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This paper presents a new class of three-dimensional mathematical objects that close-
pack to fill space. These so-called Tordated Sinusoids ([N]TS) are based on rota-
tional variations of two-dimensional tesselations of equilateral triangles (which forms
TTS) and of squares (QTS). The combination of sixfold Tordated Sinusoids (HTS)
and TTS gives rise to a composite 3D lattice. It appears that the ruled surfaces of an
[N]TS are linearly tordated and are circumscribed by N circular spirals. It also ap-
pears that the TTS, QTS and HTS can be described as a cube, Kepler’s dodecahedron
and a triacontahedron respectively with their rhombic surfaces parametrized in cur-
vilinear coordinates.

From 2D tesselations to 3D close-packing
Two-dimensional tesselations of a plane are well-studied by both mathematicians,
crystallographers and artists alike. The basic regular tesselations are ascribed to
Plato[1]. There are only three regular polygons which can be used to tile a surface
using only likes: triangles, squares and hexagons. Tilings using combinations of
different regular polygons are called Archimedean[1]. The Dutch graphic artist M.C.
Escher (1898-1972) used such tesselations to bring his parallel universe with all its
bizarre inhabitants come to life[2].
The present and earlier work[3] shows how Platonic and Archimedean tesselations
can be elegantly extended into the third dimension to form spiraling close-packers.
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Consider the regular tesselation of white squares in figure 1a. By rotating each square
around its center whilst decreasing its size, a second set of (black) squares appears
in figure 1b at the locations of the vertices of the original white squares. By further
rotating and scaling around their centers (conform the “snapshots” of figure 1c-d),
the white and black squares generate a complete sequence of tesselations until the
black squares form a regular Platonic tesselation like in figure 1e. By switching the
colors here, we are basically back at the starting point, only with a spatial shift. But
in fact the cycle is only halfway through here and it can be completed by rotating
and scaling the black squares according to the same recipe until you are back at the
situation of figure 1a.

Figure 1.
Tesselations of rotating squares with
two different phases α.
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Figure 2.
Three-dimensional close-packing of QTS.

Figure 3a-e.
Tesselations of rotating equilateral
triangles with three different phases.

This procedure gives us a clue that the evolution of a white square is identical to that
of a black square, only with a 180º phase shift. By transforming the parametrization
α of the sequence of figure 1 into a third spatial coordinate as in figure 2, it indeed
appears that the white and black squares make up the same spiraling three-
dimensional shape. Therefore this shape is an intrinsic close-packer of 3D space, just
like a square is a close-packer of 2D space. For reasons that are revealed in the next
section, these bodies are named “Tordated Sinusoids” of order N ([N]TS). The body
with fourfold rotational symmetry based on squares is called “QuatTorSin” or just
QTS. Of course these Tordated Sinusoids shape have twofold degeneracy: it can
spiral both clockwise and counter-clockwise with equal packing properties. In
crystallography the lattice structure of the QTS is called “body-centered cubic”.

a. b. c. d. e.

Figure 3.
Tesselations of rotating equilateral
triangles with three different phases α.

The same trick is also possible with Platonic tilings of equilateral triangles as indicated
in figure 3. Here, a third color (grey) is necessary to distinguish between the different
sets of triangles. It is obvious that the three different sets have a phase shift of 120º.

Again making the step to 3D space, these sequences result in spiraling close-packers
with threefold rotational symmetry, called “TriTorSins” (TTS). They are to be stacked
in a “cubic” fashion as shown in figure 4.
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By trying out the exact same procedure of rotating and scaling for the Platonic
tesselation of hexagons, the gaps turn out to be triangular instead of hexagonal like
the orginal tesselations (figure 5). Apparently we need to resort to Archimedean
tesselations for the intermediate tilings. Note that the triangles evolve just like in
figure 3, but here there is only one  single phase. Yet, there are two sets of triangles,
rotated at 60º around their axes with respect to each other.

The combination of spiraling hexagons and the bodies of figure 4 give rise to a
composite close-packing of “HexaTorSins” (HTS) and TTS in a 1:2 ratio as depicted
in figure 6.

Figure 4.
Three-dimensional close-packing of
TTS.

Figure 5.
Tesselations of rotating hexagons in
combination with equilateral triangles.
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The shapes and close-packing properties of the [N]TS are very similar to the
Spirallohedra discovered and described by Towle [4]. These Spirallohedra are obtained
by transformations of polar zonohedra and are therefore covered by many rhombic
faces, whereas the N surfaces of an [N]TS are fully double-curved. In fact, the [N]TS
are the limiting cases of the k-armed Spirallohedra when the number of faces goes to
infinity. Therefore the horizontal cross-sections of a Spirallohedron generally will
not deliver regular polygons. Nevertheless it is intriguing to see how two totally
different approaches deliver similar objects.

Figure 6.
Three-dimensional close-packing of
HTS and TTS.

2.
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Mathematical description of the ruled surfaces
Several methods can be employed to mathematically describe the ruled surfaces of
an [N]TS.

