Astronomical Observing Techniques 2019

Lecture 1: Black Bodies in Space

Huub Röttgering rottgering@strw.leidenuniv.nl

Content

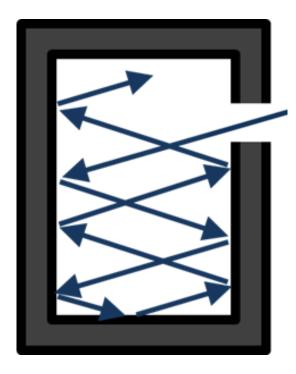
1. Blackbody Radiation

- 1. Planck Curve and Approximations
- 2. Effective Temperature
- 3. Brightness temperature
- 4. Lambert

2. Photometry

- 1. Flux and Intensity
- 2. Magnitudes
- 3. Photometric Systems
- 4. Color Indices
- 5. Surface Brightness

Blackbody Radiation



- Cavity at fixed T, thermal equilibrium
- Incoming radiation is continuously absorbed and re-emitted by cavity wall
- Small hole → escaping radiation will approximate black-body radiation independent of properties of cavity or hole

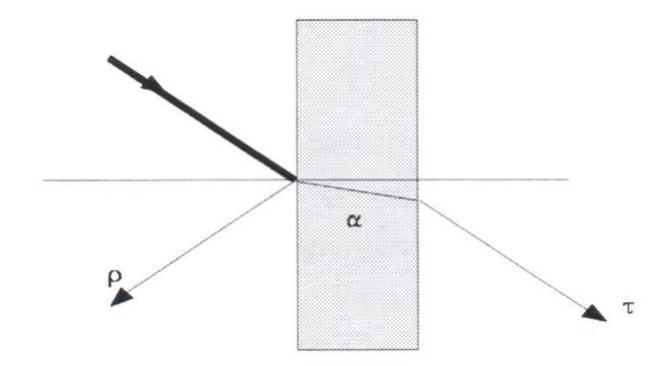
Power conservation

$$\alpha + \rho + \tau = 1$$

 α = absorptivity

 ρ = reflectivity

 τ = transmissivity



Kirchhoff's Law

Gustav Kirchhoff stated in 1860 that "at thermal equilibrium, the power radiated by an object must be equal to the power absorbed."

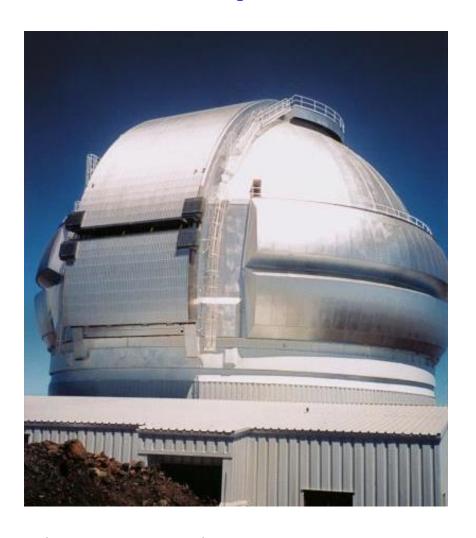
- Blackbody cavity in thermal equilibrium with completely opaque sides
- Opaque -> transmissivity $\tau = 0$
- emissivity ε = amount of emitted radiation
- Thermal equilibrium -> ϵ + ρ = 1

$$\left.\begin{array}{l}
\varepsilon = 1 - \rho \\
\alpha + \rho + \tau = 1 \\
\tau = 0
\end{array}\right\} \quad \boxed{\alpha = \varepsilon}$$

Blackbody absorbs all radiation: $\alpha=\epsilon=1$

Kirchhoff's law applies to perfect black body at all wavelengths

Blackbody Radiation: Telescope Domes



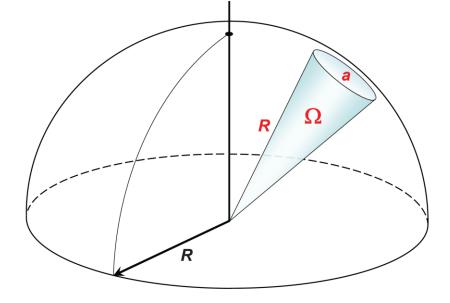
Credit NOAO/AURA/NSF: www.noao.edu/image_gallery/telescopes.html

