5 pc and
9 pc, respectively, but at a distance of 20 Mpc it would be very difficult to tell these two
groups apart. We suggestion that by relaxing the cluster size in the observationally selected
sample one includes more short-lived associations, which if resolved should probably not be
considered genuine star clusters.

6 Lusus Naturæ

Globular clusters are of interest because of their old age, their assumed relatively homo-
geneous populations, their relative isolation in their parent galaxies, and because of their
abundance of unusual objects, such as blue stragglers, x-ray binaries, radio pulsars, etc., of-
ten referred to collectively as stellar exotica, or lusus naturæj. In the disk of the Milky Way,
such objects form through internal evolutionary processes in individual stars or close binary
systems. In star clusters, these processes are augmented by stellar interactions, mediated by
the high encounter frequency in dense cluster cores.

Stellar encounters generate new channels for the formation of exotic objects, but can also
catalyze existing channels. For example, a binary encounter may lead directly to a collision
and the formation of a blue straggler, or its effect may be indirect, perhaps resulting in an
exchange that eventually (billions of years later) leads to the formation of a low-mass x-ray
binary. Repeated encounters can transform binaries and multiple stellar systems, multiplying
the channels for the production of exotica (Davies 1995, Hurley & Shara 2002, Davies et al.
2006). A clear understanding of the formation and evolution of these objects can provide
insight into the past dynamical evolution of the cluster (Davies 2009).

Many of the stellar exotica observed in globular clusters today are the results of processes
that began when the cluster was young. In some cases, they are the products of the interplay
between dynamical and evolutionary processes involving stars and binaries during the first
∼ 100 Myr of the cluster lifetime. The primordial seeds for many lusus naturæ were planted
during this period (Portegies Zwart, McMillan & Makino 2007). Later phases of dynamical
evolution, such as core collapse, may produce additional generations of exotica. Thus, even
though we remain uncertain as to whether or not observed YMCs will ever become “true”
globular clusters (see §1), they nevertheless provide a convenient testbed for the study of the
progenitors of stellar exotica.

jLusus Naturæ is Latin for the freaks of nature, mutants or monsters.
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The progenitors of observed lusus naturæ in globular clusters are not necessarily easy
to identify in the young cluster population, although in some cases the evolutionary link is
well established (Glebbeek, Pols & Hurley 2008). There may well be entire populations of
peculiar objects in young star clusters that do not lead to observable interesting objects at
later stages, and some objects destined for peculiarity may look perfectly ordinary at early
times. An example of the latter is the dormant blue straggler population consisting of stars
that were rejuvenated by mass transfer or collisions while still on the main sequence, and
now lurk among their fellow main-sequence stars until they remain behind after the others
traverse the Hertzsprung gap (Portegies Zwart, Hut & Verbunt 1997).

6.1 Binary Stars

Exotic objects in star clusters are closely related to binaries, as they often form via internal
binary evolution or during dynamical interactions between binaries and other stars. Ex-
amples are the formation of blue stragglers (§6.1.1), colliding wind binaries (§6.1.2), and
anomalous x-ray pulsars (§6.2.1), all of which require the presence of binary stars in the
system. In some cases, such as the slow evolution of an accreting X-ray pulsar that leads
from a low-mass x-ray binary to a binary millisecond pulsar, the evolutionary track is read-
ily established (Bhattacharya & van den Heuvel 1991). In others, however, the punctuated
equilibrium through which these objects evolve makes it virtually impossible to catch the key
transitions as they occur. Examples are collisions between stars, or the common-envelope
phase in the Darwin–Riemann instability of a contact binary.

We will distinguish two fundamental types of binaries in star clusters: (1) “primordial”
binaries, which formed contemporaneously with the stars in the cluster as a crucial part of
the star-formation process (Goodman & Hut 1989), and (2) “dynamical” binaries, which
formed later via stellar interactions, often long after the component stars reached the main
sequence. One can wonder to what extend this limited terminology is still usable for binaries
that experiences one or more exchange interactions. It is for example, quite possible that two
stars that were initially single end-up in a binary after two exchanges. As a practical matter
we would still consider such a binary primordial. The second group of dynamical binaries
may be further divided into two sub-categories—binaries formed by conservative three- and
four-body stellar dynamical interactions, and binaries formed by dissipative two-body tidal
capture. The latter process was introduced by Fabian, Pringle & Rees (1975) to explain
the relatively high specific frequency of low-mass X-ray binaries in globular clusters. It has
fallen somewhat out of favor since the late 1980s, but it may be entering a revival of sorts
Ogilvie & Lin (2004). Many of the curious objects discussed in this § are related to binarity,
either primordial or tidal, although we tentatively will use this distinction in the formation
process.

