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Abstract
Sterrewacht Leiden

Master of Science

Data Compression for Weak Lensing Studies with Information Maximizing
Neural Networks

by Erik OSINGA

Over the next decade, stage IV lensing surveys such as the Euclid mission will rev-
olutionize our view of the Universe by providing some of the tightest constraints
on cosmological parameters via clustering and weak lensing. To accomplish this,
these surveys will observe billions of galaxies. A crucial step in the inference of
cosmological parameters is compressing this large volume of data to a manageable
amount of statistical summaries. This work presents the first application of a novel
data compression method to weak lensing data. We study the capabilities of a ma-
chine learning technique, the information maximizing neural network, applied to a
Euclid-like survey. We find that the neural network provides an informative map-
ping from highly dimensional data to a single summary statistic in the test case of
inferring the cosmological parameter Ωm from mock data. This mapping is used
to infer accurate posterior distributions without assuming the form of the likeli-
hood. For multiple parameters, Ωm and σ8, the network provides unbiased infor-
mative summaries, but does not extract information added by tomographic bins. To
lower the computational costs of the likelihood-free inference step, we show that a
Gaussian process provides a promising emulator that can be used to predict sum-
mary statistics directly from the parameters. This is achieved by fitting only a small
set of forward simulations that optimally sample the parameter space, providing
a massive speedup of the inference step. While the current implementation still
has some identified flaws, we conclude that the information maximizing neural net-
work, rather than replacing classic analysis methods, can be an important addition
to the analysis of future surveys.
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Chapter 1

Introduction

Cosmology is the study of the Universe as a whole. It aims to answer deeply funda-
mental questions about the origin, evolution and fate of the Universe. These ques-
tions have been asked since the dawn of mankind and for the larger part of history
could only be answered in a philosophical or religious framework. For only a few
centuries now have attempts been made to answer these questions within the frame-
work of physical sciences.

A large advance in the field of cosmology was made in 1917, when Einstein ap-
plied his theory of general relativity to the Universe (Einstein, 1917). By assuming
that the universe is dominated by matter and should be static he found that he had
to introduce an additional term into his general relativistic equations, which we now
know as the cosmological constant. However, Hubble’s paper on the famous relation
between distance and velocity (Hubble, 1929) indicated that the Universe is expand-
ing rather than static. Einstein could then dispose of the cosmological constant in
favor of an expanding matter-filled Universe. The debate between whether the Uni-
verse was steady-state or expanding was finally settled with the discovery of the
cosmic microwave background radiation (Penzias and R. W. Wilson, 1965). Ironi-
cally, the cosmological constant is in recent years favored again as the explanation
for the observed accelerated expansion of the Universe inferred from distant type Ia
supernovae (Riess, Filippenko, et al., 1998; Perlmutter et al., 1999).

Currently, the model which is found to describe our Universe extremely well
is called the ΛCDM model. The ΛCDM model is a model with only 6 parameters
that correctly predicts (to very high accuracy) many observations. A few examples
are the cosmic microwave background (e.g., Hinshaw et al., 2013; Planck Collabo-
ration, Ade, et al., 2016), the formation of large scale structure (e.g., Burenin and
Vikhlinin, 2012), the cosmic elemental abundance and baryonic acoustic oscillations
(e.g., Samushia, Reid, White, Percival, Cuesta, Zhao, et al., 2014). In this concor-
dance model, the baryons make up only about 5% of the Universe, while cold dark
matter (CDM) and dark energy (Λ) make up about 25% and 70% respectively. The
two main components, dark energy and dark matter, are very poorly understood.
There is to date no observed particle that could be responsible for the CDM and the
cosmological constant is even more inexplicable. The current ‘best’ explanation for
the cosmological constant is vacuum energy, predicted from quantum mechanics.
However, the value of the vacuum energy is found to be at least 60 orders of magni-
tude greater than the observed value of Λ, a problem that is called the cosmological
constant problem (Weinberg, 1989).

Apart from the theoretical problems that ΛCDM faces, assuming ΛCDM pro-
duces unexplained tensions between parameters inferred from high-redshift obser-
vations (i.e., the Planck cosmic microwave background data) (Planck Collaboration,
Ade, et al., 2016), and low-redshift observations. The most notable tension is the
so-called Hubble tension, which refers to the now 4.4σ (Riess, Casertano, et al.,
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2019) tension between the Hubble constant inferred by type Ia supernovae (Riess,
Casertano, et al., 2019) and the Hubble constant inferred by the Planck collabora-
tion (Planck Collaboration, Aghanim, et al., 2018). The tension is corroborated by
several independent measurements, such as strong lensing constraints on the Hub-
ble constant from the low-redshift universe (Birrer et al., 2019) and baryon acoustic
oscillation data from the high-redshift universe (Addison et al., 2018).

