Problem 1: Displacement due to a passing gravitational wave

A plane gravitational wave described by the small metric disturbance $h_{\alpha\beta}$ propagates in a flat background spacetime. The wave is propagating in the positive z direction. We also have 2 test masses, which, in Cartesian coordinates, are located at $(0,0,0)$ and at (X,Y,Z). Let L_* be the unperturbed distance between the 2 test masses. We will denote the straight line path between the two test masses with the symbol γ and define a spatial unit vector \vec{n} with coordinates n^i, which is a tangent vector to γ. Show that the time-dependent change in distance between the masses, produced by the passing gravitational wave, is then given by

$$\delta L(t) = \frac{1}{2} \int_0^{L_*} d\lambda h_{ij}(t - n^z \lambda)n^i n^j. \quad (1.1)$$

Hint: begin by writing down a parametric form for the path γ, involving the quantities defined above, using a parameter λ that varies along the path γ, i.e., write down an expression for $x^i_\gamma(\lambda)$ where x^i_γ are the spatial coordinates along the path γ.