6.1.1 Blue Stragglers

A blue straggler is a star which exceeds the cluster main-sequence turnoff in both temperature
and luminosity, but which is not on the horizontal branch. Blue stragglers populate the
region blueward of the turnoff, as if they lagged behind on the cluster main sequence while
the other stars aged. The first (34) blue stragglers were discovered in the globular cluster M3
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by Sandage (1953). At least 8 plausible explanations have been proposed for the formation
of blue stragglers (see Leonard 1989). Of these, two are currently in favor:

• direct merger between two stars (Hills & Day 1976),

• mass transfer in a close semi-detached binary star (McCrea 1964).

The latter scenario is supported by the discovery of two blue stragglers, in the young open
star clusters NGC 663 and NGC 6649, which have been found to be the donors in Be/X-ray
binary systems (Marco, Negueruela & Motch 2007). The discovery of a blue straggler in the
old open cluster M67, which appears to be about 2.5 times more massive than the turn-off
mass, favors the former view (Leonard 1996).

Both favored mechanisms for blue straggler formation appear plausible in YMCs. How-
ever, no blue stragglers have yet been identified in any observed YMC, although this may be
explained by the absence of a clear turn-off in the resolved clusters, which makes the iden-
tification (and the definition) of a blue straggler impractical. There are, however a number
of “odd” stars in YMCs that might possibly evolve to resemble blue stragglers in the future.
Objects consistent with this broadened definition include four O3 If/WN6-A stars in the
star cluster R136 in the 30 Doradus region of the LMC (Campbell et al. 1992, Brandl et al.
1996).

Several interesting correlations exist between the numbers of blue stragglers in globular
clusters and the numbers of red giants (Ferraro, Fusi Pecci & Bellazzini 1995), and also
with the binary fraction (Sollima et al. 2008; Knigge, Leigh & Sills 2009). In addition,
Davies, Piotto & de Angeli (2004) find that the number of blue stragglers is be independent
of integrated absolute magnitude MV of the cluster, and use this fact to argue that both
production mechanisms are relevant.

6.1.2 Colliding wind binaries

Binaries containing two massive stars, such as Wolf-Rayet stars, with strong stellar winds
often exhibit intense radio and/or x-ray emission. Since this process requires copious stellar
mass loss in a fast wind, these sources do not occur in globular clusters, but YMCs appear to
be excellent hosts for such systems. Several young and dense star clusters exhibit x-ray and
radio emission from colliding wind binaries. In some relatively nearby cases, R136 (Portegies
Zwart, Pooley & Lewin 2002), Wd1 (Clark et al. 2005, Crowther et al. 2006), and the Arches
and Quintuplet clusters (Lang et al. 2005), the counterparts of the radio and x-ray sources
have been identified.

6.2 Compact objects

A number of YMCs have been observed in the radio and x-ray, revealing a wealth of
sources, even richer than found in globular clusters (Clark et al. 2008). Among the x-ray
sources is a large population of accreting neutron stars, stellar-mass black holes and possibly
intermediate-mass black holes. Because of crowding in the central regions of these clusters,
where most of the x-ray sources are found, very few sources have optical counterparts.
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With the adopted age limit of 100 Myr, only relatively few white dwarfs have formed—
about as many as neutron stars—and cataclysmic variables are not expected. The youth
of these clusters seem to make it unlikely that any low-mass x-ray binaries or millisecond
pulsars will be found.

