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Signal and Noise

Signal: data that is relevant for our science
Noise: data that is irrelevant for our science

Signal-to-noise ratio (SNR): ratio of relevant to
irrelevant information

Definition of sighal and noise inherently
depends on science objectives
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Exoplanet in Radial Velocity
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V. Bourrier et al.: The 55 Cnc system reassessed
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http://adsabs.harvard.edu/abs/2018A&A...619A...1B

Table 3 Best-fitted solution for the planetary system orbiting 55 Cnc. For each parameter, the median of the posterior is consid-
ered, with error bars computed from the MCMC marginalized posteriors using a 68.3% confidence interval. o(p-¢)x corresponds
to the standard deviation of the residuals around this best solutions for instrument X, and o_¢) 4 the weighted standard deviation

for all the data. All the parameters probed by the MCMC can be found in the Appendix, in Tables|.2/and |.3]

Param. Units 55Cnce 55Cnc b 55Cncc 55Cncf magnetic cycle 55Cncd
P [d] 0.736547 3?’::'3“" ::::: 14.65 lﬁf:::::::: 44.3989j::::::§ 259. 88f:::§3 3822.4’:;"2:: 5574. Zjﬁg
K [ms™'] 6.{12’::::%‘3‘ 71 .3?’:1::%: 9.89’::::%% 5.14’::::%‘5‘ ]5.2’:: :‘; 38.6’:::3
e 0.05°5: 0.00°05 003%%  008%% 047N 01398
w [deg] 86.0’:;‘;:: -21 .Sjig:ﬁ 2.4jf,:5 —9?.6j;'|":‘3' 1 ?4.?’::2:‘: -69. ]jgz,:,
Te [d] 55?33.0060‘11::::::: 55495.58?j::::::g 55492.{)2‘11::3‘2' 5549].5jj:: 55336.9" 56669.3j§gg
a (AUI  00IS4gil 00134 02373000 077087085 - 5957071
M Mig] 002517500 - - - - -

M [Megann] 7.997032 - - - - -
Masini (Ml - 0.8036°90% 0161104 015030076 - 312400
M.sin i Mgyl - 25547 %3 51.2}3 47.8434 - 991.6*3%7




JCMT+SCUBA

(37 detectors)

1.3mm

1.1lmm

(photometric pixel)
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Signal or Noise?

SCUBA 850um map of the
Hubble deep field (Hughes et
al. 1998, Nature volume 394,
pages 241-247
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Example 1: Digitization/Quantization Noise

e Analog-to-Digital Signal Converter (ADC).
* Number of bits determines dynamic range of ADC

* Resolution: 12 bit 22 = 4096 quantization levels
16 bit 2'® = 65636 quantization levels

* Discrete, “artificial” steps in signal levels = noise
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Example 2: Read-out noise in CCDs




20IMNeE o0urces Or NOiIse 1n AStronomicdi

Data

Noise type

Signal

Background

Photon shot noise

X

Scintillation

X
X

Cosmic rays

>

Image stability

Read noise

Dark current noise

Charge transfer efficiencies (CCDs)

Flat fielding (non-linearity)

Digitization noise

Other calibration errors

Image subtraction

XXX X[ X[ X[ X[ X[ XX

XX | X[ X[ XX | X[ X




Probability

The Calculus of Probabilities is the mathematical theory which allows us to predict

the statistical behaviour of complex systems from a basic set of fundamental axioms.

Probabilities come in two distinct forms: discrete, where P, is the probability of the i

event occurring, and continuous, where P(z) is the probability that the even, or random
variable, x, occurs.

1. The Range of Probabilities: The probability of an event is measurable on a
continuous scale, such that P(z) is a real number in the range 0 < P(z) < 1.

2. The Sum Rule: The sum of all discrete possibilities is
Sh-1 1)
For a continuous range of random variables, z, this becomes
[ depl@) =1, (2)

where p(z) is the probability density. The probability density clearly must have
units of 1/x.

Credits: https://www.roe.ac.uk/~ant/Teaching/Astronomical%20Stats/
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Probability distributions can be characterized by their moments.

Definition:

my = (T") = /:>C doz"plx); (6)

J —00

th

is the n'™ moment of a distribution. The angled brackets (---) denote the expectation

value. Probability distributions are normalized so that
OO
my = / drp(x) =1 (7)
J —00
(Axiom 2, The Sum Rule).

