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1. Introduction
Fourier Transformation

Functions f(x) and F(s) are Fourier pairs

F(s)= Tf(x) e dx

F(x)= [ F(s)-e®ds




A discrete sum of sines

Spatial frequency analysis of a step edge

] -1 ifa<O
f(@) = { 1  otherwise —




Fourier series for a square wave

I/ .: f(x) = Z lSil”l'n,ar:
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Fourier transform: just a change of basis
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Inverse Fourier transform:
just a change of basis
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Hear the Difference




See the Difference
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Find the Signal
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See the difference

The spatial function f(z,y)
/ / (u, v)e?2™ W) gy, doy

is decomposed into a weighted sum of 2D orthogonal basis functions
in a similar manner to decomposing a vector onto a basis using scalar

products.

Credits: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf 13

J(x.y)




[ (u,v)

" Signal at the pupil
(‘mirror’) of a telescope”
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2. Fourier Series of Periodic Functions

Decomposition using sines and cosines as orthonormal basis set
Periodic function: f(x) = f(x + P)

. . > 2 2
Fourier series: f(x)=%+2{ancos( an)+bnsin( inxj}

n=1

2 " 2mnx J
an—F J f(x)cos b X

Fourier coefficients: _P2
2 P2 . 2mnx
b =— j f(x)sin dx
P —-P/2 P
Period: P
Frequency: v=1/P

Angular frequency: w =2mr/P
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Example: Sawtooth Function

Sawtooth function: / P
f(x)zx for —7T<x<rx - _h/-hr //1v 2‘TT/ |
fle+22)= /() i %

Fourier coefficients are:

a = 1 J xcos(nx)dx=0 (cos() is symmetric around 0)
E —TT
1 T . (_1)n+1
b =— dx =72
= _J;xsm(nx) X .

and hence:f(x) = %Z{JF E[M_I_bn sin(nx)] = 2’2 (_ 1)”+1 m(nx)

S
n=l n
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n+l

Sawtooth Approximation iZ(‘;) sin(r)
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Second example

Spatial frequency analysis of a step edge
—1 ifxa<O

f(z) = { 1 otherwise

Fourier decomposition

Fourier Series

f(z) = ) ansinnz

//A\\
1 fm — 70/ N
an = —/ f(x)sinnxdz ' X \
mwJ—T1 \ (/'/ \\/
2 [T 4 jfnodd  \~ |
= —/ Sinnxdx =< n7m )
7 JO O otherwise
4 A\ aNY/A
— sin(2n — 1 VARDZRY,
@) = ¥ Gy, sin@n -

e

sin(x)+5x)13.0+s' (5*x)5.0 + siR ':i)r/17.x0
\ N sing —
n(7*

sin(7*xyA0 ——
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Fourier Transformation

Functions f(x) and F(s) are Fourier pairs

F(s)= [ £(x)-¢ s

f(x)= TF(S) €' ds

X, S can be scalar or vector (x-s becomes scalar product)
Fourier transform is reciprocal (exponent sign changes)
exponent sign and factor 2rt not well defined

various normalization factors are used



Symmetries and Fourier Transforms
symmetry properties of Fourier transforms have
many applications

e Define

— even function: fen(-X) = feven(X)
— odd function: f 44(-X) = -foq4(X)

* Hence
—even part of f(x):  feen(X) = Z2[f(x)+f(-X)]
—odd part of f(x):  foga(x) = 22[f(x)-f(-x)]
— arbitrary function:  f(x) = foen(X) + fo4qa(X)



Arbitrary Function
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Even & Odd Decomposition

even f(x) odd
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Even Function

cos even sin
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Odd Function

cos odd sin
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Fourier Transform Symmetries

F(2)= foen (%) + foaa (¥)
Jeven (—x) = foen (%) fraa (—x) =~ foga (X)

—I127TxXs

e = cos(27xs)—isin(27xs)

= 2+j:ofeven (x)cos(27wxs Jdx

—1 2_[ foga (x)sin(27xs Jdx

f(x) real: f,.,(x) transforms to (even) real part of F(s),
f_q4q4(X) transforms to (odd) imaginary part of F(s).



Real, Even

F(s)

f(x)

Areuisewil
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Real, Odd

F(s)

f(x)
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Imaginary, Even

F(s)

f(x)
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Imaginary, Odd

F(s)

f(x)
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Fourier Transform Similarity

Expansion of f(x) contracts F(s): f(x) —> f(ax) N iF

a

f(x) F(s)

B
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Fourier Transform Properties

LINEARITY:  a:f(x)+bg(x) & aF(s) + b-G(s)

TRaNsLATION: f(x—a) < e ™ F(s)

0" . n
DERIVATIVE: a];(x) < (i27) F(s)

INTEGRAL: Jf(x)ax & (i2ms)” F(s)+cd(s)
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Important 1-D Fourier Pairs 1
f(x) F(s)




Important 1-D Fourier Pairs 2

f(x)

F(s)

||||||||||||||||||

F(s) —E smc(s)'




Important 1-D Fourier Pairs 3
f(x) F(s)
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f(x)=cos(mx) F(s)=0(s*t %)



Numerical Fourier Transforms

* Problems with Fourier Transform
— signal is only know for finite time/space/...
— cannot integrate over oo

— only know signal at discrete points (samples)

* Assumptions
— signal is periodic beyond known interval
— first and last data point become adjacent!
— signal is sampled at discrete, evenly spaced points

