1 Problem 1: Displacement due to a passing gravitational wave

A plane gravitational wave described by the small metric disturbance \(h_{\alpha\beta} \) propagates in a flat background spacetime. The wave is propagating in the positive \(z \) direction. We also have 2 test masses, which, in Cartesian coordinates, are located at \((0, 0, 0)\) and at \((X, Y, Z)\). Let \(L_* \) be the unperturbed distance between the 2 test masses. We will denote the straight line path between the two test masses with the symbol \(\gamma \) and define a spatial unit vector \(\vec{n} \) with coordinates \(n^i \), which is a tangent vector to \(\gamma \). Show that the time-dependent change in distance between the masses, produced by the passing gravitational wave, is then given by

\[
\delta L(t) = \frac{1}{2} \int_0^{L_*} d\lambda h_{ij}(t - n^z \lambda)n^in^j.
\]

Hint: begin by writing down a parametric form for the path \(\gamma \), involving the quantities defined above, using a parameter \(\lambda \) that varies along the path \(\gamma \), i.e., write down an expression for \(x^i(\gamma)(\lambda) \) where \(x^i(\gamma) \) are the spatial coordinates along the path \(\gamma \).

Solution

Since the background metric is flat, and the gravitational wave is a plane wave, moving in the positive \(z \) direction, the metric is given by Eqs. (16.1) and (16.2a) in Hartle, except that we do not have to restrict ourselves to the + polarization. The straight line path \(\gamma \) that connects \((0, 0, 0)\) with \((X, Y, Z)\) has a length \(L_* = \sqrt{X^2 + Y^2 + Z^2} \) and the coordinates of the unit vector \(\vec{n} \) tangent to \(\gamma \) are given by \(\vec{n} = (X/L_*, Y/L_*, Z/L_*) \). A parametric expression for \(\gamma \) is then

\[
x^i(\gamma)(\lambda) = n^i\lambda,
\]

where \(\lambda \) goes from 0 to \(L_* \). The spatial distance along the path \(\gamma \) is

\[
S = \int dS = \int_\gamma \left[(\delta_{ij} + h_{ij}(t - n^z \lambda)) dx^i dx^j \right]^{\frac{1}{2}},
\]

where \(\delta_{ij} \) is the usual Kronecker delta, which comes from the spatial part of the background flat spacetime metric. To proceed, we will need to use the \(\lambda \)-dependence of \(x^i \) and \(x^j \) as already written down above. Note that \(z \) also has a \(\lambda \)-dependence, since \(z \) may vary along the path \(\gamma \). Therefore we can write

\[
S = \int_0^{L_*} d\lambda \left\{ [\delta_{ij} + h_{ij}(t - n^z \lambda)] \frac{dx^i(\gamma)}{d\lambda} \frac{dx^j(\gamma)}{d\lambda} \right\}^{\frac{1}{2}}.
\]
This expression can be expanded in powers of the amplitude of the gravitational wave. The lowest term (with no perturbation) reproduces the unperturbed distance L_*. The change in that distance as the gravitational wave passes through is given by the 1st order term in the perturbation which is

$$
\delta L(t) = \frac{1}{2} \int_0^{L_*} d\lambda \ h_{ij} (t - n^z \lambda)n^i n^j,
$$

which is the result that we were trying to prove.