6.2.1 Magnetars

Shortly after a supernova (within ∼ 105 years), a newly formed neutron star may become
observable as a magnetar, which can have a magnetic field strength exceeding ∼ 1015 gauss
(Kouveliotou et al. 1999). The population of magnetars is subdivided into two classes: soft
gamma-ray repeaters (SGRs) and anomalous x-ray pulsars (AXPs)k. As the products of
supernovae, one might naively expect these objects to reside mainly in YMCs, and indeed
about half (3 of 8) of the known SGRs and one-tenth (1 of 10) of the AXPs are known to
reside in such systems. This is a remarkably high fraction, given that only 0.05% of the
stellar mass of the Galaxy resides in star clusters (see §1).

The single cluster AXP is CXOU J164710.2-455216 (Muno et al. 2006) in the Galactic
young star cluster Westerlund 1. It exhibits a 20-ms burst with energy ∼ 1037 erg (15-150
keV), and spins down at a rate of P/Ṗ ≃ −10−4 (Muno et al. 2007), quite typical of a
magnetar.

Several interesting sources are hosted by young star clusters in the LMC. These include
the microquasar LS I +61◦ 303, which may have been ejected from the cluster IC 1805
(Mirabel, Rodrigues & Liu 2004). The relatively low-density young star cluster SL 463, too
small for inclusion in this review, seems to be associated with SGR 0526-66 (Klose et al.
2004) at a projected distance of ∼ 30 pc. Two other SGRs associated with relatively low-
density young star clusters are SGR 1806-20, at a projected distance of ∼ 0.4 pc from the
core of its parent cluster (Mirabel, Fuchs & Chaty 2000; Corbel & Eikenberry 2004), and
SGR 1900+14, at ∼ 0.8 pc (Mirabel, Fuchs & Chaty 2000; Vrba et al. 2000). This latter
SGR has a measured proper motion of 70 mas/yr away from the cluster, suggesting that
it indeed was ejected from the parent cluster (DeLuca et al. 2009), which is relatively old
(14 ± 1 Myr) compared to the usual SGR-producing stars (Davies et al. 2009). The actual
association between cluster and SGR is hard to establish in this case since the distances to
both objects are ill constrained.

6.2.2 Ultra-luminous X-ray sources

Globular clusters are known to host an enormous excess of low-mass x-ray binaries compared
to the rest of the Galaxy. Much of this excess is attributed to the dynamical environment in
dense cluster cores (Fabian, Pringle & Rees 1975; Pooley et al. 2003). Young star clusters are
sites of intense dynamical activity, so it is not surprising that YMCs also host many x-ray
sources. The majority of x-ray point sources in external galaxies appear to be associated
with young star clusters, as is the case for example in the Antennae system (NGC4038/39)
Zezas et al. (2002). The nature of most of these x-ray sources is unknown, and we can only
guess at their origin.

ksee http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html.
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We limit ourselves here to the most striking x-ray sources, the subclass of ultra-luminous
x-ray sources (ULXs), which are characterized by x-ray luminosity Lx

>∼ 1.3 × 1039 erg/s,
the maximum isotropic luminosity that can be produced by a 10 M⊙ black hole accreting
pure hydrogen (King et al. 2001). For practical reasons we round the threshold up to
Lx

>∼ 1040 erg/s, mainly to ensure that such luminosities are unlikely to be produced by
stellar-mass black holes accreting at the Eddington rate from a main-sequence companion
star. These ULXs are responsible for the brightest stellar x-ray sources in the sky.

Several models attempt to explain the high x-ray luminosity of the ULXs, but at present
there is no consensus in the community on the source of the x-rays. The current leading
models are:

• anisotropic (collimated or beamed) emission from an accreting stellar-mass black hole
(although porosity, turbulence, and bubbles also provide interesting alternatives, King
et al. 2001, King 2002),

• accretion from an evolved star onto a stellar-mass black hole, which can, in principle,
lead to an accretion rate higher than from a main-sequence star, and therefore a higher
x-ray luminosity (Madhusudhan et al. 2006),

• accretion from a companion star onto an “intermediate-mass black hole” (IMBH), with
mass >∼ 100 M⊙ (Portegies Zwart et al. 2004).