A slightly less significant tension with Planck is also found by large scale struc-
ture observations such as weak lensing and cluster number counts (Heymans et
al., 2013; Hildebrandt et al., 2017; Macaulay, Wehus, and Eriksen, 2013). The re-
cent results from the KiDS weak lensing survey show for example a value for S8 ≡
σ8
√

Ωm/0.3 that is in 2.3σ tension with Planck (Hildebrandt et al., 2017).
Since the parameter constraints seem to be a function of redshift, the tensions

could be indicative of the need for a dynamical dark energy model, modified gravity
theories (see e.g., Amendola, Appleby, Avgoustidis, et al., 2018, for a review) or even
more exotic explanations (e.g., Di Valentino, Linder, and Melchiorri, 2018; Hooper,
Krnjaic, and McDermott, 2019; Vattis, Koushiappas, and Loeb, 2019).

Future cosmological experiments will be able to distinguish between at least
some of these models, should the tensions persist. The upcoming Euclid mission
(Laureijs et al., 2011) and the planned Large Synoptic Survey Telescope (LSST Sci-
ence Collaboration et al., 2009) aim to increase cosmological parameter constraints
through weak lensing and galaxy clustering by an order of magnitude. Weak lensing
is a powerful cosmological probe and is explained in more detail in the next section.

1.1 Weak lensing

According to Einstein’s theory of general relativity (GR), gravity can be viewed as
a geometric property of space-time. Matter and energy alter the geometry of space-
time by curving it. In this curved space-time, photons follow null geodesics and
thus follow perturbed paths around massive objects. The first empirical evidence of
this effect being well described by GR was the observed deflection of light by the
Sun (Dyson, Eddington, and Davidson, 1920). This curving of light around massive
objects is similar to the propagation of light through different media, which gives
this effect its name ‘gravitational lensing’.

There are three separate gravitational lensing regimes: strong lensing, microlens-
ing and weak lensing. Strong lensing considers easily measurable distortions such
as arcs or multiple images, which allow us to infer properties of the mass and mass
profile of the lensing source. Strong lensing also amplifies the brightness of a source,
which allows for detection of sources that are otherwise too faint to be observed
(e.g., sub-mm galaxies; Negrello et al. (2010)). Microlensing is a special case of strong
gravitational lensing where the separation between multiple images is too small to
be resolved. As the lens and source move across the field of view, properties of
both the lens and lensed source can be deduced from the time variability. Microlens-
ing can be used to discover planets with Earth-like masses or even planets in other
galaxies (see e.g., Tsapras (2018) for a recent review).

Finally, weak lensing, the regime of interest in this thesis, is the regime that en-
compasses any lensing effect that is not directly visible by eye, but can be inferred
from statistics. Weak lensing is an extremely rich cosmological probe as it is a func-
tion of both the geometry of the universe and the growth of structure along the
line of sight. This allows us to make estimates about the initial perturbations in
the Universe, the abundance of (dark) matter, the evolution of large scale structure
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and potentially distinguish between dark energy and modified gravity theories (see
Kilbinger, 2015, for a review).

As weak lensing is by definition not visible by eye, this effect is observed as a
correlation of galaxy shapes as a function of distance to the lens. To observe this
correlation, one must assume that the shape of galaxies in the Universe is randomly
distributed or make some assumption about the intrinsic alignment (IA) of galaxies
(see e.g., Kiessling et al., 2015; Troxel and Ishak, 2015, for reviews on IA).

In the weak lensing regime, the lens can be either a galaxy cluster, a single galaxy
or the entire large scale cosmic structure along the line of sight towards the lens. If
the lens is the latter, then the effect is called cosmic shear. Cosmic shear is difficult
to measure, which can be appreciated from the fact that it was only first detected in
2000 (A. R. Refregier, Ellis, and D. J. Bacon, 2000; Van Waerbeke et al., 2000; Wittman
et al., 2000; Kaiser, G. Wilson, and Luppino, 2000).

Since the first detection of cosmic shear, the field of weak cosmological lensing
has evolved rapidly. Current surveys study cosmic shear as as a function of redshift
with a technique called tomography (Hu, 1999), where the signal is divided into bins
of redshift. To measure shapes and redshifts at the same time, multi-band surveys
such as KiDS (Kuijken et al., 2015; Hildebrandt et al., 2017; Köhlinger et al., 2017;
van Uitert et al., 2018), CFHTLens (Heymans et al., 2013; Kitching et al., 2014) and
DES (The Dark Energy Survey Collaboration, 2005; Troxel, MacCrann, et al., 2018)
are being carried out. In the next decade, larger surveys such as Euclid (Laureijs
et al., 2011) and LSST (LSST Science Collaboration et al., 2009) will allow even better
constraints on cosmological parameters.

