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1. Introduction 
Fourier Transformation

Functions f(x) and F(s) are Fourier pairs

F s( ) = f x( )
−∞

+∞

∫ ⋅e− i2π xsdx

f x( ) = F s( )
−∞

+∞

∫ ⋅ei2π xsds
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Reminder: 1D Fourier Series

Spatial frequency analysis of a step edge

Fourier decomposition

x
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A discrete sum of sines



Fourier series for a square wave
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= 

Fourier series for a square wave

f(x) =
X

n=1,3,5,...

1

n
sinnx

Fourier series reminder

Example 

= +

f(x) = sinx+
1

3
sin3x+ . . .
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Fourier series: just a change of basis

.

.

.

. =

M f(x) = F(Z)
Fourier transform: just a change of basis
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Inverse FT: Just a change of basis

.

.

.

. =

M-1 F(Z) = f(x)
Inverse Fourier transform: 

just a change of basis



Hear the Difference
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See the Difference
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sine

sawtooth square



Find the Signal
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Fourier Frequency Analysis
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See the Periodic Signal
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See the difference
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=D +E +J + …

f(x,y)

Summary

Credits: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf
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Example: action of filters on a real image

f(x,y)

|F(u,v)|

low pass high passoriginal

``Signal at the pupil 
(‘mirror’) of a telescope’’



Fourier series:

Fourier coefficients:

Period: P
Frequency: ν = 1/P
Angular frequency: ω = 2π/P

2. Fourier Series of Periodic Functions
Decomposition using sines and cosines as orthonormal basis set
Periodic function: 

an =
2
P

f x( )
−P/2

P/2

∫ cos 2πnx
P

⎛
⎝⎜

⎞
⎠⎟ dx

bn =
2
P

f x( )
−P/2

P/2

∫ sin 2πnx
P

⎛
⎝⎜

⎞
⎠⎟ dx

f (x) = a0
2
+ an cos

2πnx
P

⎛
⎝⎜

⎞
⎠⎟ + bn sin

2πnx
P

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥n=1

∞

∑

f x( ) = f x + P( )
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Example: Sawtooth Function
Sawtooth function:
( )
( ) ( )xfxf

xxxf
=+

<<-=
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pp
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Fourier coefficients are:

and hence:

an =
1
π

x
−π

π

∫ cos nx( )dx=
!
0         (cos() is symmetric around 0)

bn =
1
π

x
−π

π

∫ sin nx( )dx = 2
−1( )n+1

n
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n

nxbnxa
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xf
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2
π

−1( )n+1
nn=1

∞

∑ sin nx( )Sawtooth Approximation
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Reminder: 1D Fourier Series

Spatial frequency analysis of a step edge

Fourier decomposition

x
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Second example



Fourier Transformation
Functions f(x) and F(s) are Fourier pairs

F s( ) = f x( )
−∞

+∞

∫ ⋅e− i2π xsdx

f x( ) = F s( )
−∞

+∞

∫ ⋅ei2π xsds

• x, s can be scalar or vector (x·s becomes scalar product)
• Fourier transform is reciprocal (exponent sign changes)
• exponent sign and factor 2π not well defined
• various normalization factors are used
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Symmetries and Fourier Transforms
symmetry properties of Fourier transforms have 
many applications
• Define
– even function: feven(-x) = feven(x)
– odd function: fodd(-x) = -fodd(x)

• Hence
– even part of f(x): feven(x) = ½[f(x)+f(-x)]
– odd part of f(x): fodd(x) = ½[f(x)-f(-x)]
– arbitrary function: f(x) = feven(x) + fodd(x)
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Arbitrary Function
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Even & Odd Decomposition
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Even Function
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Odd Function
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Fourier Transform Symmetries
f x( ) = feven x( ) + fodd x( )
feven −x( ) = feven x( )    fodd −x( ) = − fodd x( )
e− i2πxs = cos 2π xs( )− isin 2π xs( )

