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Waves from Maxwell Equations
• Maxwell equations & linear material equations: 

differential equation for damped waves 
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• 𝐸 electric field vector
• Material properties:

– 𝜀 dielectric constant
– 𝜇 magnetic permeability (𝜇 = 1 for most materials)
– 𝜎 electrical conductivity (controls damping)

• 𝑐 speed of light
• Same equation for magnetic field H
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• Linear equation: sum of solutions is also solution

• Plane wave 𝐸 = 𝐸0𝑒
𝑖(𝑘∙ Ԧ𝑥−𝜔𝑡)

– 𝐸0 complex constant
vector (polarization)

– 𝑘 wave vector
– Ԧ𝑥 spatial location
– 𝜔 angular frequency

• real electric field given by real part of E

• dispersion relation: 𝑘 ∙ 𝑘 =
𝜔2

𝑐2
෤𝑛2, ෤𝑛2 = 𝜇 𝜖 + 𝑖

4𝜋𝜎

𝜔
• complex index of refraction ෤𝑛 = 𝑛 + 𝑖𝑘

• 𝐸,𝐻, 𝑘 form right-handed triplet of orthogonal vectors

Plane Waves
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Snell’s law
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Fresnel’s 
equation

• ‘snellius’ for polarized 
plane waves

• See: 
https://www.brown.edu/research/labs/mittleman/sites/brown.edu.res
earch.labs.mittleman/files/uploads/lecture13_0.pdf

• http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/freseq.html

• Given here for completeness, will (likely) not be used further 
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Fractions of reflected and transmitted light 
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Spherical and Plane Waves
• light source: collection of 

sources of spherical waves

• astronomical sources: almost 
exclusively incoherent

• lasers, masers: coherent
sources

• spherical wave originating at 
very large distance can be 
approximated by plane wave
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Ideal Optics

• ideal optics: spherical waves from any point in object space are

• imaged into points in image space

• corresponding points are called conjugate points

• focal point: center of converging or diverging spherical wavefront

• object space and image space are reversible
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Ideal Optical System

ideal optical system transforms plane wavefront 
into spherical, converging wavefront
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Azimuthal Symmetry

• most optical systems are azimuthally symmetric

• axis of symmetry is optical axis

Optical Axis
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Locally Flat Wavefronts

• rays normal to local wave (locations of constant phase)

• local wave around rays is assumed to be infinite, plane 
wave
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Rays

• geometrical optics works with rays only

• rays reflect and refract according to Fresnel equations

• phase is neglected (incoherent sum)
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Finite Object Distance

• object may also be at finite distance

• also in astronomy: reimaging within 
instruments and telescopes
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• Aperture stop: determines diameter of light cone from 
axial point on  object.

• Field stop: determines the field of view of the system.

Aperture and Field Stops
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Images

• every object point comes to focus in image plane

• light in image point comes from all pupil positions

• object information encoded in position, not angle
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Pupils

• all object rays are smeared out over complete aperture

• light in one pupil point comes from different object 
positions 

• object information is encoded in angle, not in position
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Θ

Speed of optical system described by numerical aperture 
(NA) or F-number:

NA=𝑛 ∙ sin 𝜃 ≈ 𝑛
1

2𝐹
, 𝐹 =

𝑓

𝐷

f

D

• fast optics (large NA, small F-number)
• slow optics (small NA, large F-number)
• f-ratio = 1/F, sometimes written as f/2.8

n

Speed/F-Number/Numerical Aperture
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Fermat’s view:  “A wavefront is a surface on which every point has the same 
OPD.”

Huygens’ view:  “At a given time, each point on primary wavefront acts as a 
source of secondary spherical wavelets.  These propagate with the same speed 
and frequency as the primary wave.”

The Huygens-Fresnel Principle
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A light source may exhibit temporal and spatial coherence.  The coherence 
function Γ12 between two points (1,2) is the cross-correlation between their 
complex amplitudes:

The normalized representation is called the degree of coherence:

which leads to an interference pattern* with an intensity distribution of:

where

and the visibility for I1 = I2. 
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The Zernike-van Cittert Theorem  (1) 

Consider a monochromatic, extended, 
incoherent source As with intensity I(x,y).  

Consider further a surface element dσ (dσ
<<λ), which illuminates two points P1 and P2

at distances R1 and R2 on a screen.  

The quantity measuring the correlation of the electric fields between P1 and P2

(for any surface element dσ at distance r) is:

Θ
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The Zernike-van Cittert Theorem  (2) 

Generally, the degree of coherence is then given by the Zernike-van 

Cittert theorem: ( )
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In words, the general Zernike-van Cittert theorem describes the relation 
between the degree of coherence between two points on the screen and the 
intensity distribution across the illuminating source As.

