
13. Inhomogeneties in 
the Universe

• Introduction (Sect. 7.1) 

• Gravitational instability (Sect 7.2) 

• Overview (Sect 7.2.1)

• Linear Perturbation Theory (Concepts only, Sect 7.2.2) 

• Description of density fluctuations (Sect 7.3) 

• Correlation functions (Sect 7.3.1) 

• The Power spectrum (Section 7.3.2) 

• Evolution of the Density fluctuation (Sect. 7.4)

• Initial Power spectrum (Sect 7.4.1, only the Harrison-Zeldovich Spectrum) 

•  Non-linear Structure Evolution (concepts only, Sect. 7.5) 

• Model of Spherical collapse (Sect 7.5.1) 

• Number density of dark matter halos (Press-Schechter model, mass spectrum) 
(Sect. 7.5.2) 



• The 2dF Galaxy Redshift Survey

http://www.mso.anu.edu.au/2dFGRS/
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Fig.7.3. Growth factor D1 for three diff'erent cosmological
models, as a function of the scale factor a (left panel) and
of redshift (right panel). It is clearly visible how quickly
Da decreases with increasing redshift in the EdS model, in
comparison to the models of lower density

(- 10 Mpc). Hence, because of the law of linear struc-
ture growth (7.14) and the behavior of Da(r) shown
in Fig. 7.3, we would expect S : 10-3 at z : 1000
fbr these structures to be able to grow to non-linear
structures at the current epoch. For this reason, we
should also expect CMB fluctuations to be of compara-
ble magnitude, ATIT: l0-3.The observed flucruation
amplitude is ATIT - 10-s, however. The cor:respond-
ing density fluctuations therefore cannot have grown
sufficiently strongly up to today to form non-linear
structures.

This contradiction can be resolved by the dominance
of dark matter. Since photons interact with baryonic
matter only, the CMB anisotropies basically provide
(at least on angular scales below - 1') information on
the density contrast of baryons. Dark matter may have
had a higher density contrast at recombination and may
have formed potential wells, into which the baryons
then "tall" after recombinalion.

7.3 Description of Density Fluctuations

We will now examine the question of how to describe
an inhomogeneous universe quantitatively, i.e., how to
quantify the structures it contains. This task sounds eas-
ier at first sight than it is in reality. One has to reallze

that the aim of such a theoretical description cannot be
to describe the complete function 6(x, t) for a partic-
ular universe. No model of the Universe will be able
to describe, for instance, the matter distribution in the
vicinity of the Milky Way in detail. No model based on
the laws of physics alone will be able to predict that at
a distance of - 800 kpc from the Galaxy a second mas-
sive spiral galaxy is located, because this specific feature
ofour local Universe depends on the specific initial con-
ditions of the matter distribution in the early Universe.
We can at best hope to predict the statistical properties
of the mass distribution, such as, for example, the aver-
age number density ofclusters ofgalaxies above a given
mass, or the probability of a massive galaxy being found
within 800 kpc of another one. Likewise, numerical sim-
ulations of the Universe (see below) cannot reproduce
our Universe; instead, they are at best able to gener-
ate cosmological models that have the same statistical
properties as our Universe.

It is quite obvious that a very large number of statis-
tical properties exist for the density fleld, all of which
we can examine and which we hope can be explained
quantitatively by the correct model of structure forma-
tion in the Universe. To make any progress at all, the
statistical properties need to be sorted or classified. How
can the statistical properties of a density field best be
described?

Two universes are considered equivalent if their den-
sity fields 6 have the same statistical properties. One may
then imagine considering a large (statistical) ensemble
of universes whose density fields all have the same sta-
tistical properties, but for which the individual functions
d(r) are all different. This statistical ensemble is called
a randomfield, and any individual distribution with the
respective statistical properties is called a realization of
the randomfield.

An example may clarify these concepts. We consider
the waves on the surface of a large lake. The statisti-
cal properties of these waves - such as how many of
them there are with a certain wavelength, and how their
amplitudes are distributed - depend on the shape of the
lake, its depth, and the strength and direction of the
wind blowing over its surface. If we assume that the
wind properties are not changing with time, the statis-
tical properties of the water surface are constant over
time. Of course, this does not mean that the ampli
tude of the surface as a function of position is constant.
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7.5 Non-Linear Structure Evolution
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-ne mass distribution in the Universe is just becoming
:on-linear for a particular redshift, This mass-scale at
xe culrent epoch, Mfi, depends on the normalization of
-he power spectrum; it approximately separates groups
lom clusters of galaxies, and explains the fact that
--lusters are (exponentially) less abundant than groups.

Furlhermore, the Press-Schechter model describes
r Iery general property of structure formation in a CDM
:rodel, namely that low-mass structures - like galaxy-
nass dark matter halos - form at early times, whereas
iarge mass accumulations evolve only later. The ex-
rlanation for this is found in the shape of the power
spectrum P(ft) as described in (1.25) together with the
.r:ymptotic form (7.29) of the transfer function (ft).
A model like this is also called a hierarchical structure
.;ormation or a "bottom-up" scenario. In such a model,
imall structures that form early later merge to form large
itructures.