Solid Angle steradian

- Solid Angle Ω : 2D angle in 3D space
- Measures how large the object appears to an observer
- Solid angle is expressed in a dimensionless unit

called a steradian (sr)

• Full sphere is 4π sr



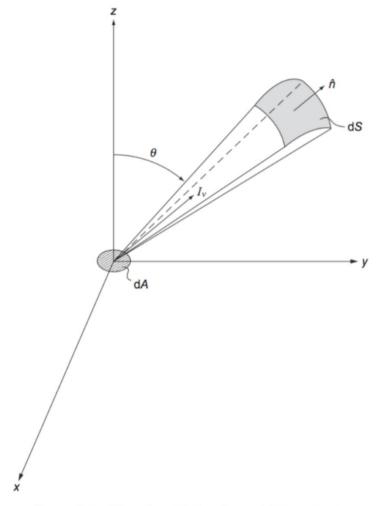


Figure 3.5 Illustration defining the specific intensity I_{v} .

The specific intensity

the amount of energy received per unit area (at dA' =cos θ dA, dA' is perpendicular to the line of sight) per unit time in the spectral range between v and v+dv, from solid angle d Ω (=dS/r²)

$$I_{v}(\vec{r},\hat{n},t)$$

in units of [W m⁻² sr⁻¹ Hz⁻¹]

Independent of distance

Directly observed is:

Monochromatic radiative flux F_v
total energy from (part of) the star
received per unit time per unit area
per frequency range

Units: W Hz⁻¹ m⁻²

Planck Curve: Equation

Specific intensity I_v of blackbody given by Planck's law:

$$I_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp(\frac{h\nu}{kT}) - 1}$$
 in units of [W m⁻² sr⁻¹ Hz⁻¹]

In wavelength units:

$$I_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right) - 1} \quad \text{in units of [W m-3 sr-1]}$$

Conversion between frequency ⇔ wavelength units:

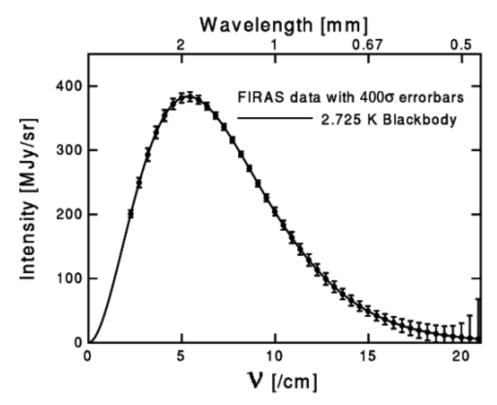
$$dv = \frac{c}{\lambda^2} d\lambda$$
 or $d\lambda = \frac{c}{v^2} dv$

Blackbody Radiation: Black Body

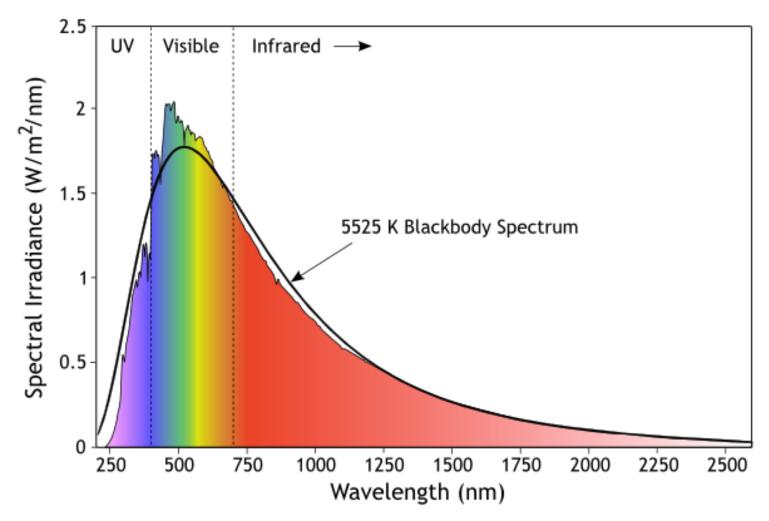
- Black body (BB) is idealized object that absorbs all EM radiation
- A BBs absorb and re-emit characteristic EM spectrum

Many astronomical sources emit close to a black body.

