Astronomical Observing Techniques 2019

Lecture 2: Monsieur Fourier and his Elegant Transform

Huub Rottgering rottgering@strw.leidenuniv.nl

Content

- 1. Introduction
 - Intuition, hearing, seeing
- 2. Fourier Series of Periodic Functions
- 3. Fourier Transforms
 - Properties
 - Examples
 - Numerical Fourier Transforms
- 4. Convolution, cross- and auto correlation
 - Parseval and Wiener-Khinchin Theorems
- 5. Sampling
 - Nyquist theorem
 - Aliasing

1. Introduction Fourier Transformation

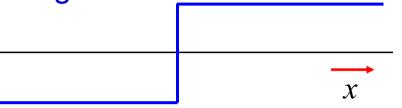
Functions f(x) and F(s) are Fourier pairs

$$F(s) = \int_{-\infty}^{+\infty} f(x) \cdot e^{-i2\pi xs} dx$$
$$f(x) = \int_{-\infty}^{+\infty} F(s) \cdot e^{i2\pi xs} ds$$

A discrete sum of sines

Spatial frequency analysis of a step edge

$$f(x) = \begin{cases} -1 & \text{if } x < 0\\ 1 & \text{otherwise} \end{cases}$$



Fourier decomposition

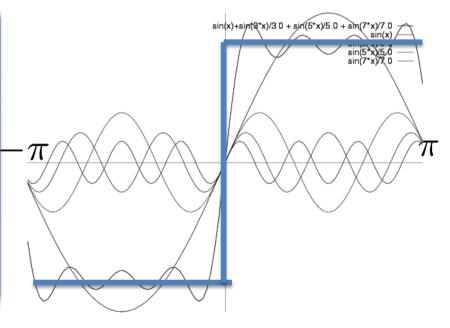
Fourier Series

$$f(x) = \sum_{n} a_{n} \sin nx$$

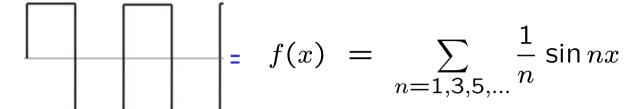
$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

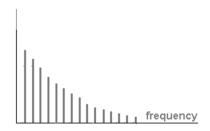
$$= \frac{2}{\pi} \int_{0}^{\pi} \sin nx \, dx = \begin{cases} \frac{4}{n\pi} & \text{if n odd} \\ 0 & \text{otherwise} \end{cases}$$

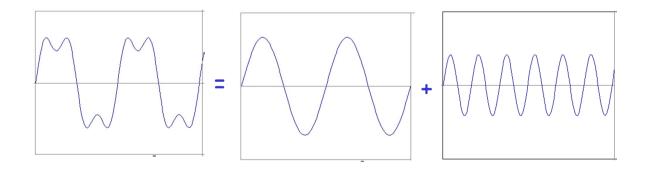
$$f(x) = \sum_{n} \frac{4}{n\pi} \sin(2n - 1)x$$



Fourier series for a square wave

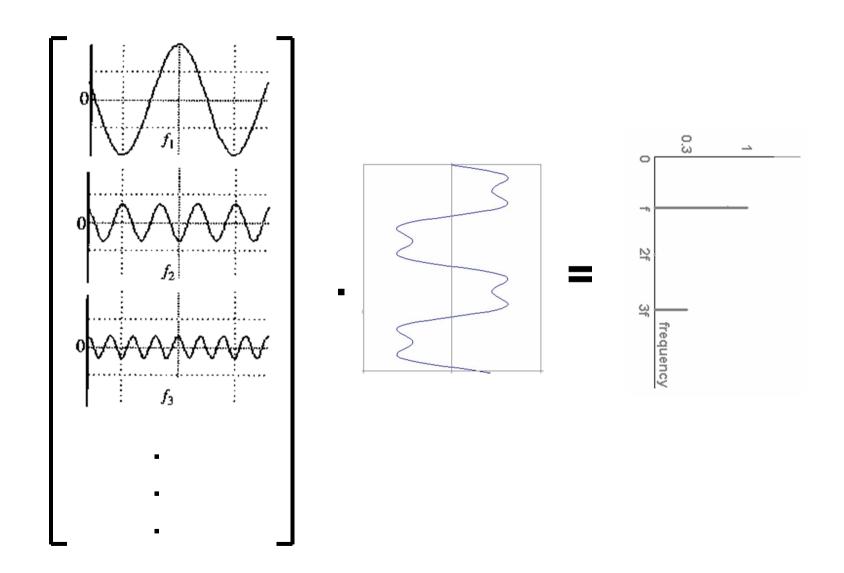




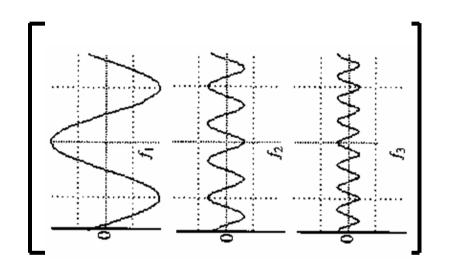


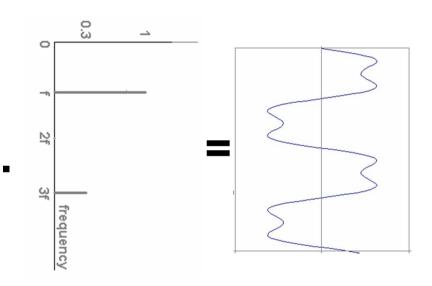
$$f(x) = \sin x + \frac{1}{3}\sin 3x + \dots$$