Often used: fast Fourier transform: compute time ~NlogN



4. Convolution, cross- and auto
correlation
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Convolution

Convolution of two functions,

f=*g, is integral of product of
functions after one is reversed
and shifted:

h(X)=f(X)*g(X)=Tf(u)-g(x

I

—u)du /\




Convolution: The Movie

https://www.youtube.com/watch?v=a0ldGLczoAA

[ ] Acea under f(vad-v |1
f(x) :
ai-x)

(f+=ait) .
I A
1.5 2
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Convolution: Applications

jE())((jr:ncF))IL?;ct in sky f(x)* g(X) — h(X)

g(x): point spread function of telescope
h(x): observed image

Example:
Convolution of f(x) with a smooth kernel g(x) can be used to
smoothen f(x)

g(x)
fx)

=7 = h(x) A
-
//
‘-‘h_”




Cross-Correlation

Cross-correlation (or covariance) is measure of similarity of two
waveforms as function of time-lag between them.

k(x)= £( jf g(x+u)

Difference between cross-correlatlon and convolution:
e Convolution reverses the signal (-’ sign)
* Cross-correlation shifts the signal and multiplies it with another

S ()

g(u + x)
) e

Jf(u) g(u + x) du

Interpretation: By how much (x) must g(u) be shifted to match f(u)?
Answer given by maximum of k(x)




Cross-Correlation in Fourier Space

f(x) & F(S)
g(x) = G(s)
h(x)=f(x)®g(x) = F(s)-G"(s)=H(s)

In contrast to convolution, in general

fOg#g®f



Interpretation of Cross-Correlation

ngl,iAryl Z[Sl (x,y) -3, (x + Ax,y+ Ay):|2 =

X,y

max Y S, (x,9)S, (x+ Ax,y+ Ay)

X,y



Auto-Correlation Theorem

Auto-correlation is cross-correlation of function with itself:

k(x)= jf foc+u)du




106

5%x10°

Auto-Correlation: Application

vvvvvvvvvvvvvvvvvvvvvv

Auto-correlation can

find repeating )

patterns o

Can be useful to find .l

periodic signal

hidden in noise R TR




Power Spectrum

Power Spectrum S; of f(x) (or the Power Spectral Density, PSD)
describes how the power of a signal is distributed with frequency.

Power is often defined as squared value of signal:

S, (S) = ‘F(Sy

Power spectrum is Fourier transform of autocorrelation and
indicates what frequencies carry most of the energy.

-0
Total energy of a signal is: ij (S)dS

Applications: spectrum analyzers, calorimeters of light sources, ...




Parseval’s Theorem

Parseval’s theorem (or Rayleigh’s Energy Theorem):
Sum of square of a function is the same as sum of square
of the Fourier transform:

T‘f(x){zdx = T‘F(S){zds

Interpretation: Total energy contained in signal f(x),
summed over all x is equal to total energy of signal’s
Fourier transform F(s) summed over all frequencies s.




Wiener-Khinchin Theorem

Wiener—Khinchin theorem states that the power
spectral density S; of a function f(x) is the Fourier
transform of its auto-correlation function:

F(s) = FT{f(x)® f(x);
0
F(S)F*(S)

Applications: E.g. in the analysis of linear time-invariant
systems, when the inputs and outputs are not square
integrable, i.e. their Fourier transforms do not exist.




Equation Summary
Convolution h(x): f(x)* g(x)= j‘iof(u)-g(x—u)du
Cross-correlation k(x) = f(x)® g(x) = Tf(“) g(x+u)du

Auto-correlation k(x) = f(x)@ f(x) = Tf(u) f(x + u) du

Power spectrum Sf (S) — ‘F(S]z
Parseval’s theorem T‘ f (x)(zdx = T‘F (S)(st

Wiener-Khinchin
theorem



Dirac Comb

Dirac’s delta “function”: =(x)

f(x)=6(x)= Teizm ds — FT{S(x)} =

—00

Dirac comb: infinite series of delta

functions spaced at intervals of T:

4T 3T 2T -T 0 T 2T 3T 4T

Fourier

ET(X): ié(x_kT — _2 i2wnx/T

series
k:—oo n=—oo

* Fourier transform of Dirac comb is also a Dirac comb

* Dirac comb is also called impulse train or sampling function
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5. Sampling

* Signal only sampled at discrete
points in time

e Often constant sampling interval

e Sampling can be described as
multiplication of true signal with
Dirac comb

* Fourier transform of sampled
signal is sampled Fourier
transform of true signal

Z(x)1(x)
s 4 " T I )




Nyquist Theorem

Sampling: signal at discrete values of x: f(x) N f(x) E(i)
Ax

Interval between two successive readings is sampling rate

Critical sampling given by Nyquist theorem

Given f(x), its Fourier Transform F(s)
defined on [-S,ax Smaxl-

Sampled distribution of the form

e)= /(=] - |

with a sampling rate of Ax=1/(2s,,.,)
is enough to reconstruct f(x) for all x.
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Sampling Rate

Oversampling Sampling rate above critical sampling rate:
- redundant measurements/too much data
- often lowering the S/N

Undersampling Sampling rate below critical sampling rate:
- signal contains frequencies higher than 1/(2s,,,.,)
- source signal cannot be determined after sampling
- loss of fine details
- must apply low-pass filter before sampling

» .. -
u = Sample Aal 2 M/
» = Sample Aste 20 MS/'s



Aliasing

l l l

| I I | I

‘ A l
' | | 1 U
0 1 2 3 4 5 6 7 8 9 10

* undersampled, high frequencies look like well-sampled
low frequencies

* create spurious components below Nyquist frequency
* may create major problems and uncertainties in
determination of original signal
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1/f noise with periodic signal
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Fourier Transform of Well-Sampled Signal
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Undersampled Signal
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FT of Undersampled Signal
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