ULXs tend to be hosted by starburst and spiral galaxies (Makishima et al. 2000). Some
of the brightest are associated with YMCs; a leading example is the ULX in the star cluster
MGG 11 in the starburst galaxy M82 (Kaaret et al. 2001). The association with YMCs
argues in favor of an accreting black hole of ∼ 1000 M⊙ (Portegies Zwart et al. 2004). The
object in MGG 11 is particularly interesting, as it shows a strong quasi-periodic oscillation
in the 50-100 mHz frequency range (Strohmayer & Mushotzky 2003), providing a strong
argument against beamed emission, and supporting the hypothesis that the x-ray luminosity
comes from an accreting black hole of 200–5000 M⊙. Further support is provided by the
detected periodic variation of ∼ 62 days, which can be explained if the black hole is orbited
by a 22–25 M⊙ Roche-lobe filling donor star (Patruno et al. 2006).

ULXs have been associated with YMCs in NGC 5204 (Liu, Bregman & Seitzer 2004), the
starburst galaxies M82 (Kaaret et al. 2001) and NGC1313 (Grisé et al. 2008), the edge-on spi-
ral NGC 4565 (Wu et al. 2002), the interacting galaxies M51 (Liu et al. 2002), NGC4038/39
(Antennae Fabbiano, Zezas & Murray 2001) and ESO 350-40 (Cartwheel Gao et al. 2003),
and the type 1.5 Seyfert galaxy NGC 1275 (González-Mart́ın, Fabian & Sanders 2006). The
higher abundance of ULXs in active, starburst, and interacting galaxies may be related to the
empirical fact that YMCs tend to form in these environments; 60% of ULXs are associated
with active star-forming regions (Swartz, Tennant & Soria 2009, although the definition of
a ULX used here is somewhat faint).

If the counterpart of a ULX hosts an IMBHs, it is likely to be the the acceptor from a
windy or Roche-lobe overflowing massive star, as seems to be the case in the 1039–1041 erg/s
ULX in NGC 5204, where the donor is identified as a B0 Ib supergiant with a 10-day
orbital period (Liu, Bregman & Seitzer 2004), and in ULX M51 X-7, which has has an even
shorter orbital period of only 2.1 hr (Liu et al. 2002), although no stellar companion has
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been identified. The black holes that may be responsible for the ULXs NGC 1313 X-1 and
X-2 (0.2-10.0 keV) may have masses in the range 100–1000 M⊙ (Miller et al. 2003), and in
these cases YMCs have been identified as optical counterparts.

6.3 Explosive events

6.3.1 Supernovae

Supernova are relatively rare events, occurring about once every 100 years in a galaxy like the
Milky Way (Cappellaro, Evans & Turatto 1999). Although type I supernovae are unlikely to
occur in star clusters younger than 100 Myr (Pfahl, Scannapieco & Bildsten 2009), at these
ages the seeds may be planted for a rich future of type I events (Shara & Hurley 2002).

Since most massive stars tend to reside in clusters, as discussed in §1 and §2, it is probable
that the majority of type Ib/c and type II supernovae occur in star clusters. However, since
most supernovae occur in distant galaxies it is hard to find optical counterparts, and very
few associations of supernovae with young star clusters have been reported. Based on the
peculiar metallicity of SN 1987A, Efremov (1991) argue that the star originated in the young
LMC cluster MKM90. SN 2006gy (Foley et al. 2006), which is a candidate for the formation
of an IMBH, may have been the result of a collision runaway (§3.4.2) in a YMC (Portegies
Zwart & van den Heuvel 2007). However, perhaps the strongest case is the peculiar type IIp
supernova SN 2004dj (probably produced by a 12–20 M⊙ star) in the spiral galaxy NGC 2403;
as it faded, the star cluster Sandage-96 reappeared (Wang et al. 2005).

6.3.2 Gamma-ray bursts

Any word written about gamma-ray bursts is likely to trigger its own burst of e-mail, but we
cannot resist the temptation to devote a few lines to this fascinating transient phenomenon.
Gamma-ray bursts come in two types, of short ( <∼ 2 s) and long duration, respectively
Mészáros (2002). Several theories exist which point to either globular or young star clusters
as possible hosts for gamma-ray bursts. Colliding compact objects are often cited as sources
for the short bursts (Narayan, Piran & Shemi 1991). Long bursts are thought to be hosted by
massive star forming regions (Paczynski 1998). Of particular interest is the elusive relation
between the long bursts and YMCs (Efremov 2000). The models for long-duration gamma-
ray bursts should be particularly applicable to YMCs, as they require rapidly rotating high-
mass stars (Heger et al. 2003), which could be achieved quite naturally by stellar collisions
in a YMC (see §3.4.2).