Fourier transform: just a change of basis

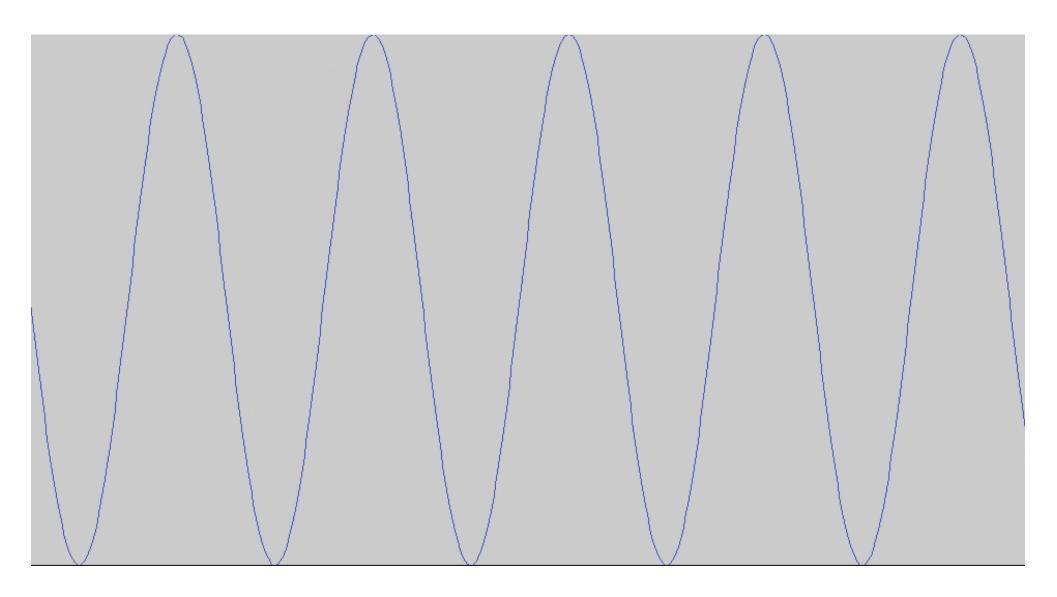


Inverse Fourier transform: just a change of basis

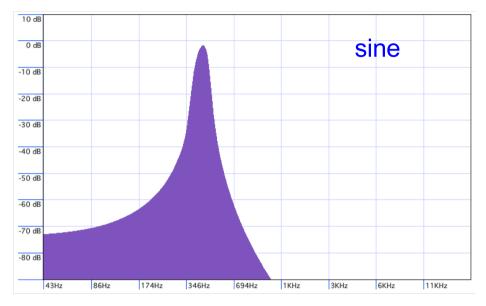


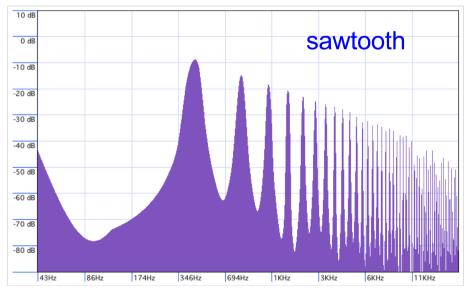


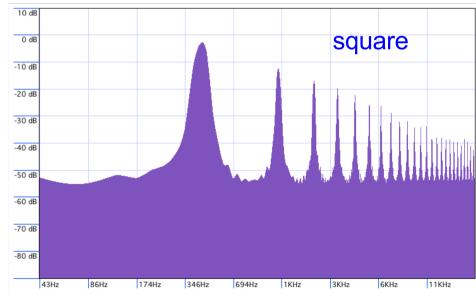
Hear the Difference



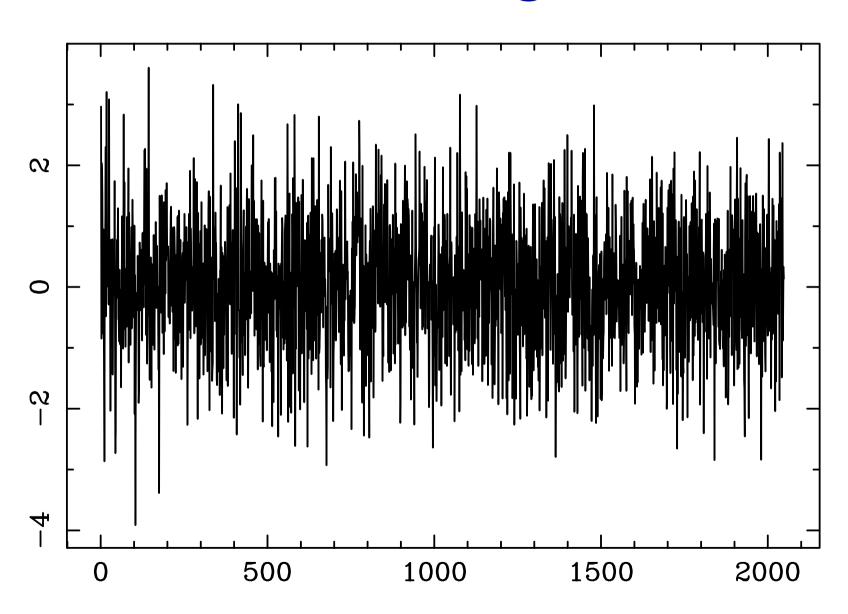
See the Difference



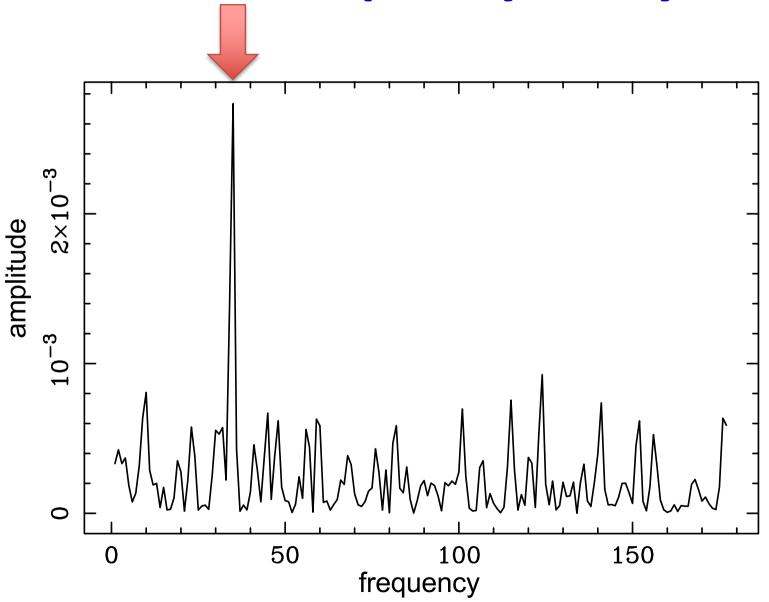




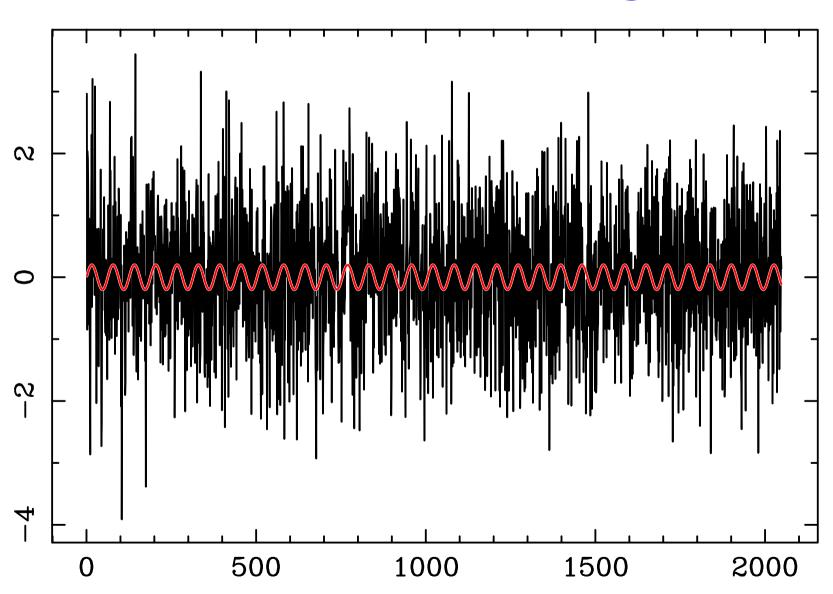
Find the Signal



Fourier Frequency Analysis



See the Periodic Signal



See the difference

The spatial function f(x, y)

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du dv$$

is decomposed into a weighted sum of 2D orthogonal basis functions in a similar manner to decomposing a vector onto a basis using scalar products.

$$f(x,y) = \alpha + \beta + \cdots$$

original low pass high pass f(x,y)|F(u,v)|``Signal at the pupil ('mirror') of a telescope"

2. Fourier Series of Periodic Functions

Decomposition using sines and cosines as orthonormal basis set

Periodic function: f(x) = f(x+P)

Fourier series:
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2\pi nx}{P}\right) + b_n \sin\left(\frac{2\pi nx}{P}\right) \right]$$

$$a_n = \frac{2}{P} \int_{-P/2}^{P/2} f(x) \cos\left(\frac{2\pi nx}{P}\right) dx$$

Fourier coefficients:

$$b_n = \frac{2}{P} \int_{-P/2}^{P/2} f(x) \sin\left(\frac{2\pi nx}{P}\right) dx$$