Comparison with Numerical Simulations. The Press-
Schechter model is a very simple model, based on
assumptions that are not really justified in detail. Never-
rheless, its predictions are in astounding agreement with
the number density of halos determined from simula-
tions, and this model, published in 1974, has for nearly
15 years predicted the halo density with an accuracy
that was difficult to achieve in numerical simulations.
Only since the mid-1990s have the precision and statis-
iics of numerical simulations of structure formation
reached a level on which significant discrepancies with
the Press-Schechter model become clearly noticeable.
However, the analytical description has also been im-
proved; instead of a spherical collapse, the more realistic
ellipsoidal collapse has been investigated, by which
the number density of halos is modifled relative to the
Press-Schechter model. This advanced model is found
to be in very good agreement with the numerical results,
as demonstrated in Fig. 7.9, so that today we have a good
description of n(M,z) that very accurately resembles
the results from numerical simulations.

7.5.3 NumericalSimulations
of Structure Formation

.{nalytical considerations - such as, for instance, lin-
ear pefiurbation theory or the spherical collapse model
- are only capable of describing limiting cases of struc-
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Fig.7.9. The mass spectrum of dark matter halos is plotted
for five different redshifts (data points with error bars), as
determined in the Millennium simulation (which we will dis-
cuss more extensively below - see Fig. 7.12). The solid curves
describe an approximation for the mass spectrum, which has
been obtained fromdffirent simulations, and which obviously
provides an excellent description ofthe simulation results. For
z : 0 and e - 10, the prediction ofthe Press-Schechter model
is indicated by the dotted curves, underestimating the abun-
dance of very massive halos and overestimating the density of
lower-mass halos. The vertical dotted iine indicates the lowest
halo mass which can still be resolved in these simulations

ture formation. In general, gravitational dynamics is
too complicated to be analytically examined in de-
tail. For this reason, experiments to simulate structure
formation by means of numerical methods have been
performed for some time already. The results of these
simulations, when compared to observations, have con-
tributed very substantially to establishing the standard
model of cosmology, because only through them did it
become possible to quantitatively distinguish the pre-
dictions of this model from those of other models. Of
course, the enormous development in computer hard-
ware rendered corresponding progress in simulations
possible; in addition, the continuous improvement of
numerical algorithms has allowed steadily improved
spatial resolution of the simulations.

Since the Universe is dominated by dark matter, it is
often sufficient to compute the behavior of this dark mat-
ter and thus to consider solely gravitational interactions.
Only in recent years has computing power increased
to a level where hydrodynamic processes can also ap-
proximately be taken into account, so that the baryonic
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where the slope is about y - 1.8. This relation
is approximately valid over a range of separations
2h't Mpcj r j 30fr 1Mpc.

Hence, the correlation function provides a means to
characterize the structure of the matter distribution in the
Universe. Besides this two-point correlation function,
correlations ofhigher order may also be defined, leading
to general n -point correlation functions. These are more
difficult to determine from observation, though. It can
be shown that the statistical properties of a random field
are fully specified by the set ofall n -point correlations.

7.3.2 The Power Spectrum

An alternative (and equivalent) description of the sta-
tistical properties of a random field, and thus of the
structure of the Universe, is the power spectrum P(k).
Roughly speaking, the power spectrum P(k) describes
the level of structure as a function of the length-scale
L-2rlk; the larger P(k), the larger the amplitude
of the fluctuations on a length-scale 2n/k. Here, /< is

Fig.7.4. The correlation function f, of
galaxies, as it was determined from the
Las Camparas Redshift Survey. In the top
panel, f, is shown for small and intermedi-
ate separations, whereas the bottom panel
shows it for large separations. Dashed and
dotted lines indicate the northern and south-
ern part, respectively, of the survey, and
the solid triangles denote the correlation
function obtained from combining both.
A power law with slope y : 1.52 is plotted
for comparison (bold solid curve)

a wave number. Phrased differently, the density fluc-
tuations are decomposed into a sum of plane waves
of the form 6(x): lap cos(x.ft), with a wave vec-
tor k and an amplitude ap. The power spectrum P(k)
then describes the distribution of amplitudes with equal
k: lkl.Technically speaking, this is a Fourier decom-
position. Referring back to the example of waves on the
surface of a lake, one finds that a characteristic wave-
length I" exists, which depends, among other factors.
on the wind speed. In this case, the power spectrum will
have a prominent maximum at k : 2r / L".

The power spectrum P(ft) and the correlation func-
tion are related through a Fourier transform; formally.
one has3

200

oof . sinkrP(k):2tr I dr r' . $(r) .Jkr
0

(7.20)

3This may not look like a "standard" Fourier transform on first sight.
However, the relation between P(ft) and f(r) is given by a three-
dimensional Fouriertransform. Since the correlation function depends
only on the separation ;: lrl, the two integrals over the angular
coordinates can be performed explicitly, leading to the form of (7.20).
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