6.4 Summary of exotica

We have discussed several examples of exotica in YMCs, but other curiosities remain. Many
of these exotic objects are well studied in globular clusters, but similar scrutiny is so far
lacking in their younger siblings. Rather than providing a detailed description of each of
the oddities found, we simply mention a few developments and recent discoveries of what
today we call exotic objects, which one day we may consider “normal.” The following list
summarizes a number of peculiar clusters, noteworthy because of a unique source or object.
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The list is far from complete, but at the very least it indicates the diversity of objects found
in YMCs.

• R136 Contains some 13 colliding wind binaries (Portegies Zwart, Pooley & Lewin
2002), and possibly 3 blue stragglers (even though no clear turn-off can be distin-
guished). In addition, the star cluster shows an OH (1720 MHz) Maser, which is
probably related to the surrounding nebula rather than the star cluster itself (Roberts
& Yusef-Zadeh 2005).

• The Arches cluster contains 10 radio point sources (Lang et al. 2005) and several
colliding wind binaries.

• MGG11 is a YMC in M82 which may contain a ULX (Kaaret et al. 2001), alhtough
the Chandra error box is slightly offset.

• The Quintuplet cluster contains the Pistol star (Figer et al. 1998), a candidate for
the most massive star in the Galaxy, at a projected distance of about 1 pc, as well as
9 radio point sources (Lang et al. 2005).

• Westerlund 1 hosts the anomalous x-ray pulsar CXOU J164710.2-455216 (Muno et al.
2006), and a wealth of x-ray sources (Clark et al. 2008).

• Westerlund 2 hosts the massive Wolf-Rayet binary WR 20a, containing two WN6ha
stars, at a distance of 1.1 pc from its center (Rauw et al. 2005).

• NGC 663 and NGC 6649 contain blue stragglers which found to be the donors of
Be/X-ray binary systems (Marco, Negueruela & Motch 2007).

• Sandage-96 is a ∼ 96, 000 M⊙ star cluster in NGC 2403 in which a type IIp super-
nova was detected (Wang et al. 2005). This star cluster also exhibits multiple stellar
populations (Vinkó et al. 2009).

6.4.1 Planetary nebulae and supernova remnants

The nuclear evolution of a sufficiently massive star ( >∼ 8 M⊙) is associated with a supernova
explosion (see §6.3.1), while lower mass stars fizzle into the background after a short, bright
post-AGB phase. But following these lower mass events a roughly spherical gas shell—a
planetary nebula—remains visible for a much longer time than either the supernova or the
post-AGB star, illuminated by the central stellar remnant and shocks as the out-flowing gas
encounters the interstellar medium.

Every star experiences either a supernova or a post AGB phase and a cluster of 5 × 104

stars will experience some 350 supernova, leading to an equal number of remnants, while
during the first 100 Myr a similar number of planetary nebulae will form. The formation
rate of planetary nebulae and supernova remnants is thus ∼ 7/Myr. With an observable
lifetime for a nebula of about 104 yr, we naively expect to see one nebula for every ∼ 14
star clusters. Among 80 YMCs Larsen & Richtler (2006) found 6 with a planetary nebula,
consistent with our naive estimate. No planetary nebulae or supernova remnants have so far
been found in any of the YMCs in the Local Group.
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6.4.2 Brown dwarfs and planets

We will say little here about brown dwarfs and planets in YMCs since the observations are
sparse and the general topic deserves its own review. However, a few words are in order.