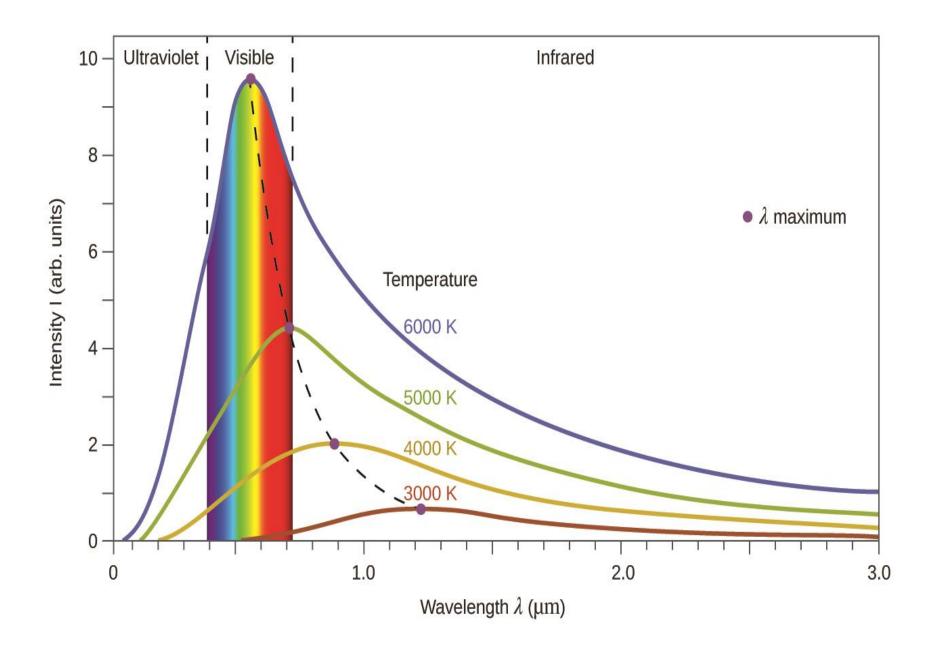
Example: COBE measurement of the cosmic microwave background



The solar spectrum comparted to a BB



https://www.quora.com/ls-the-sun-a-blackbody



Planck Curve: Emission, Power & Temperature

Total radiated power per unit surface proportional to fourth power of temperature *T*:

$$\iint_{\Omega} I_{\nu}(T) d\nu d\Omega = M = \sigma T^{4}$$

 $\sigma = 5.67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ (Stefan-Boltzmann constant)

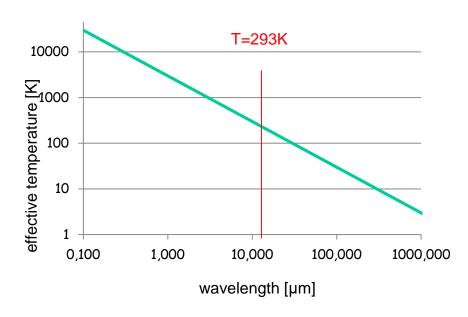
Assuming BB radiation, astronomers often specify the emission from objects via their effective temperature.