Period: P

Frequency: v = 1/P

Angular frequency: $\omega = 2\pi/P$

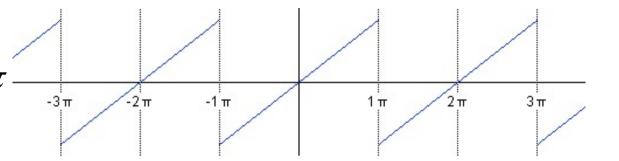
Example: Sawtooth Function

Sawtooth function:

Sawtooth function:

$$f(x) = x \quad \text{for } -\pi < x < \pi$$

$$f(x+2\pi) = f(x)$$



Fourier coefficients are:

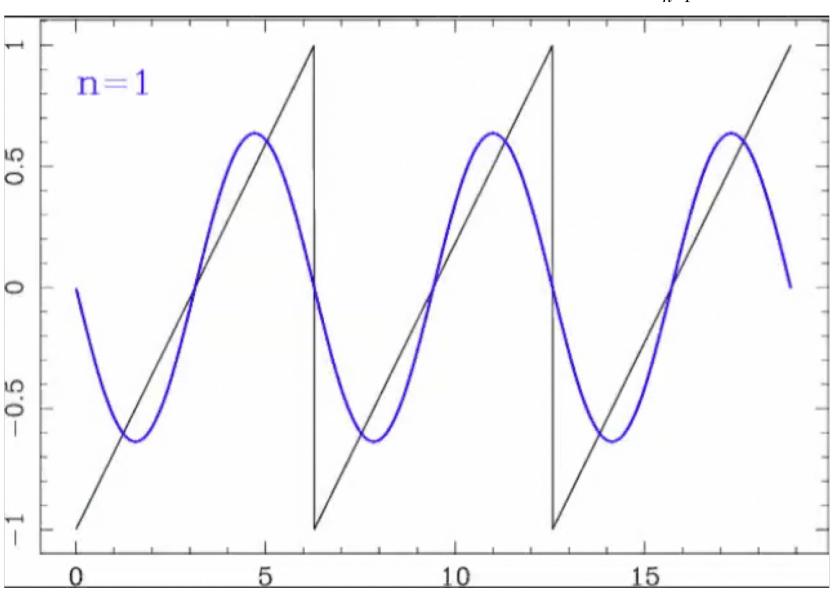
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) dx \stackrel{!}{=} 0 \qquad (\cos() \text{ is symmetric around } 0)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx = 2 \frac{(-1)^{n+1}}{n}$$

and hence:
$$f(x) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right] = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$

Sawtooth Approximation $\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$

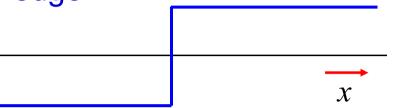
$$\frac{2}{\pi}\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n+1}}{n}\sin(nx)$$



Second example

Spatial frequency analysis of a step edge

$$f(x) = \begin{cases} -1 & \text{if } x < 0\\ 1 & \text{otherwise} \end{cases}$$



Fourier decomposition

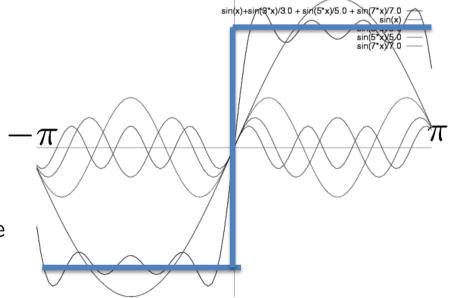
Fourier Series

$$f(x) = \sum_{n} a_{n} \sin nx$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \sin nx \, dx = \begin{cases} \frac{4}{n\pi} & \text{if n odd} \\ 0 & \text{otherwise} \end{cases}$$

$$f(x) = \sum_{n=1}^{\infty} \frac{4}{(2n-1)\pi} \sin(2n-1)x$$



Fourier Transformation

Functions f(x) and F(s) are Fourier pairs

$$F(s) = \int_{-\infty}^{+\infty} f(x) \cdot e^{-i2\pi xs} dx$$
$$f(x) = \int_{-\infty}^{+\infty} F(s) \cdot e^{i2\pi xs} ds$$

- x, s can be scalar or vector ($x \cdot s$ becomes scalar product)
- Fourier transform is reciprocal (exponent sign changes)
- exponent sign and factor 2π not well defined
- various normalization factors are used

Symmetries and Fourier Transforms

symmetry properties of Fourier transforms have many applications

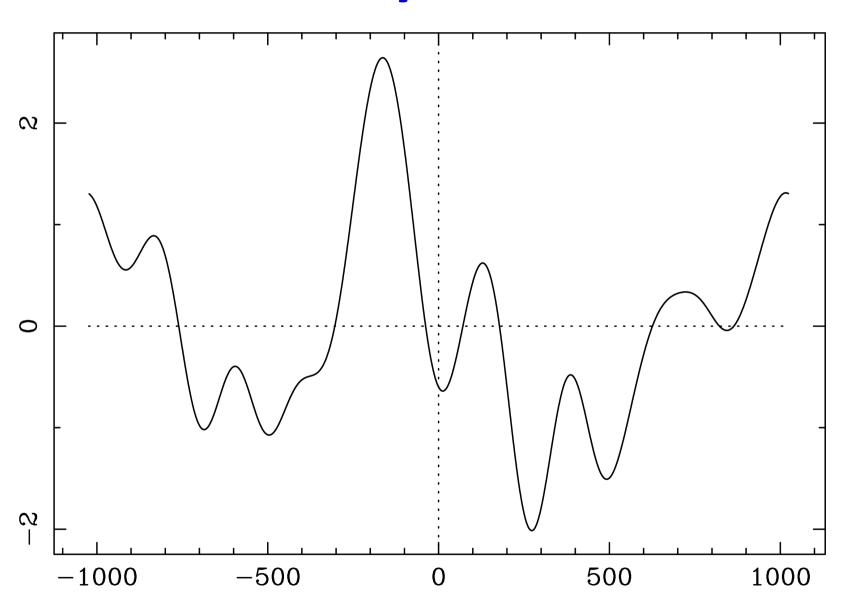
Define

- even function: $f_{\text{even}}(-x) = f_{\text{even}}(x)$
- odd function: $f_{\text{odd}}(-x) = -f_{\text{odd}}(x)$

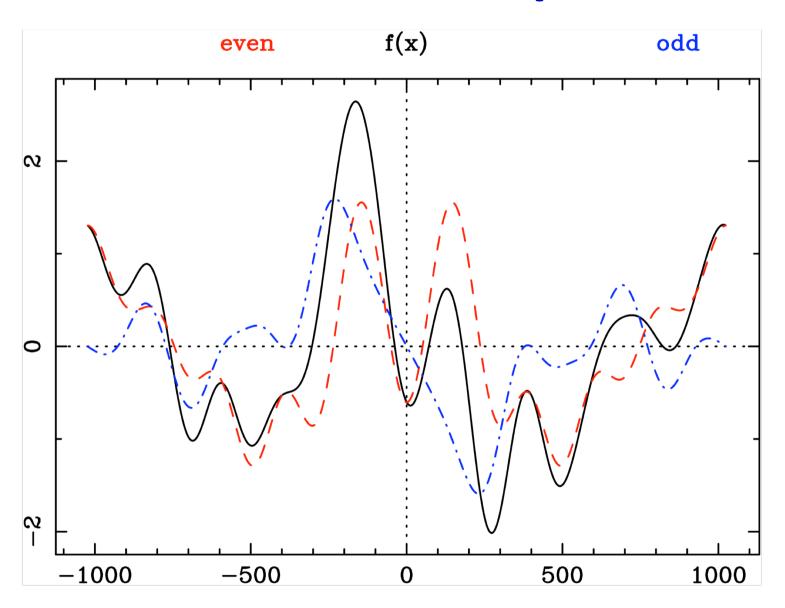
Hence

- even part of f(x): $f_{\text{even}}(x) = \frac{1}{2}[f(x) + f(-x)]$
- odd part of f(x): $f_{\text{odd}}(x) = \frac{1}{2}[f(x)-f(-x)]$
- arbitrary function: $f(x) = f_{even}(x) + f_{odd}(x)$