⇒ F s( ) = 2 feven x( )cos 2π xs( )
0

+∞

∫ dx

             − i 2 fodd x( )sin 2π xs( )
0

+∞

∫ dx

f(x) real: feven(x) transforms to (even) real part of F(s),
fodd(x) transforms to (odd) imaginary part of F(s).
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Real, Even
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Real, Odd
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Imaginary, Even
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Imaginary, Odd
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Fourier Transform Similarity
( ) ( ) ÷

ø
ö

ç
è
æÛ®
a
s

F
a

axfxf
1

Expansion of f(x) contracts F(s):
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Fourier Transform Properties

( ) ( )sFeaxf asi p2      -Û-

LINEARITY: 

TRANSLATION:

DERIVATIVE:

INTEGRAL:

( ) ( ) ( )sFsi
x
xf n
n

n

p2Û
¶

¶

f x( )∫ ∂x⇔ i2π s( )−1F s( ) + cδ (s)
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a·f(x)+b·g(x) ⇔ a·F(s) + b·G(s) 



Important 1-D Fourier Pairs 1
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f (x) = e−πx
2

F(s) = e−πs
2

f (x) = const F(s) = δ (s)



Important 1-D Fourier Pairs 2
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f (x) =Π(x)

f (x) = Λ(x)

F(s) = sinc(s)

F(s) = sinc2(s)



Important 1-D Fourier Pairs 3
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f (x) = cos(π x) F(s) = δ (s ± 1
2
)



Numerical Fourier Transforms
• Problems with Fourier Transform

– signal is only know for finite time/space/…
– cannot integrate over ±∞
– only know signal at discrete points (samples)

• Assumptions
– signal is periodic beyond known interval
– first and last data point become adjacent!
– signal is sampled at discrete, evenly spaced points
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Often used: fast Fourier transform: compute time ~NlogN



4. Convolution, cross- and auto 
correlation
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Convolution
Convolution of two functions, 
ƒ∗g, is integral of product of 
functions after one is reversed 
and shifted: 

( ) ( ) ( ) ( ) ( )duuxgufxgxfxh  ò
+¥

¥-

-×=*=

37

f x( )⇔ F s( )
g x( )⇔G s( )

h x( ) = f x( )∗g x( )
⇔

F s( ) ⋅G s( ) = H s( )



Convolution: The Movie

38
https://www.youtube.com/watch?v=a0IdGLczoAA



Convolution: Applications
Example:
f(x) : object in sky
g(x): point spread function of telescope 
h(x): observed image

( ) ( ) ( )xhxgxf =*

Example:
Convolution of f(x) with a smooth kernel g(x) can be used to 
smoothen f(x)
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Cross-Correlation
Cross-correlation (or covariance) is measure of similarity of two 
waveforms as function of time-lag between them. 

( ) ( ) ( ) ( ) ( )duuxgufxgxfxk  ò
+¥

¥-

+×=Ä=

Difference between cross-correlation and convolution:
• Convolution reverses the signal (‘-’ sign)
• Cross-correlation shifts the signal and multiplies it with another

Interpretation:   By how much (x) must g(u) be shifted to match f(u)? 
Answer given by maximum of k(x)
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Cross-Correlation in Fourier Space
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f x( )⇔ F s( )
g x( )⇔G s( )
h x( ) = f x( )⊗ g x( )⇔ F s( ) ⋅G∗ s( ) = H s( )

In contrast to convolution, in general

f ⊗ g ≠ g⊗ f



Interpretation of Cross-Correlation
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min
Δx,Δy

 S1 x, y( )− S2 x + Δx, y + Δy( )⎡⎣ ⎤⎦
2

x,y
∑ =

max
Δx,Δy

 S1 x, y( )S2 x + Δx, y + Δy( )
x,y
∑



Auto-Correlation Theorem
Auto-correlation is cross-correlation of function with itself:

( ) ( ) ( ) ( ) ( )duuxfufxfxfxk  ò
+¥

¥-

+×=Ä=

+

+

f x( )⊗ f x( )⇔ F s( )F* s( ) = F(s) 2
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Auto-Correlation: Application
• Auto-correlation can 

find repeating 
patterns

• Can be useful to find 
periodic signal 
hidden in noise
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Power Spectrum
Power Spectrum Sf of f(x) (or the Power Spectral Density, PSD) 
describes how the power of a signal is distributed with frequency.  
Power is often defined as squared value of signal:

( ) ( )2sFsS f =

Power spectrum is Fourier transform of autocorrelation and
indicates what frequencies carry most of the energy.  