As we enter into what is being called the era of precision cosmology, there is a
growing need for more powerful statistical methods to analyze the massive amounts
of data that future surveys will provide. Euclid will obtain multi-band images of a
billion galaxies, which are noisy and convolved with a PSF. The shapes of these
galaxies need to be measured to at least ∼ 1% level accuracy (Cropper et al., 2013;
Hoekstra, Viola, and Herbonnet, 2017). The photometric redshifts need to have a
scatter σz < 0.05(1 + z) (Bordoloi, Lilly, and Amara, 2010), for which methods such
as template fitting (e.g., Bolzonella, Miralles, and Pelló, 2000; Salvato et al., 2009) or
machine learning (e.g., D’Isanto and Polsterer, 2018; Laurino et al., 2011) are being
explored. The errors have to be propagated in a robust way, which requires the
unfeasibly large calculation of the covariance matrix, given that Euclid is estimated
to have about 104 summary statistics (Heavens et al., 2017).

Additionally, the theory to predict the statistics of the weak lensing surveys is
still poorly developed at scales smaller than few Mpc due to the non-linear collapse
of matter on these scales. In current cosmological analyses, Gaussian likelihoods
are often assumed. While the initial matter field is indeed Gaussian, and the central
limit theorem causes combinations of random variables to be Gaussian distributed,
non-linear functions of Gaussian variables are in general not Gaussian distributed. It
has been found that non-Gaussian correlations will significantly affect future weak
lensing surveys (Sellentin and Heavens, 2018), so a likelihood-free analysis may be
a better approach for future surveys.

To tackle the problems that current and future cosmological surveys face, ma-
chine learning techniques are being explored more and more. Oftentimes, an ar-
tificial neural network is trained to replace a complicated part of the analysis pro-
cess or to avoid making certain assumptions (e.g., about the likelihood) (e.g., Fluri,
Kacprzak, A. Refregier, et al., 2018; Alsing, B. Wandelt, and Feeney, 2018; Fluri,
Kacprzak, Lucchi, et al., 2019).
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1.2 Artificial neural networks

The term ‘artificial neural networks’ refers to a type of machine learning framework
that is inspired by biological neural networks. The simplest framework consists of
a set of connected neurons (i.e., nodes) grouped into layers, where each layer takes
some number of inputs and produces an output for each neuron in the layer. Each
connection is parameterized by two parameters, the weight and the bias, and each
output of a neuron is activated by a non-linear activation function. Series of layers
can be trained to learn complex non-linear functions through supervised learning
(Goodfellow, Bengio, and Courville, 2016). By adding neurons and layers more com-
plexity is added to the network, allowing for greater levels of abstraction but at the
risk of overfitting the data.

There are many extensions of the simplest framework. Perhaps in astronomy the
most interesting variant is the convolutional neural network (CNN) (see e.g., Gu et
al., 2015, for a review). This type of network is commonly used in cases where the in-
put data are images, or can be represented as images. CNNs have for example been
used to classify and associate radio galaxies (Alhassan, Taylor, and Vaccari, 2018; Wu
et al., 2019), to mitigate radio frequency interference (Akeret et al., 2017) and to dif-
ferentiate weak lensing maps from different cosmological models (Schmelzle et al.,
2017).

In the area of cosmology, machine learning is being explored as a possible solu-
tion to model complex physical processes such as structure formation (e.g., S. He
et al., 2018) or the cosmic microwave background gravitational lensing potential
(e.g., Caldeira et al., 2018). Some recent successes are the following. Galaxy clus-
ter masses can be inferred with lower scatter than traditional methods (Ho et al.,
2019; Armitage, Kay, and Barnes, 2019). Peel et al. (2018) have shown that CNNs
can use weak lensing maps to distinguish between standard and modified gravity
cosmologies. The non-Gaussian information in the smallest scales of weak lensing
maps might be extracted with machine learning techniques to produce tighter con-
straints on cosmological parameters (Ribli, Pataki, and Csabai, 2019; Gupta et al.,
2018).