The first moment,
i = &), (8)

gives the expectation value of x, called the mean: the average or typical expected value
of the random variable x if we make random drawings from the probability distribution.
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Centred moments are obtained by shifting the origin of x to the mean;

pn = ((z = (2))"). (9)

The second centred moment,

pa = ((z = (2))*), (10)

is a measure of the spread of the distribution about the mean. This is such an important
quantity it is often called the variance, and denoted

(J'2 = H2. (11)
We will need the following, useful result later:

0? = ((z = (2))*) = (= — 22(z) + (2)*)) = (%) — (2)*. (12)

The variance is obtained from the mean of the square minus the square of the mean. An-
other commonly defined quantity is the square-root of the variance, called the standard

deviation; o. This quantity is sometimes also called the root mean squared (rms)
deviation®, or error®.
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Three Probability Density Functions

e Binomial distribution
 Poisson distribution
e Gaussian/normal distribution



Binomial distribution

The Binomial distribution allows us to calculate the probability, F,, of n suc-
cesses arising after V independent trials.

Suppose we have a sample of objects of which a probability, p;, of have some attribute
(such as a coin being heads-up) and a probability, p, = 1 = p, of not having this attribute
(e.g. tails-up). Suppose we sample these objects twice, e.g. toss a coin 2 times, or toss 2
coins at once. The possible out comes are hh, ht, th, and tt. As these are independent
events we see that the probability of each distinguishable outcome is

P(hh) = P(h)P(h),

Plht +th) = P(ht)+ P(th) =2P(h)P(t),
P(tt) = P(t)P(t). (15)

18



These combinations are simply the coeflicients of the binomial expansion of the quan-
tity (P(h) + P(t))*. In general, if we draw N objects, then the number of possible
permutations which can result in n of them having some attribute is the n'" coefficient in
the expansion of (p; + p2)". the probability of each of these permutations is p',‘pf‘". and
the probability of n objects having some attribute is the binomial expansion

P, =C¥'py ™, (0<n<N), (16)

where

ON _ N

* o nl(N—=n)!
are the Binomial coefficients. The binomial coeflicients can here be viewed as statistical
weights which allow for the mumber of possible indistinguishable permutations which lead
to the same outcome. This distribution is called the general Binomial. or Bernoulli
distribution. We can plot out the values of F, for all the possible n (Figure 1) and in

(17)
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n

Figure 1: Histogram of a binomial distribution

doing so have generated the predicted probability distribution which in this case is the
binomial distribution whose form is determined by N, n. p;. If we have only two possible
outcomes p» = 1 — p;. The Binomial distribution can be generalised to a multinomial
distribution function.

20



The mean of the binomial distribution is

(n} = inp

- E"n‘[."ﬁ —n}ip":”: "

N RY T_n
= Lot

.\- NV - 1)t )
- r§l [" - 1}1[3 Tl }‘Iplpl P’_g

= :‘"II_II]

For py # ps the distribution is asymmetric, with mean (n} = Npy, but if is large the
shape of the envelope around the maximum looks more and more symmetrical and tends
towards a Gaussian distribution - an example of the Central Limit Theorem at work.
More of this later!
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1.5.2 The Poisson distribution

The Poisson distribution occupies a special place in probability and statistics, and
hence in observational astronomy. It is the archetypical distribution for point processes.
It is of particular importance in the detection of astronomical objects since it describes
photon noise. It essentially models the distribution of randomly distributed, indepen-
dent, point-like events, and is commonly taken as the null hypothesis.

[t can be derived as a limiting form of the binomial distribution:
The probability of n “successes” of an event of probability p is
Py =Crp"(1-p)" " (19)
after N trials.
Let us suppose that the probability p is very small, but that in our experiment we
allow N to become large, while keeping the mean finite, so that we have a reasonable

chance of finding a finite number of successes n. That is we define A = (n) = Np and let
p — 0, N — oo, while A =constant. Then,

N! A" A\
Fn = n!(N —n)! (E) (1 a E) (20)

22



(skipping some maths)

Using Stirling’s approximation, where x! — \/2me g7 +1/2

N — 0o, we find”

when r — oo, and letting

An{,—).
P, =

! (24)

This is Poisson’s distribution for random point processes, discovered by him in
1837.