Frits Zernike (1888-1966) : Dutch physicist and 
winner of the Nobel prize for physics in 1953 for 
his invention of the phase contrast microscope,
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For large distances from source to screen (relative to the 
distance between P1 and P2 and the size of the source) we can 
use angular variables [x/R=α, y/R=β, Θ=(α,β), and ΔX=X2-X1] to 
describe the source as seen from the screen.
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*absolute value of a complex number

The Z-vC Theorem for Large Distances  (3) 

Then the general Z-vC theorem simplifies (Lena p. 211) to:

For large distances, the modulus* of the degree of coherence |γ12| between two 
points is the modulus of the normalized Fourier transform of the source intensity 
distribution. 
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Now: calculate the complex degree of coherence for a circular source of radius 
r0.  
Let P1 be at the center of the screen and P2 at distance ρ where Θ=r0/R.  

The Z-vC Theorem for a Circular Source (4) 

Then the modulus of the degree of coherence for a circular source is:
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Θ0 = angular size of circular source
ρ = distance of P2 from center
λ = wavelength
J1 = 1st order Bessel function 24



Fourier Pair in 2-D: Box Function

2-D box function with r2 = x2 + y2:
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Larger telescopes produce smaller Point Spread Functions (PSFs)!

Electric Field in Electric Field in
Telescope Aperture: Focal plane:

25



First dark ring (minimum) at:

Point Spread Function

Df

r
Fr


 22.1or            22.1 1

11 ===

PSF often characterized by Full Width at Half Maximum
(FWHM) in angular units. Airy function: FWHM=1.028 λ/D

Nyquist sampling theorem requires sampling at least 
every 0.5 FWHM. Airy function: at least every 0.5λ/D
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Telescope Aperture  Focal Plane 1
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Telescope Aperture  Focal Plane 2
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PSF Example
central obscuration,

monolithic mirror (pupil)
no support-spiders

39m telescope pupil → FT = image of a point source   (log scale)
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central obscuration,

monolithic mirror (pupil)

with 6 support-spiders

39m telescope pupil → FT = image of a point source   (log scale)
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central obscuration,

segmented mirror (pupil)

no support-spiders

39m telescope pupil → FT = image of a point source   (log scale)
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Point Spread Functions
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Angular Resolution: Rayleigh Criterion

Two sources can be resolved if the 
peak of the second source is no closer 
than the 1st dark Airy ring of the first 
source.

D


22.1sin =
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Aberrations

Aberrations are departures of the performance of an 

optical system from the ideal optical system.

1. On-axis aberrations: aberrations that can be seen 

everywhere in the image, also on the optical axis 

(center of the image)

2. Off-axis aberrations: aberrations that are absent on the 

optical axis (center of the image)

a) Aberrations that degrade the image

b) Aberrations that alter the image position
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Spot Diagram

intersection of rays with image surface
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RMS Spot Radius

• calculate rms radius of all 
spots from the perfect 
center

• provides a rough 
measure of image quality

• optics are virtually 
perfect if rms spot radius 
≦ 𝜆/2D
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Wavefront Error

• deviation of surface that is normal to rays and spherical 
reference surface (distance between red & blue line)

• often shown as grayscale image or 3D surface
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Aberrated Point-Spread Function

38

perfect aberrated



• Reference sphere S 
with radius R for off-
axis point P’ and 
aberrated wavefront 
W

• “Aberrated” ray from 
object intersects 
image plane at P”

• Ray aberration is P’P”

• Wave aberration is
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R
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i

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=Small FOV, radially symmetric wavefront W(r)

Wave and Ray Aberrations
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defocused 
image

Usually refers to optical path difference of λ/4.

Depth of focus:

focused 
image

Defocus (Out of Focus)
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Rays further from the optical 
axis have a different focal 
point than rays closer to the 
optical axis.

Spherical Aberration
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Spherical Aberration: Hubble Trouble
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HST Primary Mirror Aberration

• Null corrector cancels non-spherical 
portion of aspheric mirror shape.  
Viewed from point A, combination 
looks precisely spherical

• Null corrector had one lens misplaced 
by 1.3 mm

• Manufacturer analyzed surface with 
other null correctors, which indicated 
the problem, but ignored results 
because they were believed to be 
less accurate
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Variation of magnification across entrance pupil.  Point 
sources will show a come-like tail.  Coma is an inherent 
property of telescopes using parabolic mirrors

Coma
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From off-axis point A lens does not appear symmetrical but 
shortened in plane of incidence (tangential plane).  
Emergent wave will have a smaller radius of curvature for 
tangential plane than for plane normal to it (sagittal plane) 
and form an image closer to the lens.

Astigmatism
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Only objects close to optical axis will be in focus on flat 
image plane. Off-axis objects will have different focal 
points.

Field Curvature
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Distortion
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Straight line on sky becomes curved line in focal plane 

because magnification depends on distance to optical axis. 

1. Outer parts have larger magnification→ pincushion

2. Outer parts have smaller magnification → barrel



Aberrations Summary
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Refractive index variation 
with wavelength n(λ) results 
in focal length of lens f(λ) to 
depend on wavelength; 
different wavelengths have 
different foci

Chromatic Aberration
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