Although these successes sound promising, results obtained through machine
learning are difficult to interpret. While it can provide seemingly accurate models
for the input data that it was trained on, no insight is given into how the model
works. This problem is often called the black box problem (Zednik, 2019). Due to the
nature of machine learning algorithms, no guarantee is provided that the output of
the network is robust against different realizations of input data. Extreme examples
of this are state of the art networks that classify unrecognizable images with very
high certainty (Nguyen, Yosinski, and Clune, 2014) or misclassify images completely
when just a few pixels are adjusted in the image (Szegedy et al., 2013). The black box
or robustness problem is not discussed in many of the above mentioned papers.

1.3 This thesis

It is clear that there are some issues with the currently accepted standard cosmo-
logical model. Future weak lensing surveys such as Euclid and the Large Synoptic
Telescope Survey will probe the nature of dark energy, map out dark matter and
hopefully gain more insight in the tensions between parameters inferred from large
scale structure and cosmic microwave background studies.
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To have a chance to tackle the panoply of challenges discussed in Section 1.1
that future surveys will come across, it is clear that it is important to be able to
extract every piece of available information from the data. Currently, the number
of estimated summary statistics for Euclid is too large, and there is still no good
method to preserve information of the non-linear regime of structure formation.

A method is required to compress the raw data to a small number of informative
summaries, while losing minimal information. This thesis aims to do so with infor-
mation maximizing neural networks (Charnock, Lavaux, and B. D. Wandelt, 2018).
The small number of summaries are then used to generate constraints on cosmolog-
ical parameters with likelihood-free inference.

The structure of this thesis is as follows. Chapter 2 will start with an overview of
definitions that are used throughout this thesis and explain the formalism of weak
lensing. In Chapter 3 the methods are discussed. First, likelihood-free inference and
techniques to perform this efficiently are explained. Then, the information maximiz-
ing neural network is described. Finally, the software used to generate cosmological
simulations is discussed. In Chapter 4 the information maximizing neural network
is used to compress Gaussian signals. This allows for a study of the versatility and
robustness of the network in a case where analytical posteriors are still available.
Then, in Chapter 5 weak lensing data is generated for a Euclid-like survey. This
data is compressed by the network, and posteriors are generated for cosmological
parameters. Finally, in Chapter 6 we discuss the results and conclude in Chapter 7.
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Chapter 2

Definitions and Derivations

This chapter will explicate some definitions that are used throughout this thesis. It
starts with a short description of statistical inference, and introduces some concepts
that accompany inference. Then a short description of the cosmic shear formalism is
given, which serves mainly as additional background to the interested reader.

2.1 Statistics

Much of the general descriptions are introduced by Wasserman (2010). This book is
followed in this section.

2.1.1 Inference

Statistical inference is the process of deducing the the probability distribution func-
tion (PDF) that generated the observed data. Oftentimes, the PDF is assumed, and
only the parameters of the PDF are inferred. In that case, a parametric model is
constructed, which takes the form

F = { f (x; θ) : θ ∈ Θ} (2.1)

where θ is the vector of unknown parameters which can take values in the parameter
space Θ. For example, if we would assume the parametric model of the data is a
normal distribution then θ contains the mean and standard deviation, θ = (µ, σ),
and the parameter space Θ would be (µ ∈ R, σ > 0). Statistical inference tries to
estimate as best as possible the true parameters θ, this estimate is denoted by θ̂. The
two dominant approaches for this estimation are called frequentist and Bayesian.

Frequentist The frequentist approach assumes that parameters are fixed unknown
constants and our measurements sample noisy draws from the model with the true
parameters. The most common method to estimate the parameters is from the like-
lihood function. If we let X1, ..., Xn be independent and identically distributed (i.i.d.)
draws from a PDF f (x; θ) then the likelihood function is defined by

L(θ) =
n

∏
i=1

f (Xi; θ). (2.2)

Thus, the likelihood is simply the joint density of the data, but treated as a function
of the parameter θ. The maximum likelihood estimate (MLE) θ̂ is the value of θ that
maximizes L(θ). This is the same value that maximizes the natural logarithm of the
likelihood, so often times it is easier to maximize the log-likelihood.
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Bayesian The Bayesian approach incorporates a prior belief about the parameter
θ. This prior is taken into account according to Bayes’ theorem

f (θ|xn) =
f (xn|θ) f (θ)∫
f (xn|θ) f (θ)dθ

(2.3)

where f (xn|θ) is simply the likelihood function (Eq. 2.2) and thus we can write

f (θ|xn) =
L(θ) f (θ)∫
L(θ) f (θ)dθ

. (2.4)

Since the denominator is simply a normalizing constant, we can see that the posterior
f (θ|xn) is proportional to the likelihood times the prior. From this posterior we can
then get point estimates (by for example taking the mean or maximum value) or
obtain confidence intervals for θ.