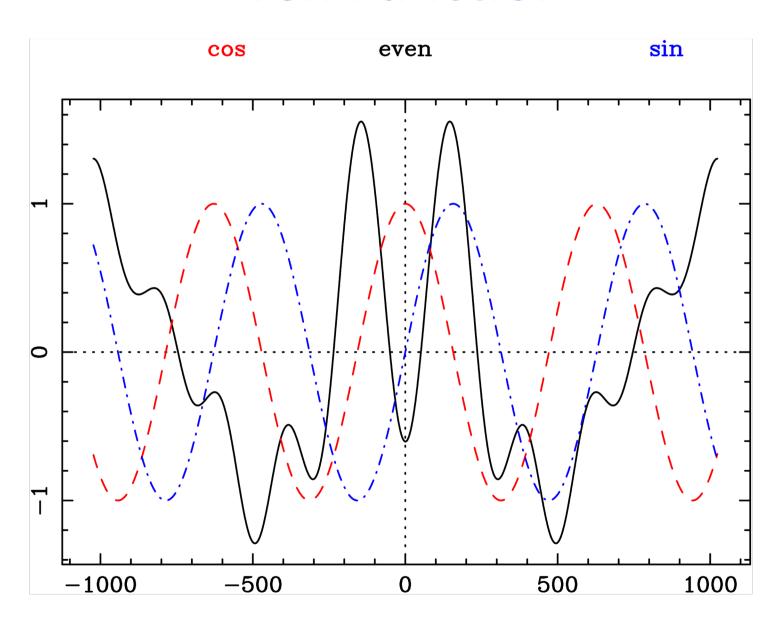
Arbitrary Function



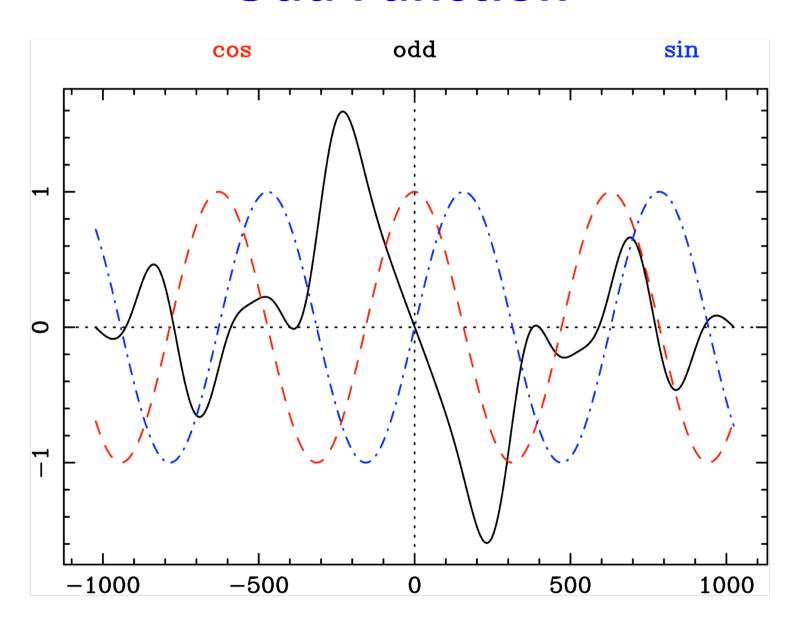
Even & Odd Decomposition



Even Function



Odd Function



Fourier Transform Symmetries

$$f(x) = f_{\text{even}}(x) + f_{\text{odd}}(x)$$

$$f_{\text{even}}(-x) = f_{\text{even}}(x) \quad f_{\text{odd}}(-x) = -f_{\text{odd}}(x)$$

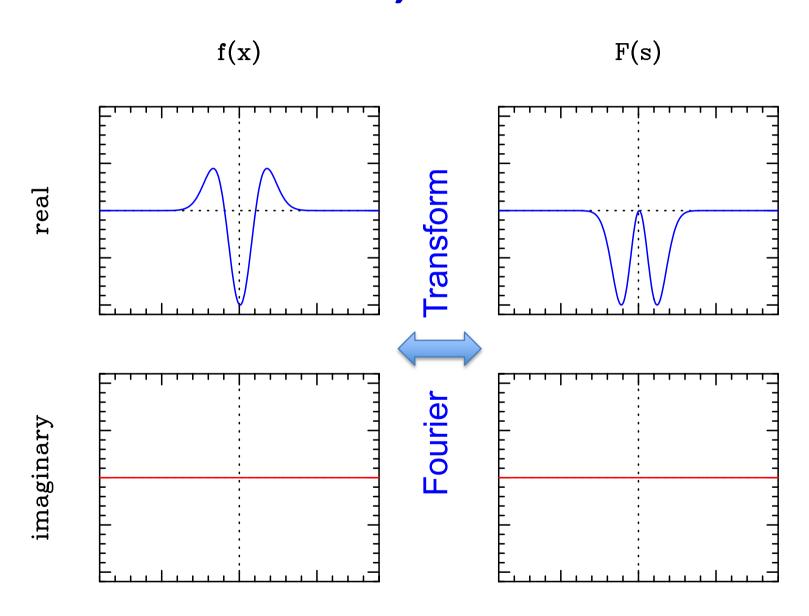
$$e^{-i2\pi xs} = \cos(2\pi xs) - i\sin(2\pi xs)$$

$$\Rightarrow F(s) = 2\int_{0}^{+\infty} f_{\text{even}}(x)\cos(2\pi xs)dx$$

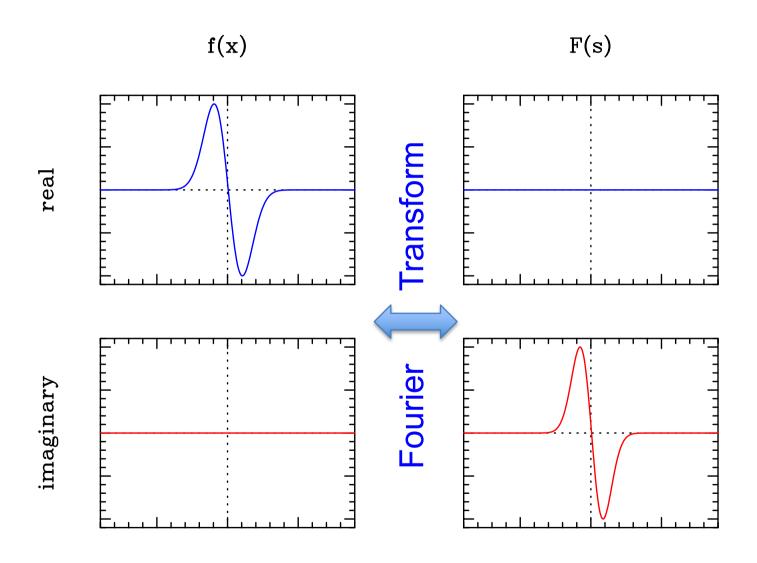
$$-i \quad 2\int_{0}^{+\infty} f_{\text{odd}}(x)\sin(2\pi xs)dx$$

f(x) real: $f_{even}(x)$ transforms to (even) real part of F(s), $f_{odd}(x)$ transforms to (odd) imaginary part of F(s).