Wien's Law

Relation between temperature and frequency/wavelength at which the BB attains its maximum:

$$\frac{c}{v_{\text{max}}}T = 5.096 \cdot 10^{-3} \text{ mK}$$
 or $\lambda_{\text{max}}T = 2.98 \cdot 10^{-3} \text{ mK}$

Cooler BBs have peak emission at longer wavelengths and at lower intensities:



Planck Curve: Approximations

Planck:

$$I_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}$$

High frequencies (hv >> kT) \rightarrow Wien approximation:

$$I_{\nu}(T) = \frac{2h\nu^3}{c^2} \exp\left(-\frac{h\nu}{kT}\right)$$

Low frequencies (hv << kT) → Rayleigh-Jeans approximation:

$$I_{\nu}(T) \approx \frac{2\nu^2}{c^2} kT = \frac{2kT}{\lambda^2}$$

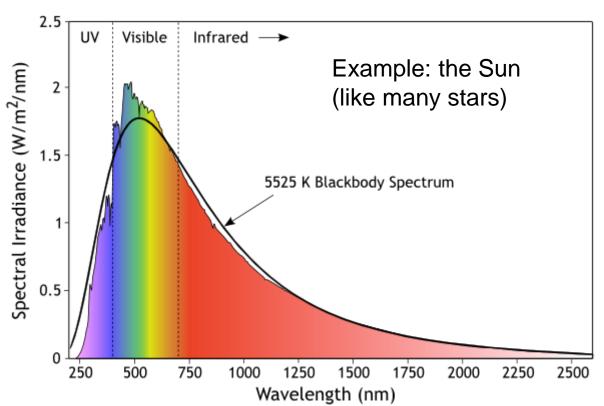
Effective Temperature

The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature

Brightness Temperature: Grey Bodies

Many emitters close to but not perfect black bodies. With wavelength-dependent emissivity ε <1:

$$I_{\lambda}(T) = \varepsilon(\lambda) \cdot \frac{2hc^{2}}{\lambda^{5}} \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right) - 1}$$



https://www.quora.com/ Is-the-sun-a-blackbody

Brightness Temperature: Definition

Brightness temperature: temperature of a perfect black body that reproduces the observed intensity of a grey body object at frequency *v*.

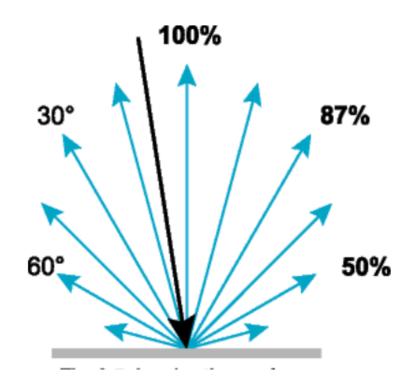
For low frequencies ($h\nu \ll kT$):

$$T_b = \varepsilon(v) \cdot T = \varepsilon(v) \cdot \frac{c^2}{2kv^2} I_v$$

Only for perfect BBs is T_b the same for all frequencies.

Lambert: Cosine Law*

Lambert's cosine law: radiant intensity from an ideal, diffusively reflecting surface is directly proportional to the cosine of the angle θ between the surface normal and the observer.



Johann Heinrich Lambert (1728 – 1777)

^{*}Empirical law...., mathematical derivation is complicated

Lambert: Lambertian Emitters

Radiance of Lambertian emitters is independent of direction θ of

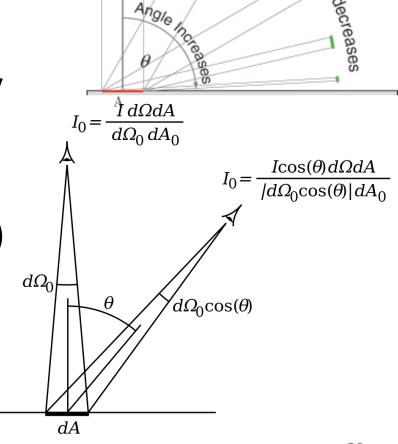
observation (i.e., isotropic).