In this work, and in much of recent cosmology, the Bayesian approach is taken.
In this approach, every new experiment adds extra information which should be
incorporated into the larger picture. The beliefs about model parameters from the
previous experiments and theoretical considerations are taken into account via the
prior. Often, Gaussian or log-normal priors are used (e.g., Jasche and Lavaux, 2015;
Alsing and B. Wandelt, 2019).

2.1.2 Statistical summaries

A statistic is a function T(Xn) of the data. It is a random variable since the input
to the function are random variables. Most statistics are lossy operations, meaning
that some information will be lost when applying the function to the data. When a
statistic contains all information that is in the data, it is called a sufficient statistic.

For example, if we have N i.i.d. data points drawn from a normal distribution
with unkown mean and variance: X1, ..., Xn ∼ N (µ, σ), then the likelihood function
(Eq. 2.2) is given by

L(θ) =
N

∏
i

1√
2πσ2

exp
[
− (Xi − µ)2

2σ2

]
(2.5)

which can be written as

L(θ) = 1√
(2πσ2)n

exp
[
−nS2

2σ2

]
exp

[
−n(X̄− µ)2

2σ2

]
, (2.6)

where X̄ are S2 are the sample mean and sample variance respectively. We can see
that Equation 2.6 only depends on the statistic T = (X̄, S) and as such T is a suffi-
cient statistic. In fact, here T is the minimal sufficient statistic, since T captures the
information needed to compute the likelihood function as concise as possible.

2.1.3 Information

In statistics, information often refers to the amount of information that a random
variable X carries about the model parameters θ. The Fisher information (Fisher,
1925) is a way to quantify this. The Fisher information is defined as the second mo-
ment of the score. The score is defined as the derivative of the logarithmic likelihood
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function with respect to θ. The score measures how sensitive a likelihood function
L(θ) is to changes in the parameter θ. By calculating the variance of the score, intu-
itively we measure how accurate this sensitivity is. For multiple parameters θα and
θβ the Fisher information matrix is calculated as

Fαβ(θ) =
∫ (

∂ logL(θ)
∂θa

∂ logL(θ)
∂θb

)
L(θ)dx. (2.7)

A different way to look at it is that the Fisher information measures the overall sen-
sitivity of the likelihood function to changes in θ by weighing the sensitivity by the
likelihood of observing the outcome x.

When the likelihood is twice continuously differentiable, the Fisher information
can be rewritten to a simpler form (Charnock, Lavaux, and B. D. Wandelt, 2018),
using the fact that the expectation value of the score is zero. We will first show that
the expectation value of the score is zero.

E
[

∂

∂θ
logL(θ)|θ

]
=
∫ ∂

∂θL(θ)
L(θ) L(θ)dx

=
∫

∂

∂θ
L(θ)dx.

(2.8)

The likelihood as a function of the parameter θ does not in general integrate to unity,
but here the integral is a function of the data. Thus we get

E
[

∂

∂θ
logL(θ)|θ

]
=

∂

∂θ
1 = 0. (2.9)

Which proves that the expectation value of the score is zero.
Taking the derivative of the expectation value of the score must thus equal zero

as well

∂

∂θ

∫
∂ logL(θ)

∂θ
L(θ)dx =

∫
∂2 logL(θ)

∂θ2 L(θ)dx +
∫

∂ logL(θ)
∂θ

∂L(θ)
∂θ

dx. (2.10)

The second term on the right-hand side can be written as

∫
∂ logL(θ)

∂θ

∂L(θ)
∂θ

dx =
∫

∂ logL(θ)
∂θ

∂L(θ)
∂θ

L(θ)L(θ)dx =
∫ (

∂ logL(θ)
∂θ

)2

L(θ)dx

(2.11)
using the chain rule. We can see that Equation 2.11 is simply the variance of the
score. As Equation 2.10 must equal zero, the variance of the score must be equal to
the first term on the right-hand side of Equation 2.10. Therefore

V
[

∂ logL(θ)
∂θ

]
= −

∫
∂2 logL(θ)

∂θ2 L(θ)dx = −E
[

∂2 logL(θ)
∂θ2

]
(2.12)

Finally, Eq. 2.12 proves that the Fisher information matrix entries α and β can be
written as

Fαβ(θ) = −
〈

∂2 lnL(d|θ)
∂θα∂θβ

〉
. (2.13)

where we now explicitly include d as some observed data.
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As an example, if the likelihood is Gaussian we can write the log-likelihood as

lnL(d|θ) = −1
2

(
(d− µ(θ))TC−1(d− µ(θ)) + ln |2πC|

)
. (2.14)

where µ and C indicate the mean and covariance. This allows us to calculate the
Fisher information matrix as (Charnock, Lavaux, and B. D. Wandelt, 2018)