Young dense star clusters are generally too distant for planets to be detectable using
current methods, and no planets have been found to date (Udry & Santos 2007). Globular
clusters seem to be deficient in planets (e.g. 47 Tuc, Gilliland et al. 2000), possibly because
of their low metallicities (Weldrake et al. 2005). However, the recent HARPS discovery of a
planet around a metal poor star (Mayor et al. 2009) makes this argument less convincing.
The planet found orbiting the 11 ms pulsar B1620-26 in the metal poor environment of the
globular cluster M4 (Backer 1993; Thorsett, Arzoumanian & Taylor 1993), was formed by a
different mechanism than planets around solar-type stars, and we do not (yet) expect such
planets in YMCs. Star clusters in high-metallicity environments, such as Westerlund 1 and
NGC 3603, could be brimming with planets, but none have yet been found.

We see no reason why YMCs should be deficient in planets. However, the high interaction
rate in a dense cluster could make a planetary system short-lived. Disruption of a planetary
system may leave the planet separated from its parent star (Spurzem et al. 2009). Several
such free-floating objects have been found in the Orion Trapezium cluster (Lucas & Roche
2000). Once dislocated from its parent star, a planet will easily escape the cluster, though.

6.4.3 YMCs in a galactic context

Due to supernovae and winds from massive stars, YMCs are the sources of cluster winds
(Silich, Tenorio-Tagle & Rodŕıguez-González 2004), which may trigger supplicating winds
and chimneys, as in the Perseus arm of the Milky Way Galaxy (Normandeau, Taylor &
Dewdney 1996). Although little studied from the point of view of cluster evolution, this is
an important topic that provides a possible and rather natural link between the evolution of
a YMC and that of its parent galaxy.

7 Concluding Remarks: Young Globular Clusters?

The discovery of large numbers of young star clusters, particularly in other galaxies, over
the last decade has lead to the realization that such clusters are responsible for a significant
fraction of all current star formation in the local universe. The study of these systems,
and especially their lifetimes against various stellar evolutionary and dynamical processes,
is therefore of critical importance to several branches of stellar and galactic astrophysics.

Star clusters appear to form with a cluster mass function described by a power-law with
index −2. This mass function seems to be the same for both open and globular clusters, and
does not depend significantly on the local galactic environment or on the specific character-
istics of the giant molecular clouds from which the clusters formed.

Young massive star clusters evolve and eventually dissolve due to the combined effects
of a number of physical processes, the most important (for clusters that survive the early
expulsion of their natal gas) being mass loss due to stellar evolution. The most massive
clusters, such as those found in the Antennae system, have expected lifetimes comparable
to the age of the universe, and we could well imagine that the Antennae will someday be
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a medium-sized elliptical galaxy with an extended population of intermediate-age clusters
having overall properties quite comparable to the old globular clusters seen in other ellipti-
cals.

The seeds of the exotica observed in many present-day globular clusters were sown during
the infancy of those systems, in the strongly coupled mix of stellar dynamics and stellar
evolution that characterized their early evolution. Young massive clusters destined to survive
to ages comparable to the globular clusters appear to contain much richer populations of
stellar exotica (per unit mass) than are found in the field, and may provide important
testbeds for this unique period in cluster evolution. Our limiting cluster age of 100 Myr is
chosen in part to include the period when this ecological interplay is strongest.

From an observational point of view, little is known of the formation and evolution of
stellar exotica in young massive star clusters, mainly because such clusters are relatively rare.
The Milky Way contains only half a dozen, and the closest lies ∼ 4 kpc away, too distant for
detailed study of the individual stars in its central region. A number of studies have drawn
connections between young massive clusters and exotic objects, such as unusual supernovae,
magenetars, x-ray binaries, and ultraluminous x-ray sources. This renders YMCs in the
same leage as the old GC’s, which are brimming with curios objects.

In the end, despite the connections, we are unconvinced that “young globular cluster” is
an appropriate term for the young massive clusters discussed in this review. For this reason
we have omitted the term completely from our discussion, to concentrate on the massive
>∼ 104 M⊙ star clusters with ages <∼ 100 Myr. An important parameter for a young bound
cluster appears to be its age relative to its current dynamical time scale tdyn. For unbound
stellar agglomerates or associations, tdyn exceeds the system age, indicating that the cluster
is either extremely young or expanding into the tidal field of its parent galaxy. For the
typical bound star clusters in this review, tdyn is smaller than the current age, whereas for
an association it is the other way around.
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