Astronomical Observing Techniques 2019

Introduction to the Course

Huub Röttgering rottgering@strw.leidenuniv.nl

Content

- 1. Course Overview
- 2. People and Communication
- 3. Web Page
- 4. Books
- 5. Schedule
- 6. Exam and Grades

Learning Outcome

Know, be able to apply and understand the most common techniques that are used to observe and understand the universe.

Foundation for MSc Courses

- Astronomical Telescopes and Instruments
- Detection of Light
- Astronomy from Space
- Radio Astronomy
- High-Contrast Imaging
- MSc in Astronomical Instrumentation (see http://www.astroinstrumentation.nl)

Course Overview

Foundations of Observational Astronomy:

- Electromagnetic radiation properties (black body, radiometry)
- Earth atmosphere properties (transmission, emission, dispersion)
- Fourier transform (definition, properties, 1D/2D examples, theorems)
- Geometrical and physical optics (image formation, PSF, aberrations)
- Measurement statistics (signal-to-noise, sensitivities, sampling)

Telescopes, Instruments and Observing Techniques:

- Telescopes (reflector, refractor, mounts, foci, ground/space telescopes)
- Radio Techniques (basics, antennae, receivers)
- Interferometry (speckle interferometry, visibility, types)
- Detectors (physical basis, photo-conductors, bolometers, heterodyne)
- Spectrometers (spectral information, dispersing elements, types)
- Adaptive Optics (principle, components, laser guide stars, types)

People

Huub Röttgering

Professor of Observational Cosmology Oort 469, rottgering@strw.leidenuniv.nl

Emiel Por

PhD student in Astronomical Instrumentation Huygens 1105, por@strw.leidenuniv.nl

Maaike van Kooten

PhD student in Astronomical Instrumentation Huygens 1125, vkooten@strw.leidenuniv.nl

Vanja Sarkovic

PhD student in LOFAR and Protoclusters of Galaxies Oort 451, sarkovic@strw.leidenuniv.nl

Communication

- **Emails to you**: via BlackBoard (sign up or miss important information)
- Non-UL students send email to Emiel with copy to me
- Best way to communicate with me: Email
- Lectures and all materials in English
- Questions, exercise answers etc. in Dutch or English

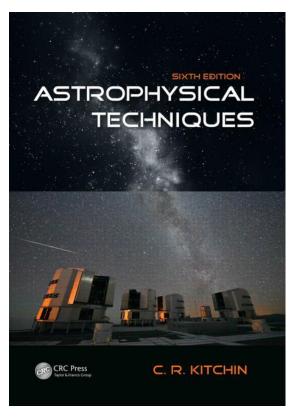
Course Web Page

www.strw.leidenuniv.nl/~por/AOT2019

AOT 2019 Literature Schedule Contact

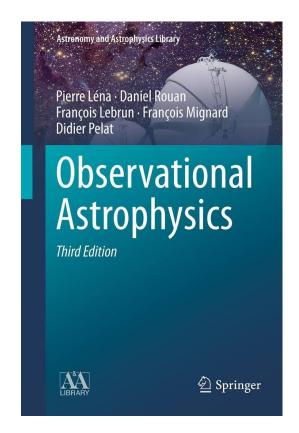
Astronomical Observing Techniques 2019

Welcome to the Bachelor course for <u>Astronomical Observing Techniques</u> (AOT)!


This course consists of a lecture series given by prof. dr. Huub Rottgering at Leiden Observatory in the Spring of 2019, accompanied by a series of exercise classes. This course will give students an introduction to the observational approaches and instruments of modern astronomy. The course is split into two parts:

- The theoretical background. This includes Fourier transforms, radiation, the Earth's atmosphere, and optics.
- The observational techniques. This includes optical and radio telescopes, detectors, spectrographs, and adaptive optics.

On this webpage you can find all necessary information about the course: recommended literature, course slides and exercises, and contact information for the lecturer and assistants. If there are any questions related to this website or this course, please email the assistants.


These pages will be updated throughout the course, so students are expected to stop by regularly.

Recommended (not required) Literature

Astrophysical Techniques, by C.R.Kitchin, 6th edition 2013, published by CRC Press ISBN 9781466511156

Observational Astrophysics, by Pierre Lena et al., 3rd edition, 2012, published by Springer, ISBN 978-3-642-21814-9

Schedule

Day	Time	Room	Туре
Monday	11:00-12:45	HL 204	Lecture
Tuesday	13:30-15:15	HL 106/109	Exercises

- Frequently check for changes on course web page!
- Coffee break: 11:45-12:00

Exercises

- Weekly exercises must be followed
- Apply and practice newly acquired knowledge
- Improve your final course grade by up to 1 point if exercises are done well
- If you skip the exercises, you are likely to fail the exam
- Experience of previous years
 - If home work grade average > 5.5, ~90% pass rate
 - − If home work grade average < 5.5, ~70% fail rate

Exam & Grading

- Written exam:
 - 27 May 2018, 10:00-13:00, HL211/214
 - tests knowledge and UNDERSTANDING of subject
- Required knowledge: all lectures and exercises
- Open book
 - everything on paper is allowed, including slides
 - no laptops, tablets, smartphones etc.
- Questions similar in style to exercises
- Mock exam towards the end of the course
- Course grade = exam grade + homework bonus