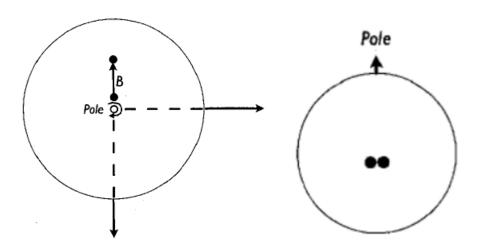
Astronomical Observing Techniques 2019: Exercises on Interferometry (Due on 1 April 2019 at 11:00)

March 25, 2019

1 Single Aperture vs. Interferometer


- 1. Explain why interferometry is especially useful for radio astronomy.
- 2. Give three reasons why we rather use an interferometer with a 300-m baseline than a single dish of 300-m diameter.
- 3. Why would you still prefer a single dish over an interferometer if 15 meters is enough for your resolution requirements?

2 Optical vs Radio Interferometers

Give at least three reasons why optical interferometry is more complicated than radio astronomy.

3 uv-Coverage

Astronomical interferometry works by measuring a set of u, v-points, the visibility distribution V(u, v), which is the Fourier transform of the intensity distribution I(x, y) at the position x, y on the sky. Each u, v-point is measured by one (projected) baseline. For a smooth reconstruction of the intensity distribution a good coverage of the u, v-points is required.

- 1. Consider simple two telescope interferometer located at the pole (see left figure) a distance B apart. Now imagine you are the source, looking down at the Earth's pole. What u, v-points do you gather as the Earth rotates?
- 2. Add more telescopes in between the two telescopes. How is the u, v-coverage increased?
- 3. Image the source at zero declination (see right figure) and your telescopes is at the equator. What u, v-points can you gather now as the Earth rotates?
- 4. In practice, an interferometer array is placed at a certain latitude, and the picture of your u, v coverage depends on the declination of your source. Can you describe how this picture changes with declination?
- 5. Why would you rather have more telescopes than larger telescopes in an interferometer? How should you place the telescope with respect to each other?