23



1.5.3 Moments of the Poisson distribution:

Let’s look at the moments of the Poisson distribution:

m.
m; = (n')y =Y _n'P, (25)

The mean of Poisson’s distribution is

(n)

n=l()

A (26)

i.e. the expectation value of Poisson’s distribution is the factor A. This makes sense since
A was defined as the mean of the underlying Binomial distribution, and kept constant
when we took the limit. Now lets look at the second centred moment (i.e. the variance):

24



when we took the limit. Now lets look at the second centred moment (i.e. the variance):

fiz

An -

B 2
Ej[n (n)) =
a0 i, =X
Z ”2)« :1 -\
fi=i) n
i nA"e~A \2
~(n-1)
X AN e A Y
—~ (n—=1)

X (n+ 1A\

2

e n!
(A4 1)A = A2
A

— A\

(27)

So the variance of Poisson's distribution is also A. This means that the variance of

the Poisson distribution is equal to its mean. This is a very useful result,

25



Poisson distribution

p - \"eA

n
n: number of occurrences of an event

A: expected (average) number of occurrences,
hence the mean of P, is A

variance of P, is A

standard deviation of P, is square root of A
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Poisson Cumulative Distribution Function
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Poisson Noise

 Poisson noise has Poisson distribution

e probability of number of events occurring in
constant interval of time/space if events occur
with known average rate and independently of
each other

e example: fluctuations in photon flux in finite time
intervals At: chance to detect k photons with
average flux of A photons



1.5.4 A rule of thumb

Lets see how useful this result is. When counting photons, if the expected number detected
is n, the variance of the detected number is n: i.e. we expect typically to detect

n+/n (28)

photons. Hence, just by detecting n counts, we can immediately say that the uncertainty
on that measurement is +,/n, without knowing anything else about the problem, and
only assuming the counts are random. This is a very useful result, but beware: when
stating an uncertainty like this we are assuming the underlying distribution is Gaussian
(see later). Only for large n does the Poisson distribution look Gaussian (the Central
Limit Theorem at work again), and we can assume the uncertainty o = \/n.

30



1.5.5 Detection of a Source

A star produces a large number, N > 1, of photons during its life. If we observe it with a
telescope on Earth we can only intercept a tiny fraction, p < 1, of the photons which are
emitted in all directions by the star, and if we collect those photons for a few minutes or
hours we will collect only a tiny fraction of those emitted throughout the life of the star.

So if the star emits N photons in total and we collect a fraction, p. of those, then
A= Np
N — ¢
p— 0. (29)

So if we make many identical observations of the star and plot out the frequency dis-
tribution of the numbers of photons collected each time, we expect to see a Poisson
distribution.

31



Conversely, if we make one observation and detect n photons, we can use the Poisson
distribution to derive the probability of all the possible values of A\: we can set confidence
limits on the value of A from this observation. And if we can show that one piece of
sky has only a small probability of having a value of A as low as the surrounding sky,
then we can say that we have detected a star, quasar, galaxy or whatever at a particular
significance level (i.e. at a given probability that we have made a mistake due to the
random fluctuations in the arrival rate of photons). A useful rule of thumb here is

As = Ap + U\/g (30)

where Ag is the mean counts from the source, Ag, is the mean background count, and v
is the detection level. Usually we take v = 3 to be a detection, but sometimes it can be
v =>5 or even v = 15 for high confidence in a detection.

32



1.6.1 The Gaussian Distribution

A limiting form of the Poisson distribution is the Gaussian distribution.

1 _(JC-/”)2

2572
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Normal/Gaussian PDF
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Normal Cumulative Distribution
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Gaussian Noise

e Gaussian noise has Gaussian (normal) distribution

* Sometimes (incorrectly) called white noise (uncorrelated
noise)

(X—,u)z x: actual value

S = exp| — > u: mean of distribution
V2ro

—~ - o:standard deviation of

=

N distribution

g _

S - 34,19 34.1% 1-0 ~ 68%
5 - 2-G ~ 95%
= 3-6 ~ 99.7%

—30 —20 —1lo I lo 20 3a
Astronomers often consider S/N > 30 or > 50 as significant



Scientists Like Gauss

* Reasons to like Gaussian distribution:
— variances of independent Gaussian distributions add

— Poisson distribution approximates Gaussian for large
numbers

— combinations of different distributions tend to lead
to Gaussian distribution

e Always check whether the distribution is
Gaussian
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Noise Measurement

If purely Gauss or Poisson noise distribution, no other
systematic noise and no correlations,

then the spatial distribution (neighbouring pixels) of the
noise is equivalent to the temporal distribution (successive

measurements with one pixel)

This is analogous to throwing 5 d/ces once versus throwmg one dice

100 ] T BVWRSR RS(IEM R3O ﬂm
i (I

‘ WNHMM]'
PAHs

*I***X***; 0.010;_ . T E

w

Case 1: Spatial noise Case 2: Repeated measurements Case 3: Spectrum
(detector pixels) in time (time series) (dispersed information)
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Poisson Noise and Integration Time

Integrate light from uniform, extended source on detector
In finite time interval At, expect average of A photons

Statistical nature of photon arrival rate = some pixels will
detect more, some less than A photons.

