

Astronomical Instrumentation course lecture 8
Dec 17, 2010

Frans Snik
BBL 710
f.snik@astro.uu.nl

Hollandsche kijker

1608

Round Cipponber

The Colombe State of the Colombe S

HANS LIPPERHEY,

Secundus Conspicitionum inventor.

Hollandsche kijker

1609

Hollandsche kijker

Hollandsche kijker

- limitations:
 - FOV
 - chromatic aberrations
 - magnification: stabilization and guiding

Kepler refractor

magnification = f1/f2

Newtonian telescope

Newtonian telescope

1668 1842

1721: parabolic primary mirror to reduce spherical aberration

secondary mirror

Gregorian telescope

secondary mirror

Cassegrain telescope

secondary mirror

- relay of focus
- focusing mechanism
- reduction of aperture surface
 - off-axis telescope
- equivalence with Barlow lens

Cassegrain telescope

Cassegrain telescope

short system with long focal length

• effective focal length
$$f_{eff} = \frac{f_1 \cdot f_2}{f_1 - f_2 - d}$$

secondary magnification:

$$M_2 = f_{eff} / f_1 = s'_2 / s_2$$

•
$$f_{eff} = d + b + M_2*d$$

two-mirror telescope aberrations

field curvature

$$\frac{1}{r_f} = \frac{2}{R_1} - \frac{2}{R_2}$$

- concave towards the sky
- always present in real two-mirror telescopes

two-mirror telescope aberrations

two-mirror telescope aberrations

two-mirror telescope aberrations

- Seidel aberrations
- solutions for conic constants to cancel spherical aberration; ΣS_I=0
- classical Cassegrain: parabolic M1 and hyperbolic secondary with conic constant

$$K_2 = -\left(\frac{M_2 + 1}{M_2 - 1}\right)^2$$

residual coma and astigmatism...

two-mirror telescope aberrations

LBT

two-mirror telescope aberrations

equations also for Gregorian: elliptical secondary

two-mirror telescope aberrations

many solar telescopes are Gregorian

heat stop

Hinode Solar Optical Telescope

two-mirror telescope aberrations

- many solar telescopes are Gregorian
 - heat stop

reflecting and cooled field stop enlargement lens and coma corrector parabolic primary beamsplitter with transport lens G band camera Ha Lyot filter pupil stop refocusing - and telecentric lens Ha camera dichroic splitters (schematic) Ca II H camera Ba II camera correction lenses for each channel **Ba II Lyot filter** + polarization modulation (except G band)

DOT

two-mirror telescope aberrations

- many solar telescopes are Gregorian
 - heat stop

Ritchey-Chrétien telescope

cancel spherical and coma:

$$\Sigma S_{I}=0$$
 and $\Sigma S_{II}=0$

$$K_1 = -1 - \frac{2}{(M_2)^3} \cdot \frac{b}{d} < -1$$

$$K_2 = -1 - \frac{2}{(M_2 - 1)^3} \left(M_2 (2M_2 - 1) + \frac{b}{d} \right) < -1$$

both M1 and M2 hyperbolic

Ritchey-Chrétien telescope

Ritchey-Chrétien telescope

Ritchey-Chrétien telescope

Ritchey-Chrétien telescope

VLT as classical Cassegrain

 $K_1 = -1$ $K_2 = -1.62$

wide-field telescopes

- add degree(s) of freedom
- corrector plate (Schmidt, Maksutov)

- three-mirror anastigmat (TMA):
 - three conic constants to fix spherical, coma, astigmatism

wide-field telescope

LSST

wide-field telescope

LSST

wide-field telescope

JWST

wide-field telescope

telescope size

- Airy disk: λ/D
- D² photon flux

- D⁴ point source detection limit for diffraction-limited performance
 - D² more photons in an area of a factor D² smaller

larger primary mirrors

- "membrane" mirror
- honeycomb structure spincasting

- active optics to
 - bring mirror in shape
 - correct for gravitational sag

larger primary mirrors

larger primary mirrors

larger primary mirrors

segmented mirrors

 most segments have different off-axis distance and therefore different conic constant to be measured

larger primary mirrors

Keck

larger primary mirrors

E-ELT: 984 1.4-m segments

larger primary mirrors

• interferometry (lecture 12)

LBT

Keck

pointing

equatorial (RA, dec)

Hale 200" (Palomar)

pointing

equatorial (RA, dec)

pointing

alt-az

Herschel (1789)

E-ELT (>2020)

pointing

alt-az

- mechanically much easier
- computer control
- zenith not accessible because drives would spin too fast

pointing

coelostat

pointing

- Hobby-Eberly style
 liquid mirror telescopes
- Dome Vents

 Tracker
 Beam

 Telescope
 Structure
 Opening

 Primary
 Mirror

 Control & Service
 Building

 Fiber coupled
 Instrument Room

 HOBBY-EBERLY TELESCOPE FACILITY

focal stations

- connected to telescope (varying gravity):
 - prime focus
 - Cassegrain
- fixed platforms:
 - Nasmyth
 - Coudé

focal stations

focal stations

image rotation

none for Cassegrain or Gregorian focus on equatorial mount

image rotation

- δ = source declination
- φ = telescope lattitude
- alt-az at Cassegrain focus:

$$\cos \vartheta_{\text{Cass}} = \frac{\sin \varphi - \sin(alt)\sin \delta}{\cos(alt)\cos \delta}$$

alt-az at Nasmyth (or Coudé) platform:

$$9_{\text{Nasmyth}} = alt - 9_{\text{cass.}} (-az)$$

image rotation

rotate entire instrument

derotator

- K-mirror
- Dove prism

anything rotatable with an odd number of reflections

instrumental polarization

- virtually zero for (rotationally symmetric)
 Cassegrain or Gregorian focus
- Nasmyth mirror:

$$M_{M3} = T \cdot \begin{pmatrix} 1 & 0.03 & 0 & 0 \\ 0.03 & 1 & 0 & 0 \\ 0 & 0 & -0.96 & 0.28 \\ 0 & 0 & -0.28 & -0.96 \end{pmatrix}$$

- Plus rotations of [Q,U] coordinate system
 - crossing and uncrossing mirrors

atmospheric dispersion corrector