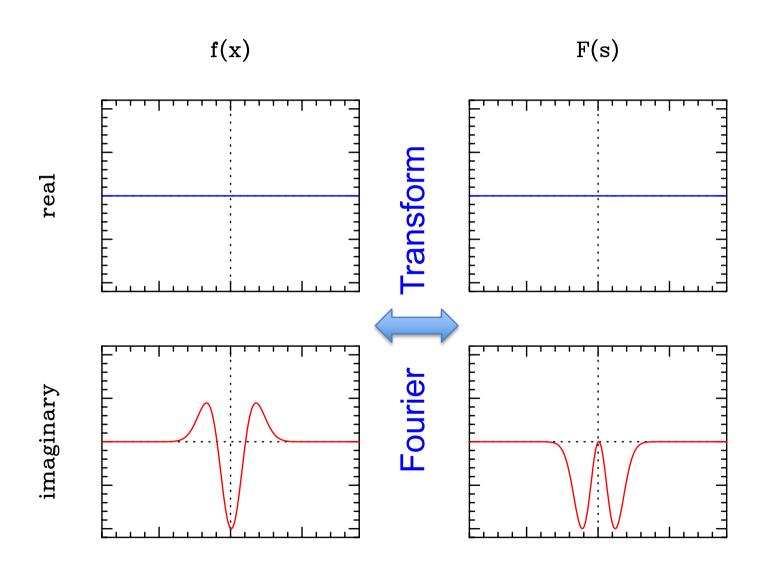
Real, Even



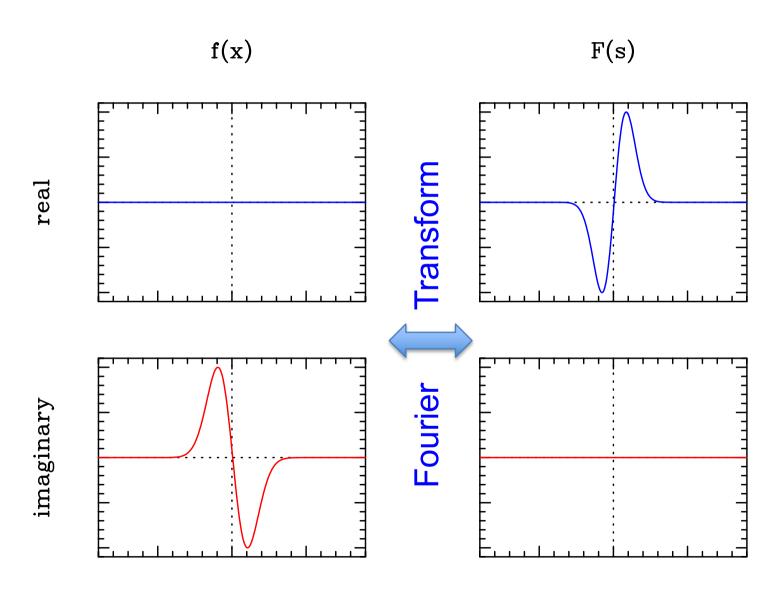
Real, Odd



Imaginary, Even

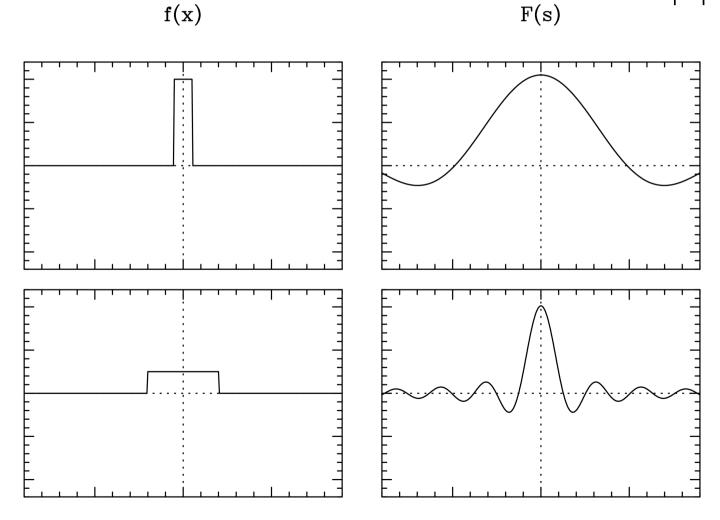


Imaginary, Odd



Fourier Transform Similarity

Expansion of
$$f(x)$$
 contracts $F(s)$: $f(x) \to f(ax) \Leftrightarrow \frac{1}{|a|} F\left(\frac{s}{a}\right)$



Fourier Transform Properties

LINEARITY:
$$a \cdot f(x) + b \cdot g(x) \Leftrightarrow a \cdot F(s) + b \cdot G(s)$$

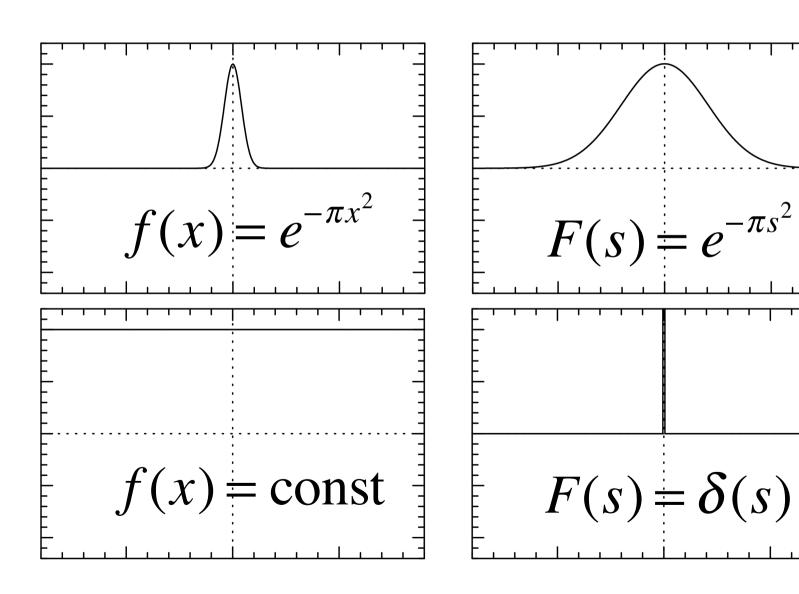
TRANSLATION:
$$f(x-a) \iff e^{-i2\pi as}F(s)$$

DERIVATIVE:
$$\frac{\partial^n f(x)}{\partial x^n} \Leftrightarrow (i2\pi s)^n F(s)$$

INTEGRAL:
$$\int f(x) \partial x \Leftrightarrow (i2\pi s)^{-1} F(s) + c\delta(s)$$