Fαβ(θ) = Tr

[(
∂

∂θα
µ(θ)

)T

C−1
(

∂

∂θβ
µ(θ)

)]
. (2.15)

2.2 Weak lensing

This section serves as an introduction to the definitions used in cosmological weak
lensing. This is the branch of weak lensing that considers the perturbation of light
rays due to the cosmological large scale structure. First we derive the formalism
used in cosmic shear studies and then derive the lensing power spectrum.

2.2.1 Cosmic shear formalism

We mainly follow the review by Kilbinger (2015) for many of these derivations. For
a more in-depth review, see M. Bartelmann and Schneider (2001).

To describe the distortion of light due to the matter distribution in the universe,
we need to consider an inhomogeneous universe. In an inhomogeneous universe,
the metric that describes weak (� c2) potential perturbations (e.g., in the case of
weak lensing) Ψ and Φ is given by

ds2 =

(
1 +

2Ψ
c2

)
c2dt2 − a2(t)

(
1− 2Φ

c2

)
dl2 (2.16)

where a(t) is the scale factor as a function of time, c the speed of light and l the
comoving coordinate. In general relativity (GR) and in the absence of anisotropic
stress, which is the case for late-time ΛCDM cosmologies, the potentials Ψ and Φ
are equal. The element dl2 can be separated into a radial and angular part which for
a flat universe dl2 = dχ2 + χ2dω, where χ is the comoving radial coordinate and ω
the angular coordinate.

We then need an equation that describes how the scale factor of the Universe
changes. This is the Friedmann equation. For a homogeneous and isotropic Universe
it is given by

H2(t) =
(

ȧ
a

)2

=
8πG

3
ρ− κc2

R2
0a2

+
Λ
3

, (2.17)

where H is the Hubble parameter, a is again the expansion factor as a function of
time, G is the gravitational constant, ρ the total energy density, Λ the cosmological
constant, R0 the radius of curvature and κ the curvature, which is +1 for a positively
curved universe, -1 for a negatively curved universe and 0 for a perfectly flat uni-
verse. In this thesis, we will consider a flat universe, which is predicted by inflation
and confirmed by measurements (e.g., Sánchez et al., 2012; Samushia, Reid, White,
Percival, Cuesta, Lombriser, et al., 2013). The density ρ can be split up into separate
components of the universe: matter, radiation and dark energy, and usually these
components are expressed as density parameters through division by the critical
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density

ρcr =
3H2

0
8πG

, (2.18)

where the critical density describes the density for which the universe is flat. Assum-
ing an equation of state P = wρ, where w ∼ 0 for the matter component, w = 1/3
for the relativistic component (e.g., radiation) and w = −1 for the dark energy, we
can write Equation 2.17 as

H2(t) = H2
0

(
Ωr,0a−4 + Ωm,0a−3 + ΩΛ

)
, (2.19)

where H0 is the Hubble parameter at the current expansion factor.
We now have the tools to derive the weak lensing formalism. We will consider

an example system consisting of a source plane and lens plane, as shown in Figure
2.1. The light travel time along the path from the source to the observer is obtained
from Equation 2.16 by setting ds2 = 0, since light rays travel along null geodesics

t =
1
c

∫ (
1− 2Ψ

c2

)
dλ, (2.20)

where dλ is now the proper coordinate along the (perturbed) light path. This is anal-
ogous to the light travel time of a ray propagating trough a medium with refractive
index n = 1− 2Ψ

c2 . Using Fermat’s principle of light taking the shortest optical path
we can obtain the Euler-Lagrange equations and after integrating these we obtain
the angular difference between the emitted and observed light ray. This deflection
angle α̂ is given by

α̂ = − 2
c2

∫
∇p
⊥Φdλ, (2.21)

where the gradient is taken perpendicular to the path of the light ray. This angle
is twice the Newtonian prediction. Equation 2.21 is impractical written in this way,
since we have to integrate over the perturbed light path. However, we can sim-
plify Equation 2.21 since Φ/c2 � 1, thus we expect the deflection angle to be small.
Therefore we can simply integrate radially over the unperturbed light path dr, ob-
taining

α̂ = − 2
c2

∫ ∞

−∞
∇p
⊥Φdr. (2.22)

The somewhat subtle approximation to integrate over the unperturbed light path dr
is called the Born approximation (see e.g., Petri, Haiman, and May, 2017, for the
validity of this approximation).