Noise of average signal A (i.e., between pixels) is VA

Integrate for 2xAt - expect average of 2xA photons
Noise of that signal is now V22, i.e., increased by v2

With respect to integration time t, noise will only increase
~+/t while signal increases ~t



Signal-to-Noise Ratio: Infrared Imaging

* Measurement:

— signal (in #photons) from source plus background (in
#photons) towards source

e <B>: average sky background (# photons) from
source area

* SNR=S/N=(S+B-<B>)/v<B>



SNR and Integration Time

Assuming the signal suffers from Poisson shot noise. Let’s
calculate the dependence on integration time t,

Integrating t; . o= S
N
Integratingnxt .. o= NS N:—ﬁ\/ﬁs = Soc t
int* _\/ﬁ - W N int

Need to integrate four times as long to double the SNR



SNR Dependence on Source

Target
T
@
/
N~
Seeing-limited point Diffraction-limited, Diffraction-limited,
source extended source point source
° pixel size ™ Seeing ¢ pixe| size ™ d|ff||m ° pixel size ~ diff.lim
* target >> PSF * target << PSF

(D: diameter telescope)



Case 1: Seeing-limited “Point Source”

Signal* =S; Background® = B; Noise =N; Telescope diameter =D

0 ~ const

seeing

If detector is Nyquist-sampled to 6
S~ D? (area)

seeing *

B~D2 2> N~D (Poisson std.dev)

=>S/N~D

*per pixel



Case 2: Diffraction-limited extended Source

Signal* =S; Background® =B; Noise = N; Telescope diameter =D

*per pixel
“Diameter” of PSF ~ const

If detector Nyquist sampled to 8 . pixel ~ D2 but S ~ D?

D? (telescope size) and D2 (pixel FOV) cancel each other - no
change in signal

same for the background flux

=> S/N ~ const =2 t. .~ const

- no qgain for larger telescopes!

Note:

Total signal / Noise = ~D?/~ V(D?) ~ D




Case 3: Diffraction-limited “Point Source”

Signal* =S; Background® =B; Noise = N; Telescope diameter =D

”S/N = (S/N)Iight bucket'(S/N)piXeI scale”

)
/

(i) Effect of telescope aperture: > S/N ~ D

T
N

\

e Signal S ~ D2 [

e Background B~D? > N~D

(ii) Effect of pixel FOV (if Nyquist sampledto 8,4): = S/N ~ D
e S~ const (pixel samples PSF = all source flux)
e« B~¥~D? > N~D1

(i) and (ii) combined S/N~D? - t .~ D™

> huge gain: 1hr ELT = 3 months VLT *per pixel



Instrument Sensitivity Example: HAWK-I

http://www.eso.org/observing/etc/bin/utd/hawki/script/hawkisimu
Input Flux Distribution

Uniform (constant with wavelength) T Magmitud d Mag Sv ]
NOTE: Please use the "Uniform" template spectrum instead of this option. TR IR I LT n e B

@ Vega
K = = 2000 _
> Temalaid Seec ADV (Pickles) (3480 K) -
) Template Spectrum: e
Redshift z= 0.00 Magnitudes are given per arcsec”
] for extended sources.
@ Blackbody: Temperature : 1500000 K

Lambda: 1250.000 nm
© Single Line : Fhrx: s0000 1078 ergs.-"s.-"{'m2 (per arcsec” for extended sources)
FWHM: 1.000 nm

Spatial Distribution:

@ Point Source

Operatin _ .
te?nperatgure 75K, controlled to 1mK 1 Extended Source diameter: 100 arcsec

. . 2
The Magnitude (or flux) is given per arcsec” for extended sources.
Dark current [e-/s] {at

TEK)

between 0.10 & 0.15 ' Extended Source (per pixel)

Read noise* (DCR) ~12e- s
Read noise* (MDR) ~5e- Skv COIldltlmls
Linearrange (1%) 60.000e- (~30.000 ADUs)
Airmass: 1.20
) between 40.000 & 50.000
S/N Saturation level ADUs Seeing: 080  arcsec (FWHM in V band)
25
- Instrument Setup
20
Filter: K A
15 r‘ G Detector mode: Non-destructive Read-out (NDR)
10 [ (\((\
\v
/ 3o Results
‘. €51l
- W Results
/ ) 8/N ratio: SN = 100.000
0 f f f f ! DIT = 60.000 sec
0 200 400 600 800 1000 @: Exposure Time: | NDIT = 100




Instrument Sensitivity: Example

/ detected signal
S

el

N (0]
“ \ total noise
/ \

number of pixels background noise

7

background flux read noise  dark current

R

intensity pixel FOV ..