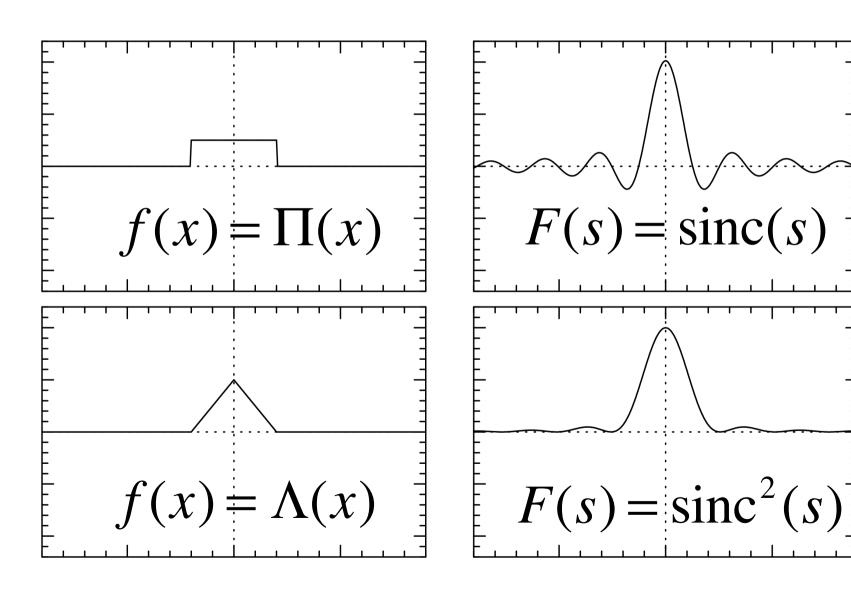
Important 1-D Fourier Pairs 1

f(x) F(s)



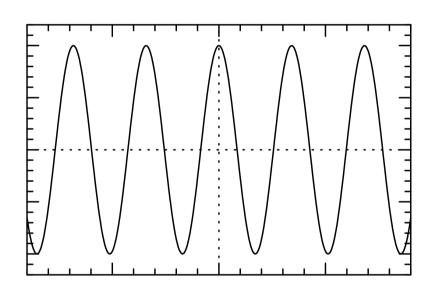
Important 1-D Fourier Pairs 2

f(x) F(s)



Important 1-D Fourier Pairs 3

f(x)F(s)



$$f(x) = \cos(\pi x)$$

$$f(x) = \cos(\pi x) \qquad F(s) = \delta(s \pm \frac{1}{2})$$

Numerical Fourier Transforms

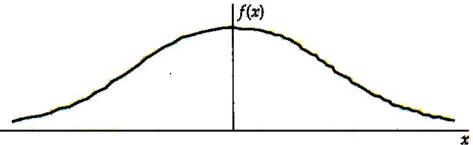
- Problems with Fourier Transform
 - signal is only know for finite time/space/...
 - cannot integrate over ±∞
 - only know signal at discrete points (samples)
- Assumptions
 - signal is periodic beyond known interval
 - first and last data point become adjacent!
 - signal is sampled at discrete, evenly spaced points

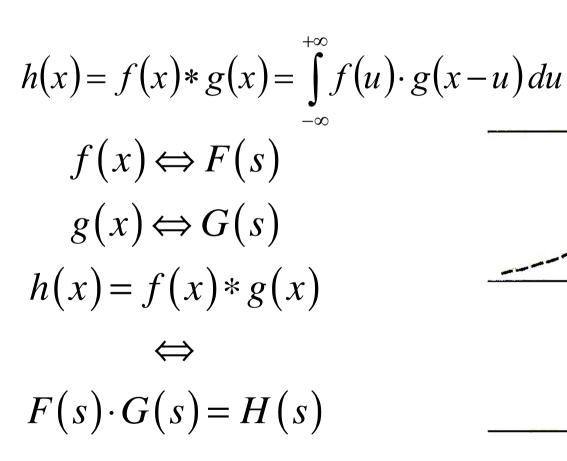
Often used: fast Fourier transform: compute time ~NlogN

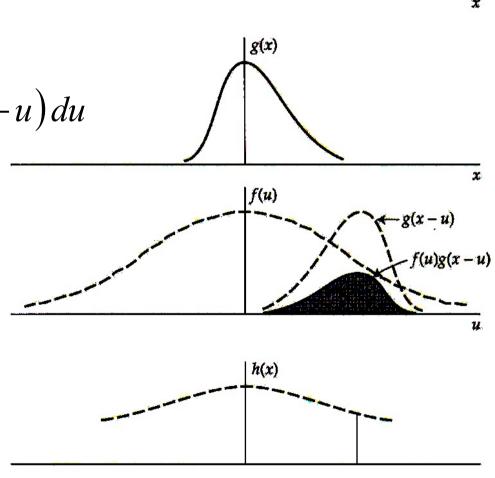
4. Convolution, cross- and auto correlation

Convolution

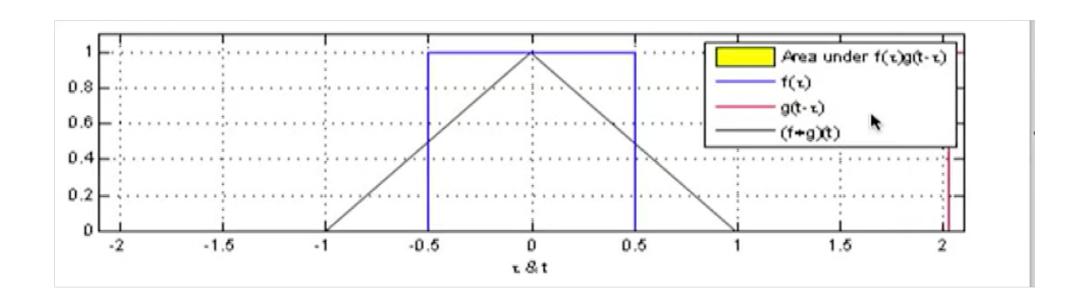
Convolution of two functions, f*g, is integral of product of functions after one is reversed and shifted:







Convolution: The Movie



Convolution: Applications

Example:

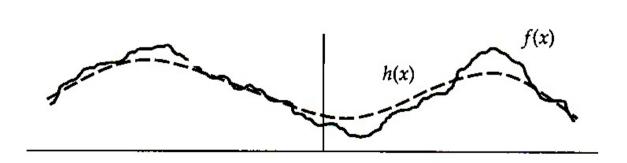
f(x): object in sky

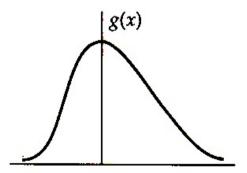
g(x): point spread function of telescope

h(x): observed image

Example:

Convolution of f(x) with a smooth kernel g(x) can be used to smoothen f(x)





f(x)*g(x)=h(x)

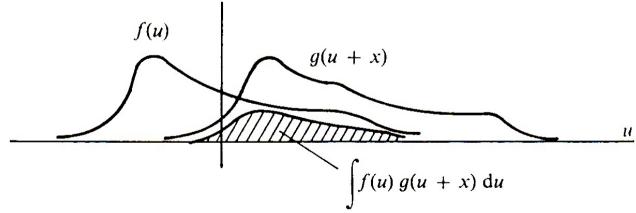
Cross-Correlation

Cross-correlation (or covariance) is measure of similarity of two waveforms as function of time-lag between them.

$$k(x) = f(x) \otimes g(x) = \int_{-\infty}^{+\infty} f(u) \cdot g(x+u) du$$

Difference between cross-correlation and convolution:

- Convolution reverses the signal ('-' sign)
- Cross-correlation shifts the signal and multiplies it with another



Interpretation: By how much (x) must g(u) be shifted to match f(u)? Answer given by maximum of k(x)

Cross-Correlation in Fourier Space

$$f(x) \Leftrightarrow F(s)$$

$$g(x) \Leftrightarrow G(s)$$

$$h(x) = f(x) \otimes g(x) \Leftrightarrow F(s) \cdot G^*(s) = H(s)$$

In contrast to convolution, in general

$$f \otimes g \neq g \otimes f$$

Interpretation of Cross-Correlation

$$\min_{\Delta x, \Delta y} \sum_{x,y} \left[S_1(x,y) - S_2(x + \Delta x, y + \Delta y) \right]^2 =$$

$$\max_{\Delta x, \Delta y} \sum_{x,y} S_1(x,y) S_2(x + \Delta x, y + \Delta y)$$