The most intuitive way to describe the surface of an [N]TS is just to look at the tilings
of figures 1, 3 and 5 as horizonal cross-sections of close-packing QTS, TTS and HTS/
TTS respectively. By following the evolution of one square as in figure 7a it is possible
to identify a limited number of cardinal grid-points that govern the rotation and
scale. In three dimensions these points form vertical axes that describe the entire
close-packing.
First of all, it is clear that the squares rotate around their center axes Ab,w. To enable
continuity of the pattern, the edges (or the continuation thereof) have to cross fixed
points B. These points B therefore form vertical straight lines on the tordated surface
of a QTS. After a closer study of the patterns of figure 1 it appears that the vertices of
the squares are all located on perfect circles after completion of a cycle. The centers
of these circles are tagged with C. The circles intersect at A and B points. These
circles are parametrized linearly (completing double the circular angle as compared
to the rotation of the squares) and form either right- or left-handed screwing spirals
in 3D space.
Figure 7b-c shows that also a TTS and a HTS are described with these A, B and C
grid-points. It is concluded that all [N]TS only principally differ in the number of
ruled surfaces N. But a study of Platonic and Archimedean tilings shows that only
the bodies based on triangles (N=3), squares (N=4) and hexagons (N=6) are suitable
for 3D close-packing.
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Figure 8 shows how the surface of an [N]TS can be built up from horizontal rules
governed by the vertical axes A, B and C.

Figure 7a-c.
Cardinal axes of a QTS, TTS and HTS.

Figure 8.
The surface of a TTS as a horizontally
ruled surface.
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If the parametrization of the rotating polygons of figures 1, 3 and 5 is called α, which
cycles through 360º for creating one [N]TS, it can be proven that the angle of one
edge of the polygon with respect to the angle at α↓0 is proportional to ½α. In other
words, the tordation of the surface ruling around the B axis is linear and completes
180º over the full length.
Furthermore, with the description of the circular orbits of the vertices the length of the
edge of such a polygon can be shown to be proportional to sin(½α). This statement can
easily be proven by taking the total surface of a white and a black square in figure 1, which
of course needs to be constant. With implementing their phase relation of 180º, that surface
is proportional to sin²(½α)+sin²(½(α+180º))=sin²(½α)+cos²(½α)=1. Equivalently for the
triangles of figure 3, sin²(½(α-120º))+sin²(½α)+sin²(½(α+120º))=3/2.

This gives us a second recipe to construct an [N]TS as illustrated in figure 9. First
create an N-fold “sinusoid” by stacking the N-gons over the height range 0<α<360º
with their sizes proportional to sin(½α). Subsequently, tordate that body linearly
over 180º from top to bottom either clockwise or counter-clockwise. It can be proven
that this operation results in the exact close-packing properties of the TTS, QTS and
HTS.
It is clear that this description of tordating sinusoids is what gave the [N]TS their
name. Also the description of the vertices with circular spirals is of course governed
by sine functions.

2.2.2.2.2.2.2.2.2.2.

Figure 9.
The surface of a TTS as obtained by
linearly tordating a threefold sinusoid
over 180º.

2.3. The lattice structure of the close-packing of TTS and QTS is exactly the same as the
close-packing of cubes and Kepler’s dodecahedron respectively. These rhombohedra
are known to be the only regular bodies that can close-pack to fill 3D space[1]. When
the dimensions of the TTS and the QTS are scaled in a way that their spiraling edges
are “aligned” with the edges of their accompanying rhombohedron like in figure 10,
it can be easily shown that both bodies have exactly the same volume.
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Figure 10.
The surface of a TTS as obtained by a
curvilinear transformation of the faces
of a cube.

These two clues make clear that a TTS is in fact equal to a cube with its faces made
up as a linear combination of the spiraling edges as shown in figure 10. Similarly,
the QTS can be described as Kepler’s rhombic dodecahedron with its rhombic faces
in curvilinear coordinates. Note that this involves a symmetry breaking in all the
axes of the cube, exept for rotational symmetry. It can be proven that these
transformations will exactly produce the horizontal rulings and the vertical B lines
of section 2.1.
The rhombic analogon of a HTS is a triacontahedron (30-faced polyhedron). The
same space-filling properties as with the HTS and the TTS can only be accomplished
with the use of the lowest order 3-armed Spirallohedra (24 faces).

The transformation from a cube to a right- or left-handed TTS along any body diagonal
can be parametrized by the direction and amount of curvature of the cube’s edges.
This leads to a cyclic body in yet a higher dimension of which the cube and all the
TTS variations are 3D cross-sections.

Tesselating sculptures
The range of mathematical bodies [N]TS as described above form a surprising set of
spiraling close-packers for N=3, 4 and 3/6. Almost in contradiction to their very
organic shapes they can be used as “bricks” to build intricate three-dimensional
structures. This creates many new possibilities for sculptors, computer artists and
architects. With the recipes of section 2 the shapes are relatively easily created.
The spiraling shape is fascinating in itself  with its mathematical elegance. Of course
it reflects nature on all scales, from DNA to spiral galaxies. With the space-filling
properties decribed in this paper they even encompass infinity.
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