Two effects that cancel each other:

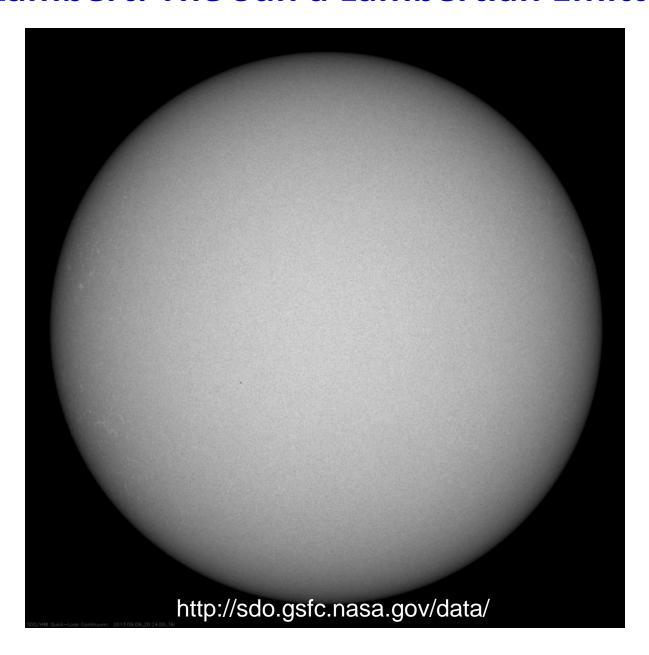
1. Lambert's cosine law \rightarrow radiant intensity and $d\Omega$ are reduced by $\cos(\theta)$

2. Emitting surface area dA for a given $d\Omega$ is increased by $\cos^{-1}(\theta)$

Perfect black bodies are Lambertian emitters!



Lambert: The Sun a Lambertian Emitter?



Summary of Radiometric Quantities

Name	Symbol	Unit	Definition	Equation
Spectral radiance or specific intensity	L_{ν} , I_{ν}	$W m^{-2} Hz^{-1} sr^{-1}$	Power leaving unit projected surface area into unit solid angle and unit Δv	
Spectral radiance or specific intensity	L_{λ} , I_{λ}	$W m^{-3} sr^{-1}$	Power leaving unit projected surface area into unit solid angle and unit $\Delta\lambda$	
Radiance <i>or</i> Intensity	L , I	$W m^{-2} sr^{-1}$	Spectral radiance integrated over spectral bandwidth	$L = \int L_{\nu} d\nu$
Radiant exitance	М	$W m^{-2}$	Total power emitted per unit surface area	$M = \int L(\theta) d\Omega$
Flux or luminosity	Φ , L	W	Total power emitted by a source of surface area A	$\Phi = \int M \ dA$
Spectral irradiance or flux density	L_{ν} , F_{ν} , I_{ν}	$W m^{-2} Hz^{-1} *$	Power received at a unit surface element per unit $\Delta \nu$	
Spectral irradiance or flux density	L_{λ} , F_{λ} , I_{λ}	W m ^{−3} *	Power received at a unit surface element per unit $\Delta\lambda$	
Irradiance	Ε	W m ^{−2}	Power received at a unit surface element	$E = \frac{\int M dA}{4 \pi r^2}$

^{*} 10^{-26} W m⁻² Hz⁻¹ = 10^{-23} erg s⁻¹cm⁻² Hz⁻¹ is called 1 Jansky

Magnitudes: Origin

Origins in Greek classification of stars according to their visual brightness. Brightest stars were m = 1, faintest detected with bare eye were m = 6.

Formalized by Pogson (1856): 1^{st} mag $\sim 100 \times 6^{th}$ mag

Magnitude	Example	#stars brighter
-27	Sun	
-13	Full moon	
-5	Venus	
0	Vega	4
2	Polaris	48
3.4	Andromeda	250
6	Limit of naked eye	4800
10	Limit of good binoculars	
14	Pluto	
27	Visible light limit of 8m telescopes	

Magnitudes: Apparent Magnitude

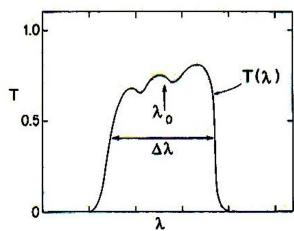
Apparent magnitude is *relative* measure of monochromatic flux density F_{λ} of a source:

$$m_{\lambda} - M_0 = -2.5 \cdot \log \left(\frac{F_{\lambda}}{F_0} \right)$$

 M_0 defines reference point (usually magnitude zero).