Auto-Correlation Theorem

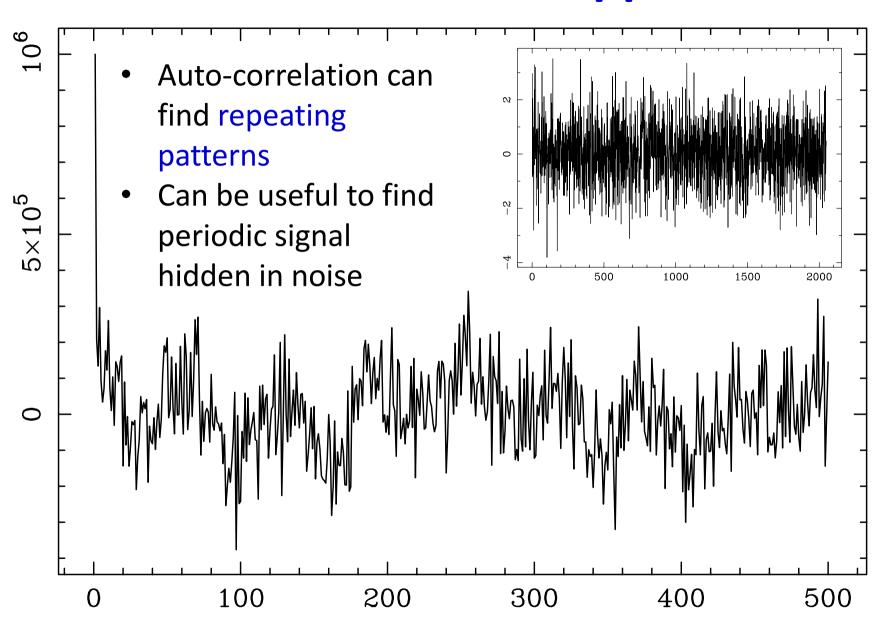
Auto-correlation is cross-correlation of function with itself:

$$k(x) = f(x) \otimes f(x) = \int_{-\infty}^{+\infty} f(u) \cdot f(x+u) du$$

$$f(u) + \int_{-\infty}^{+\infty} f(u) \cdot f(u-x) du$$

$$f(x) \otimes f(x) \Leftrightarrow F(s)F^*(s) = |F(s)|^2$$

Auto-Correlation: Application



Power Spectrum

Power Spectrum S_f of f(x) (or the Power Spectral Density, PSD) describes how the power of a signal is distributed with frequency.

Power is often defined as squared value of signal:

$$S_f(s) = |F(s)|^2$$

Power spectrum is Fourier transform of autocorrelation and indicates what frequencies carry most of the energy.

Total energy of a signal is: $\int S_f(s)ds$

Applications: spectrum analyzers, calorimeters of light sources, ...

Parseval's Theorem

Parseval's theorem (or Rayleigh's Energy Theorem): Sum of square of a function is the same as sum of square of the Fourier transform:

$$\int_{-\infty}^{+\infty} |f(x)|^2 dx = \int_{-\infty}^{+\infty} |F(s)|^2 ds$$

Interpretation: Total energy contained in signal f(x), summed over all x is equal to total energy of signal's Fourier transform F(s) summed over all frequencies s.

Wiener-Khinchin Theorem

Wiener–Khinchin theorem states that the power spectral density S_f of a function f(x) is the Fourier transform of its auto-correlation function:

$$|F(s)|^{2} = FT\{f(x) \otimes f(x)\}$$

$$\updownarrow$$

$$F(s) \cdot F^{*}(s)$$

<u>Applications:</u> E.g. in the analysis of linear time-invariant systems, when the inputs and outputs are not square integrable, i.e. their Fourier transforms do not exist.

Equation Summary

Convolution	$h(x) = f(x) * g(x) = \int_{-\infty}^{+\infty} f(u) \cdot g(x - u) du$
Cross-correlation	$k(x) = f(x) \otimes g(x) = \int_{-\infty}^{+\infty} f(u) \cdot g(x+u) du$
Auto-correlation	$k(x) = f(x) \otimes f(x) = \int_{-\infty}^{+\infty} f(u) \cdot f(x+u) du$
Power spectrum	$S_f(s) = F(s) ^2$
Parseval's theorem	$\int_{-\infty}^{+\infty} f(x) ^2 dx = \int_{-\infty}^{+\infty} F(s) ^2 ds$
Wiener-Khinchin theorem	$ F(s) ^2 = FT\{f(x) \otimes f(x)\} = F(s) \cdot F^*(s)$

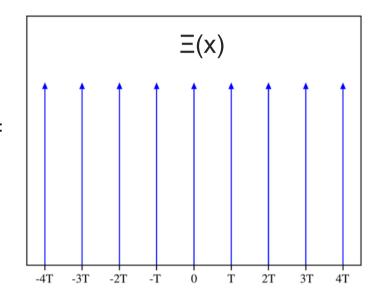
Dirac Comb

Dirac's delta "function":

$$f(x) = \delta(x) = \int_{-\infty}^{+\infty} e^{i2\pi sx} ds \rightarrow FT\{\delta(x)\} =$$

Dirac comb: infinite series of delta functions spaced at intervals of T:

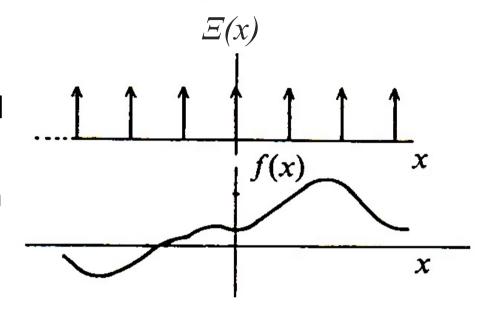
$$\Xi_{T}(x) = \sum_{k=-\infty}^{\infty} \delta(x - kT) = \frac{1}{series} \frac{1}{T} \sum_{n=-\infty}^{\infty} e^{i2\pi nx/T}$$

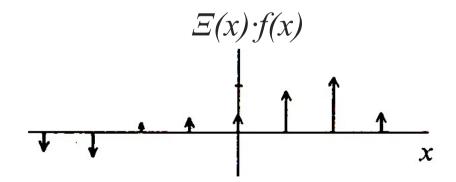


- Fourier transform of Dirac comb is also a Dirac comb
- Dirac comb is also called impulse train or sampling function

5. Sampling

- Signal only sampled at discrete points in time
- Often constant sampling interval
- Sampling can be described as multiplication of true signal with Dirac comb
- Fourier transform of sampled signal is sampled Fourier transform of true signal





Nyquist Theorem

Sampling: signal at discrete values of x: $f(x) \to f(x)$. $\Xi\left(\frac{x}{\Delta x}\right)$

Interval between two successive readings is sampling rate

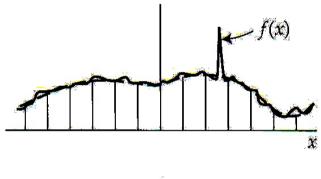
Critical sampling given by Nyquist theorem

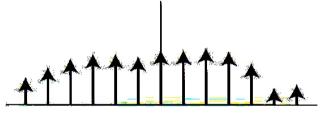
Given f(x), its Fourier Transform F(s) defined on $[-s_{max}, s_{max}]$.