O =



Detected Signal

Detected signal S_, depends on:

* source flux density S.,. [photons st cm? um-1]

src
* Strehl ratio SR (ratio of actual to theoretical maximum intensity)
* spectral bandwidth AA [um]

* telescope aperture A, [m?]

* detector responsivity n,G

* transmission of the atmosphere n_,,,

* total throughput of the system n,,,, which includes:
* reflectivity of all telescope mirrors

* reflectivity (or transmission) of all instrument components, such as mirrors,
lenses, filters, beam splitters, grating efficiencies, slit losses, etc.

*integration time t; , [S]

SeI — Ssrc -SR-AA- A[el UDG "Natm * Thot -1

Int



Total Noise

Total noise N, ., depends on:
* number of pixels n; of one resolution element
* background noise per pixel N, _

Ntot — Nback npix

total background noise N,,, depends on:
* background flux density S, .,

* integration time t, ,

* detector dark current /,

* pixel read-out noise (N,,,,) and detector frames (n)

2
Nback — \/Sback °tint + Id T + Nread al

Int



Background Flux Density S, _

depends on:

 total background intensity B, = (BT +B ) Mot
B;, B, are thermal emissions from telescope and
atmosphere (~black body)

* pixel size and field of view: A x Q
* detector responsivity: nyG
e spectral bandwidth: AA

Svack = Biot + A X ) ndG AN

53



Instrument Sensitivity

Putting it all together, the total signal to noise ratio for a given
experiment is:

o = SeI _ Ssrc -SR-AA- Atel ' 77DG "Matm " Thot °tint
Ntot Nback rlpix
o \/Sback 1:lnt T I 1:lnt + Nread npix
= S

" SR-AA- Atel ' 77DG "Hatm * Tot °tint



Noise Propagation: Example

* ratio of two spectral lines as a function of depth of one of
the spectral lines

* noise of ratio strongly changes with line depth

 noise affects average ratio

r E
§ 2.0 —— ‘ 5 2.0 —
2 - o 1 + - i
| L o | ‘ Fo o) ) _|
I - . I - 1
< - < - o i
< — 215 - —
@ 7 g 7
9 i 9 i
= {1 T 1
~ — . 1.0 —
g ] = ° 7
= 7 — ° n
3} . S
g . o 7
s — g 0.5 a
Ql
ap - o f
© B g a
& i i i ]
% ool 13,0 :
= 0.0 : : : = 0.0 : : :
o 5 10 15 20 = 9) 10 15 20
N
2 Fel 5250.2 A Stokes V signal at AAp=—40 mA (%) £ Fel 5250.2 A Stokes V signal at Al\g=—40 mA (%)
N
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Noise Propagation

same as error propagation
function f(u,v,...) depends on variables u,v, ...

estimate variance of f knowing variances 0,2,
0?,... of variables u,v, .

of = 1,315{302(11 )’

make assumption / apprOX|mat|on that average
of f is well approximated by value of f for

averages of variables: £ = (i, v,Y)




Noise Propagation (cont.)

* Taylor expansion of f around average:

f-F0@ —u)T—f+<v _7) f+1/4

* variancein f:

2 [ ]lflriloi{(u —ﬁ)%+(v —V)g+1/}

:]|V|£r; i{(u i)’ (59 + (v, - V)’ (8{) +2(u, —u)(v, - v)gg—f#/z;}

ou ov



Noise Propagation (cont.)

e variances of u and v

s’= I|mZ(u -u)’;,  s’= I|mZ(v -7)?

N— N—>w

e covariance of u and v (can be negat/ve!)

Suv2 = |im Z(u -u)(v. - V)

N—w

 combine Taylor expansion and these definitions

L R e



Noise Propagation (cont.)

* from before

2 2
s/ :suz[%) +5V2(ﬁj +25W2ﬂ% +1/,
ou ov ou ov
* if differences (u.-u) and (v.-v)not correlated =»
sign of product as often positive as negative =»

covariance small compared to other terms

o if differences are correlated =2 most products
(u. - u)(v, -v) have the same sign =2 cross-
correlation term can be large