In practice, measurements through transmission filter $T(\lambda)$ that defines bandwidth:

$$m_{\lambda} - M = -2.5 \log \int_{0}^{\infty} T(\lambda) F_{\lambda} d\lambda + 2.5 \log \int_{0}^{\infty} T(\lambda) d\lambda$$



Magnitudes: Absolute Magnitude

 absolute magnitude = apparent magnitude of source if it were at distance D = 10 parsecs

$$M = m + 5 - 5\log D$$

- $m_{\odot} \approx -27$, $M_{\odot} = 4.83$ at visible wavelengths
- $M_{Milky Way} = -20.5 \rightarrow M_{\odot} M_{Milky Way} = 25.3$
- Luminosity $L_{Milky Way} = 1.4 \times 10^{10} L_{\odot}$

Magnitudes: Bolometric Magnitude

Bolometric magnitude is luminosity expressed in magnitude units = integral of monochromatic flux over all wavelengths:

lengths:
$$\int_{bol}^{\infty} F(\lambda) d\lambda$$

$$M_{bol} = -2.5 \cdot \log \frac{0}{F_{bol}}$$

$$; F_{bol} = 2.52 \cdot 10^{-8} \frac{W}{m^2}$$

If source radiates isotropically:

$$M_{bol} = -0.25 + 5 \cdot \log D - 2.5 \cdot \log \frac{L}{L_{\odot}} \qquad ; L_{\odot} = 3.827 \cdot 10^{26} \text{ W}$$
 Bolometric magnitude can also be derived from visual

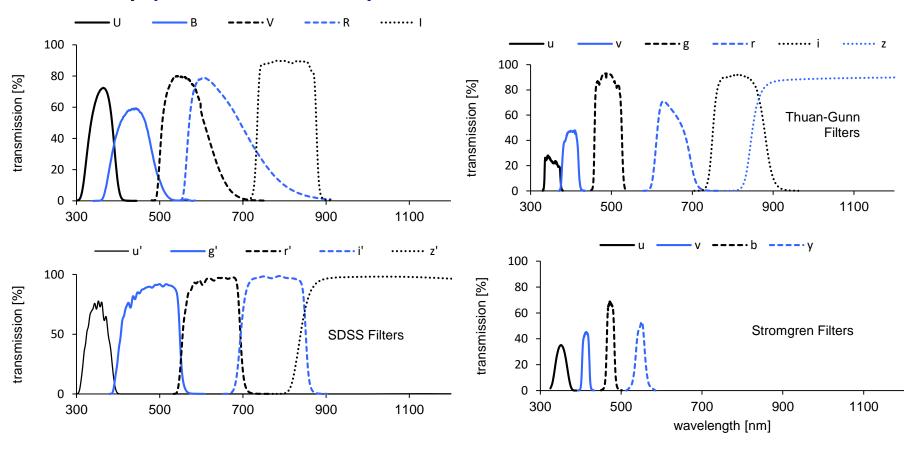
Bolometric magnitude can also be derived from visual magnitude plus a bolometric correction BC: $M_{bol} = M_V + BC$

BC is large for stars that have a peak emission very different from the Sun's.

Photometric Systems

Filters usually matched to atmospheric transmission

- → different observatories = different filters
- → many photometric systems:



Photometric Systems: AB and STMAG

For given flux density F_v , AB magnitude is defined as:

$$m(AB) = -2.5 \cdot \log F_v - 48.60$$

- object with constant flux per unit frequency interval has zero color
- zero point defined to match zero points of Johnson V-band
- used by SDSS and GALEX
- F_v in units of [erg s⁻¹ cm² Hz⁻¹]

STMAG system defined such that object with constant flux per unit wavelength interval has zero color. STMAGs are used by the HST photometry packages.