Total energy of a signal is:

Applications: spectrum analyzers, calorimeters of light sources, … 

( )ò
+¥

¥-

dssS f
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Parseval’s Theorem
Parseval’s theorem (or Rayleigh’s Energy Theorem):
Sum of square of a function is the same as sum of square 
of the Fourier transform:

( ) ( ) dssFdxxf òò
+¥

¥-

+¥

¥-

= 22

Interpretation: Total energy contained in signal f(x), 
summed over all x is equal to total energy of signal’s 
Fourier transform F(s) summed over all frequencies s.
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Wiener-Khinchin Theorem
Wiener–Khinchin theorem states that the power 
spectral density Sf of a function f(x) is the Fourier 
transform of its auto-correlation function:

( ) ( ) ( ){ }

( ) ( )sFsF

xfxfFTsF

*

2

    
×

Ä=

!

Applications: E.g. in the analysis of linear time-invariant 
systems, when the inputs and outputs are not square 
integrable, i.e. their Fourier transforms do not exist.
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Equation Summary
Convolution

Cross-correlation

Auto-correlation

Power spectrum

Parseval’s theorem

Wiener-Khinchin
theorem

( ) ( ) ( ) ( ) ( )duuxgufxgxfxh  ò
+¥

¥-

-×=*=

( ) ( ) ( ) ( ) ( )duuxgufxgxfxk  ò
+¥

¥-

+×=Ä=

( ) ( ) ( ) ( ) ( )duuxfufxfxfxk  ò
+¥

¥-

+×=Ä=

( ) ( )2sFsS f =

( ) ( ) dssFdxxf òò
+¥

¥-

+¥

¥-

= 22

F s( ) 2 = FT f x( )⊗ f x( ){ } = F s( ) ⋅F* s( )
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Dirac Comb
Dirac’s delta “function”:

ΞT x( ) = δ
k=−∞

∞

∑ x − kT( ) =
series

Fourier 1
T

ei2πnx/T
n=−∞

∞

∑

f x( ) = δ x( ) = ei2π sx ds
−∞

+∞

∫  →  FT δ x( ){ } = 1

Dirac comb: infinite series of delta 
functions spaced at intervals of T:

Ξ(x)

• Fourier transform of Dirac comb is also a Dirac comb
• Dirac comb is also called impulse train or sampling function
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5. Sampling
Ξ(x)

Ξ(x)·f(x)

• Signal only sampled at discrete 
points in time
• Often constant sampling interval
• Sampling can be described as 

multiplication of true signal with 
Dirac comb
• Fourier transform of sampled 

signal is sampled Fourier 
transform of true signal 
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Sampling: signal at discrete values of x: 

Interval between two successive readings is sampling rate

Critical sampling given by Nyquist theorem

Nyquist Theorem

( ) ( ) ÷
ø
ö

ç
è
æ
D

X×=
x
x

xfxg

( ) ( ) ÷
ø
ö

ç
è
æ
D

X×®
x
x

xfxf
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Given f(x), its Fourier Transform F(s)
defined on [-smax, smax].

Sampled distribution of the form

with a sampling rate of Δx=1/(2smax)
is enough to reconstruct f(x) for all x.



Sampling Rate
Oversampling Sampling rate above critical sampling rate:

- redundant measurements/too much data
- often lowering the S/N

Undersampling Sampling rate below critical sampling rate:
- signal contains frequencies higher than 1/(2smax)
- source signal cannot be determined after sampling
- loss of fine details
- must apply low-pass filter before sampling
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Aliasing

• undersampled, high frequencies look like well-sampled 
low frequencies

• create spurious components below Nyquist frequency
• may create major problems and uncertainties in 

determination of original signal
53



1/f noise with periodic signal
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Fourier Transform of Well-Sampled Signal
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Undersampled Signal
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FT of Undersampled Signal
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