We now define the transverse comoving separation between the source and op-
tical axis as x (see Fig. 2.1). In a flat universe, and under the small angle (θ) approxi-
mation, x is given by

x(χ) = χθ. (2.23)

From Equation 2.22 we have seen that the deflection of a light ray in the presence of
a potential Φ is given by

dα̂ = − 2
c2∇

p
⊥Φ(x, χ′)dχ′ (2.24)

at distance χ′ from the observer. From the point of view of the lens, the change in
the transverse separation vector at the distance to the source χS is

dx = (χS − χL)dâ, (2.25)
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FIGURE 2.1: Example of a gravitational lens system. The unlensed source
angle is denoted by β, the observed source angle is denoted by θ. ξ is
called the impact factor and x is the comoving separation between the
optical axis and the source position. Figure adapted from M. Bartelmann

and Schneider (2001)

which is proportional to the distance between the lens and the source. Integrating
this expression gives the transverse comoving separation as a function of χS

x(χS) = χSθ − 2
c2

∫ χS

0

χS − χ′

χS
∇⊥Φ(x, χ′)dχ′. (2.26)

The angle β = x/χS is the angle of the source which would be observed in the
absence of a lens. The reduced deflection angle α, defined as the angle between the
unlensed source position and the apparent source position is then

α = θ − β. (2.27)

Equation 2.27 is called the lens equation. Using the lens equation, we arrive to the
expression of the reduced deflection angle α

α =
2
c2

∫ χS

0

χS − χ′

χS
∇⊥Φ(x, χ′)dχ′. (2.28)

In the Born approximation, we can write the reduced deflection angle α as the
gradient of a two-dimensional potential ψ, called the lensing potential.

ψ(θ, χS) =
2
c2

∫ χS

0

χS − χ′

χSχ′
Φdχ′. (2.29)

This lensing potential holds two important properties. Firstly, of course, the gradient
of the lensing potential equals the reduced deflection angle

∇xψ = α(x). (2.30)
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Secondly, the Laplacian gives twice the convergence

∇2
xψ(x) = 2κ(x), (2.31)

where the convergence is the dimensionless surface density

κ(x) =
Σ(x)
Σcr

. (2.32)

Σcr is the critical surface density, a characteristic quantity that describes the lens
system

Σcr =
c2

4πG
χS

χL(χL − χS)
. (2.33)

As a side note, Σcr is found by solving the lens equation for axisymmetric lenses for
a source at θ = 0 (directly behind the lens). If the average surface density of the lens
is Σcr inside a radius R, an Einstein ring can appear. Note that this implies we are in
the strong lensing regime.

We have shown that the first order effect of gravitational lensing is to distort the
image position as given by the lens equation. This distortion is not measurable in
the case of weak lensing, since since multiple images (i.e., strong lensing) are needed
to infer the original source position. The second order effects of gravitational lensing
are more important in the weak lensing regime. These effects distort the shape and
size of the sources. Formally, the distortion can be quantified by solving the lens
equation for all the points within an extended source. However, often the source
is much smaller than the angular size on which the properties of the lens change,
and thus a locally linear transformation can be defined to map from source to image
coordinates. This is parametrized with the Jacobi matrix, expressed as

Aij = δij − ∂i∂jφ, (2.34)

where the partial derivatives ∂i,j are defined with respect to θi,j. From the definition
of the lensing potential (2.29), A can be written as

A =

(
1− κ − γ1 −γ2
−γ2 1− κ + γ1

)
. (2.35)

Written in this way, the convergence κ and shear γ = (γ1, γ2) are defined as com-
binations of second derivatives of the lensing potential. Convergence multiplies all
directions by (1 − κ)−1, isotropically changing the observed size. Shear stretches
the image, by multiplying for example both diagonal directions by (1− γ2)−1 and
(1+ γ2)−1. An example of these effects is given in Figure 2.2. These second order ef-
fects are not measurable on a source-by-source basis either, but can be measured by
averaging many observed galaxies and computing the two-point correlation func-
tion or power spectrum of the observed galaxy ellipticities.

2.2.2 Lensing power spectrum

In general, the power spectrum or its real space equivalent: the correlation function,
is a statistical tool that can be used to quantify correlations in data. We will start by
defining the two-point correlation function and then show that the power spectrum
is the Fourier transform of the correlation function.
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FIGURE 2.2: Distortion due to convergence and shear from gravi-
tational lensing. Figure credit: Narayan and Matthias Bartelmann

(1996).