Color Indices

Color index = difference of magnitudes at different

wavebands = ratio of fluxes at different wavelengths

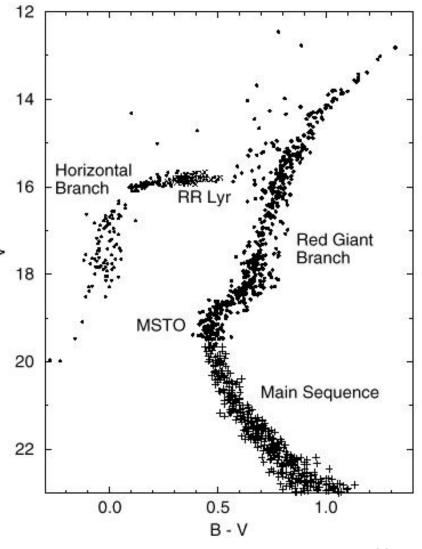
- Color indices of AOV star (Vega) about zero longward of V
- Color indices of blackbody in Rayleigh-Jeans tail are:

$$B-V = -0.46$$

$$U-B = -1.33$$

$$V-R = V-I = ... = V-N = 0.0$$

Color-magnitude diagram for a typical globular cluster, M15.



Color Index: Interstellar Extinction

Absolute magnitude definition:

$$M = m + 5 - 5\log D$$

 Interstellar extinction E or absorption A affects the apparent magnitudes

$$E(B-V) = A(B) - A(V) = (B-V)_{\text{observed}} - (B-V)_{\text{intrinsic}}$$

 Need to include absorption to obtain correct absolute magnitude:

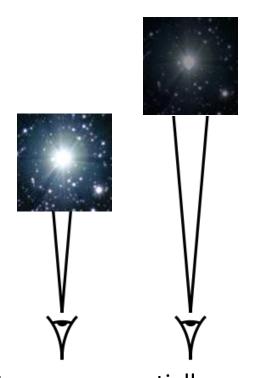
$$M = m + 5 - 5\log D - A$$

Photometric Systems: Conversions

Name	$\lambda_0 \; [\mu \mathrm{m}]$	$\Delta \lambda_0 \; [\mu m]$	$F_{\lambda} [W m^{-2} \mu m^{-1}]$	$F_{_{\scriptscriptstyle \mathrm{V}}}$ [Jy]	
U	0.36	0.068	4.35×10^{-8}	1880	Ultraviolet
В	0.44	0.098	7.20×10^{-8}	4650	Blue
V	0.55	0.089	3.92×10^{-8}	3 950	Visible
R	0.70	0.22	1.76×10^{-8}	2870	Red
I	0.90	0.24	8.3×10^{-9}	2240	Infrared
J	1.25	0.30	3.4×10^{-9}	1770	Infrared
H	1.65	0.35	7×10^{-10}	636	Infrared
K	2.20	0.40	3.9×10^{-10}	629	Infrared
L	3.40	0.55	8.1×10^{-11}	312	Infrared
M	5.0	0.3	2.2×10^{-11}	183	Infrared
N	10.2	5	1.23×10^{-12}	43	Infrared
Q	21.0	8	6.8×10^{-14}	10	Infrared

 $^{1 \}text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$.

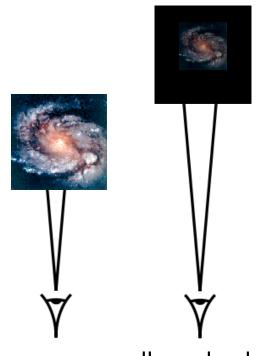
Surface Brightness: Point & Extended Sources



Point sources = spatially unresolved

Brightness ~ 1 / distance²

Size given by observing conditions



Extended sources = well resolved

Surface brightness ~ const(distance)

Brightness ~ 1/d² and area size ~ 1/d²

Surface brightness [mag/arcsec²] is constant with distance!

Surface Brightness: Calculating

Surface brightness of extended objects in units of mag/sr or mag/arcsec²

Surface brightness S of area A in magnitudes:

$$S = m + 2.5 \cdot \log_{10} A$$

Observed surface brightness [mag/arcsec²] converted into physical surface brightness units:

$$S[\text{mag/arcsec}^2] = M_{\Theta} + 21.572 - 2.5 \cdot \log_{10} S[L_{\Theta}/\text{pc}^2]$$

with
$$L_{\Theta} = 3.839 \times 10^{26} \text{ W} = 3.839 \times 10^{33} \text{ erg s}^{-1}$$