telescopes

Astronomical Instrumentation course lecture 8

Dec 17, 2010

Frans Snik

BBL 710
f.snik@astro.uu.nl

telescopes

Hollandsche kijker

HANS LIPPERHEY, fecurous conferictioram inventor.

telescopes

Hollandsche kijker

telescopes

Hollandsche kijker

telescopes
 Hollandsche kijker

- limitations:
- FOV
- chromatic aberrations
- magnification: stabilization and guiding

telescopes

Kepler refractor

- still afocal telescope

magnification $=\mathrm{f} 1 / \mathrm{f} 2$

telescopes

Newtonian telescope

- no more chromatic aberrations
- only one surface to polish
- central obscuration: less light, diffraction

telescopes
 Newtonian telescope

1668
1842

1721: parabolic primary mirror to reduce spherical aberration

telescopes secondary mirror

Gregorian telescope

telescopes secondary mirror

Cassegrain telescope

telescopes
 secondary mirror

- relay of focus
- focusing mechanism
- reduction of aperture surface
- off-axis telescope
- equivalence with Barlow lens

telescopes

Cassegrain telescope

telescopes

Cassegrain telescope

- short system with long focal length
- effective focal length $f_{\text {eff }}=\frac{f_{1} \cdot f_{2}}{f_{1}-f_{2}-d}$
- secondary magnification:

$$
M_{2}=f_{\text {eff }} / f_{1}=s_{2}^{\prime} / s_{2}
$$

- $\mathrm{f}_{\text {eff }}=\mathrm{d}+\mathrm{b}+\mathrm{M}_{2}{ }^{*} \mathrm{~d}$

telescopes

two-mirror telescope aberrations

- field curvature

$$
\frac{1}{r_{f}}=\frac{2}{R_{1}}-\frac{2}{R_{2}}
$$

- concave towards the sky
- always present in real two-mirror telescopes

telescopes

two-mirror telescope aberrations

telescopes

two-mirror telescope aberrations

telescopes

two-mirror telescope aberrations

- Seidel aberrations
- solutions for conic constants to cancel spherical aberration; $\Sigma S_{1}=0$
- classical Cassegrain: parabolic M1 and hyperbolic secondary with conic constant

$$
K_{2}=-\left(\frac{M_{2}+1}{M_{2}-1}\right)^{2}
$$

- residual coma and astigmatism...

telescopes

two-mirror telescope aberrations

LBT

telescopes

two-mirror telescope aberrations

- equations also for Gregorian: elliptical secondary

adaptive
secondary
calibrated
from
intermediate focus

telescopes

two-mirror telescope aberrations

- many solar telescopes are Gregorian
- heat stop

Hinode
Solar Optical Telescope

telescopes

two-mirror telescope aberrations

- many solar telescopes are Gregorian
- heat stop
reflecting and cooled field stop
enlargement lens and coma corrector

telescopes

two-mirror telescope aberrations

- many solar telescopes are Gregorian
- heat stop

telescopes

Ritchey-Chrétien telescope

- cancel spherical and coma:

$$
\begin{aligned}
& \Sigma \mathrm{S}_{1}=0 \text { and } \Sigma \mathrm{S}_{\| I}=0 \\
& \mathrm{~K}_{1}=-1-\frac{2}{\left(\mathrm{M}_{2}\right)^{3}} \cdot \frac{\mathrm{~b}}{\mathrm{~d}}<-1
\end{aligned}
$$

$$
\mathrm{K}_{2}=-1-\frac{2}{\left(\mathrm{M}_{2}-1\right)^{3}}\left(\mathrm{M}_{2}\left(2 \mathrm{M}_{2}-1\right)+\frac{\mathrm{b}}{\mathrm{~d}}\right)<-1
$$

- both M1 and M2 hyperbolic

telescopes

Ritchey-Chrétien telescope

Subaru Keck (2x)
Gemini (2x)

telescopes

Ritchey-Chrétien telescope

HST

telescopes

Ritchey-Chrétien telescope

VLT

$$
\begin{aligned}
& \mathrm{K}_{1}=-1.0046 \\
& \mathrm{~K}_{2}=-1.66926
\end{aligned}
$$

telescopes

Ritchey-Chrétien telescope

VLT as classical
Cassegrain
$\mathrm{K}_{1}=-1$
$\mathrm{K}_{2}=-1.62$

telescopes

wide-field telescopes

- add degree(s) of freedom
- corrector plate (Schmidt, Maksutov)

- three-mirror anastigmat (TMA):
- three conic constants to fix spherical, coma, astigmatism

telescopes

wide-field telescope

LSST

telescopes

wide-field telescope

telescopes

wide-field telescope

telescopes
 wide-field telescope

E-ELT

M1 = $42 \mathrm{~m} \ldots$
M3

telescopes

telescope size

- Airy disk: λ / D
- D^{2} photon flux
- D^{4} point source detection limit for diffraction-limited performance
$-D^{2}$ more photons in an area of a factor D^{2} smaller

telescopes larger primary mirrors

- "membrane" mirror
- honeycomb structure spincasting
- active optics to
- bring mirror in shape
- correct for gravitational sag

telescopes
 larger primary mirrors

telescopes

larger primary mirrors

telescopes larger primary mirrors

- segmented mirrors
- most segments have different off-axis distance and therefore different conic constant to be measured

telescopes

larger primary mirrors

Keck

telescopes

larger primary mirrors

E-ELT: 984 1.4-m segments

telescopes

larger primary mirrors

LBT

- interferometry (lecture 12)

Keck

telescopes

pointing

- equatorial (RA, dec)

Hale 200" (Palomar)

telescopes

pointing

- equatorial (RA, dec)

telescopes

pointing

- alt-az

Herschel (1789)

telescopes pointing

- alt-az
- mechanically much easier
- computer control
- zenith not accessible because drives would spin too fast

telescopes

pointing

- coelostat

telescopes

- Hobby-Eberly style
- liquid mirror telescopes

telescopes

focal stations

- connected to telescope (varying gravity):
- prime focus
- Cassegrain
- fixed platforms:
- Nasmyth
- Coudé

telescopes

focal stations

Subaru
1: Prime Focus

telescopes

focal stations

telescopes

focal stations

telescopes image rotation

- none for Cassegrain or Gregorian focus on equatorial mount

telescopes image rotation

- $\delta=$ source declination
- φ = telescope lattitude
- alt-az at Cassegrain focus:

$$
\cos \vartheta_{\text {Cass }}=\frac{\sin \varphi-\sin (a l t) \sin \delta}{\cos (a l t) \cos \delta}
$$

- alt-az at Nasmyth (or Coudé) platform:

$$
\vartheta_{\text {Nasmyth }}=\text { alt }-\vartheta_{\text {cass. }}(-a z)
$$

telescopes image rotation

- rotate entire instrument
- derotator
- K-mirror
- Dove prism
- anything rotatable with an odd number of reflections

telescopes

instrumental polarization

- virtually zero for (rotationally symmetric) Cassegrain or Gregorian focus
- Nasmyth mirror:

$$
M_{M 3}=T \cdot\left(\begin{array}{cccc}
1 & 0.03 & 0 & 0 \\
0.03 & 1 & 0 & 0 \\
0 & 0 & -0.96 & 0.28 \\
0 & 0 & -0.28 & -0.96
\end{array}\right)
$$

- Plus rotations of [Q,U] coordinate system
- crossing and uncrossing mirrors

telescopes

atmospheric dispersion corrector