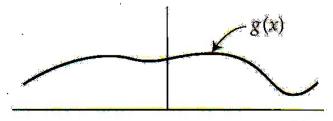
Sampled distribution of the form

$$g(x) = f(x) \cdot \Xi\left(\frac{x}{\Delta x}\right)$$

with a sampling rate of $\Delta x=1/(2s_{max})$ is enough to reconstruct f(x) for all x.







Sampling Rate

Oversampling

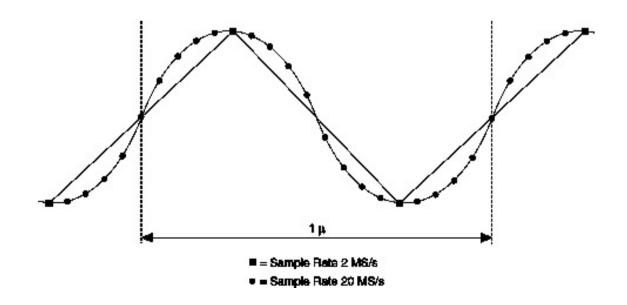
Sampling rate above critical sampling rate:

- redundant measurements/too much data
- often lowering the S/N

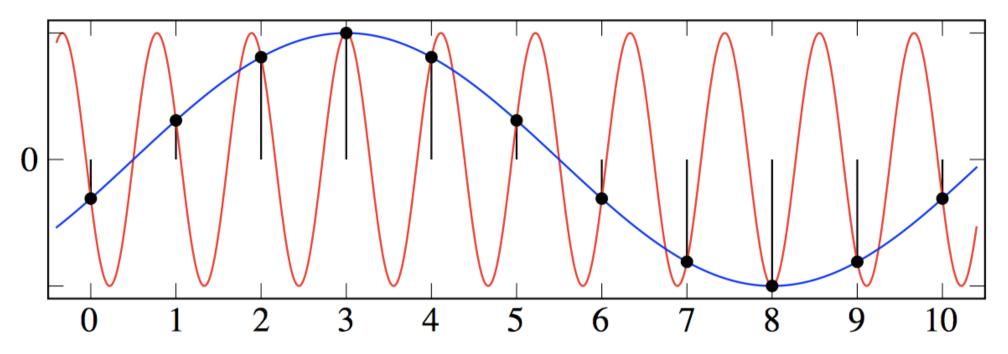
Undersampling

Sampling rate below critical sampling rate:

- signal contains frequencies higher than 1/(2s_{max})
- source signal cannot be determined after sampling
- loss of fine details
- must apply low-pass filter before sampling

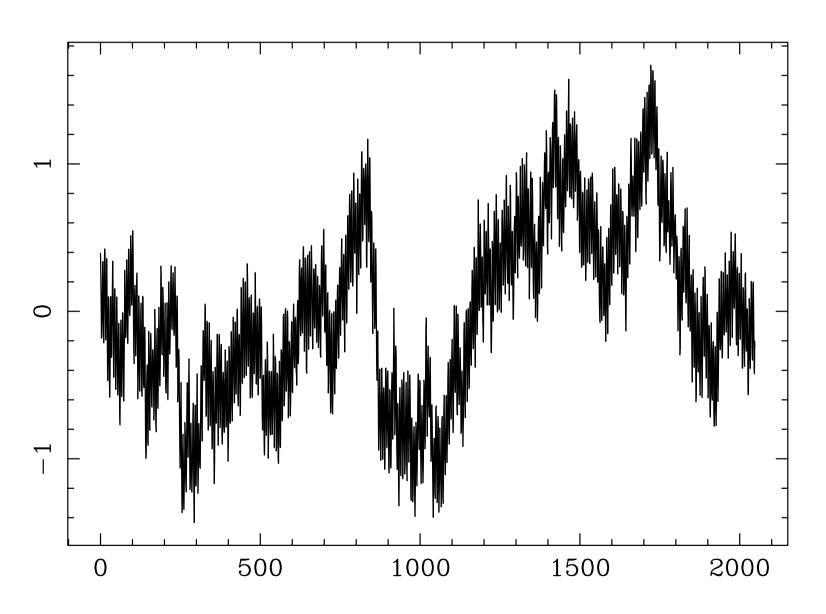


Aliasing

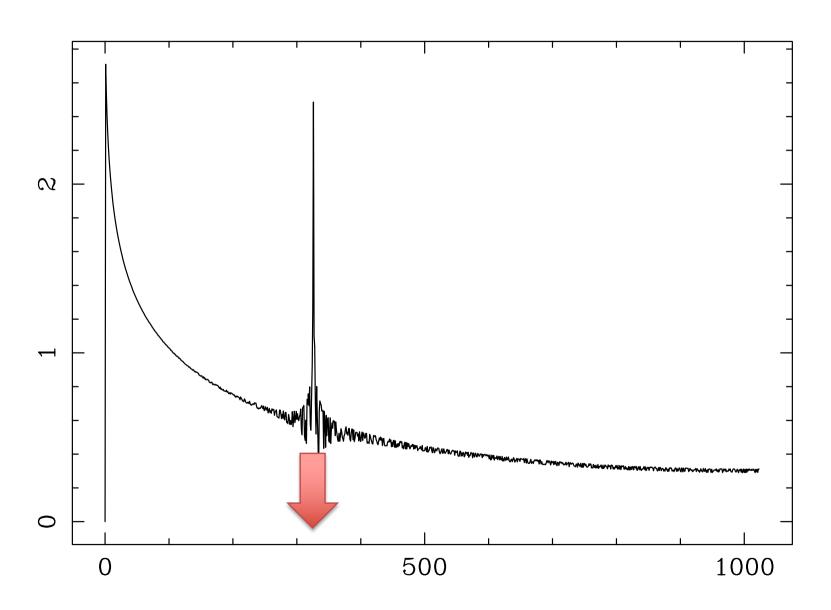


- undersampled, high frequencies look like well-sampled low frequencies
- create spurious components below Nyquist frequency
- may create major problems and uncertainties in determination of original signal

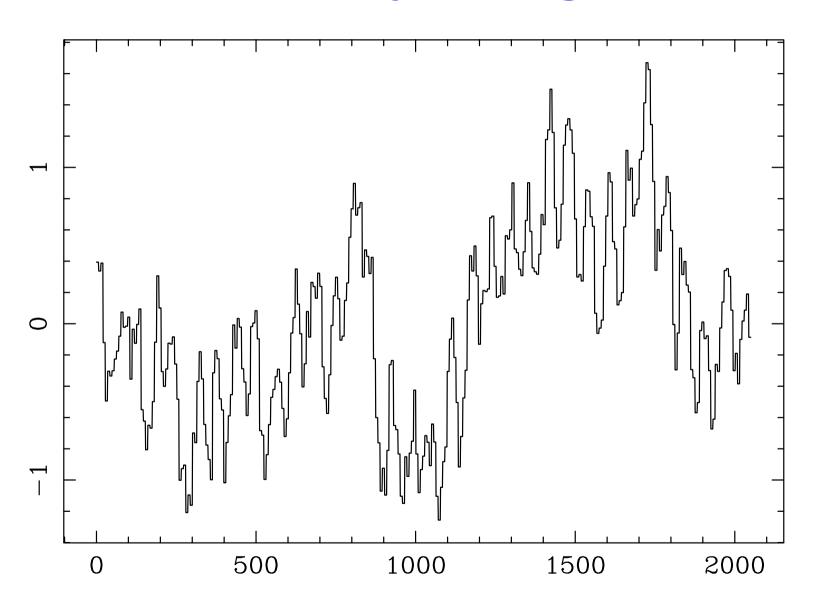
1/f noise with periodic signal



Fourier Transform of Well-Sampled Signal



Undersampled Signal



FT of Undersampled Signal