The two-point correlation function of the convergence κ is defined as

ξκ(φ) = 〈κ(θ)κ(θ + φ)〉 (2.36)

where the brackets denote the ensemble average. By assuming the ergodic hypothe-
sis, the ensemble average can be replaced by a spatial average over positions θ. As-
suming that the Universe is statistically homogeneous and isotropic on large scales,
the density field, and thus the convergence are also homogeneous and isotropic. The
two-point correlation function is then only a function of the modulus of φ and not
the direction of φ. The two-point correlation function measures the excess proba-
bility over random of observing the value of the convergence κ at some point θ + φ
given that we know the convergence κ at the point θ. If there is no spatial correlation,
ξ will be zero for all values of φ.

Typically, it is more convenient to work in Fourier space and to use the power
spectrum. The Fourier transform of the convergence is

κ̂(l) =
∫

κ(θ) exp(ilθ)dθ. (2.37)

Thus the correlation function in Fourier space is

〈κ̂(l)κ̂∗(l′)〉 =
〈∫

κ(θ) exp(ilθ)dθ
∫

κ(θ′) exp(−il′θ′)dθ′
〉

=
∫

exp(ilθ)dθ
∫
〈κ(θ)κ(θ′)〉 exp(−il′θ′)dθ′.

(2.38)

With θ′ = θ + φ, and using the assumption that the correlation function is isotropic,

〈κ̂(l)κ̂∗(l′)〉 =
∫

exp(i(l − l′)θ)dθ
∫

ξ(φ) exp(−il′φ)dφ′

= (2π)2δD(l − l′)Pκ(l).
(2.39)

We can see that the power spectrum of the convergence Pκ is the Fourier transform
of the two-point correlation function. The same holds for the power spectrum of the
shear or any other variable where the same assumptions hold as given above.
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(A) (B)

FIGURE 2.3: (A): The theoretical weak lensing power spectrum, with
linear and non-linear collapse models. (B): Numerically calculated
derivatives of the weak lensing power spectrum with respect to dif-

ferent parameters p.

To get a more physically interesting expression for the power spectrum, we ex-
press the convergence κ in terms of the over-density δ = ρ/ρ− 1 with the following
expression (Kilbinger, 2015)

κ(θ, χ) =
3H2

0 Ωm

2c2

∫ χ

0

χ− χ′

a(χ′)χ
(χ′)δ(χθ, χ′)dχ′. (2.40)

Weighing this expression by a distribution of source galaxies in redshift space n(χ)dχ =
n(z)dz (up to some χlim), we obtain the mean convergence

κ(θ) =
∫ χlim

0
n(χ)κ(θ, χ)dχ

=
3H2

0 Ωm

2c2

∫ χlim

0

q(χ)
a(χ)

χδ(χθ, χ)dχ.
(2.41)

Where we have defined the lensing efficiency q as

q(χ) =
∫ χlim

χ
n(χ′)

χ′ − χ

χ′
dχ′. (2.42)

Taking Equation 2.41 and putting it into Equation 2.39 to solve for the conver-
gence power spectrum, the matter power spectrum appears on the right-hand side.
Thus the convergence power spectrum can be expressed as (Kilbinger, 2015)

Cκ(l) =
9
4

Ω2
m

(
H0

c

)4 ∫ χlim

0

q2(χ)

a2(χ)
Pδ(k =

l
χ

, χ)dχ. (2.43)

A couple of approximations have been made to obtain Equation 2.43. The Limber
approximation (Limber, 1953; Kaiser, 1992) is used to project the 3D power spectrum
to a 2D power spectrum. To do this projection, the flat sky and small angle approx-
imation are used. Finally, source-source and source-lens clustering are ignored (see
Schneider, van Waerbeke, and Mellier, 2002; Hamana et al., 2002).

The power spectrum of the shear γ is identical to the power spectrum of the con-
vergence. Thus, when measuring the weak lensing power spectrum, the shear is
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often calculated instead of the convergence. This is simplest in real-space, in which
the shear two-point correlation function can be estimated. Conversely, when simu-
lating data it is often simpler to work in Fourier space and to calculate the power
spectrum.

The calculations of the weak lensing power spectra are done using the CosmoSIS
package, as explained in Section 3.3. With this code, we calculate an example angu-
lar power spectrum with the parameter values from Planck Collaboration, Aghanim,
et al. (2018), which is plotted in Figure 2.3a. The figure shows both the power spec-
trum calculated with the linear collapse model and the non-linear collapse model,
which becomes important at smaller scales (large `). The sensitivity of the power
spectrum with respect to various cosmological parameters is shown in Figure 2.3b.
This figure shows the numerically calculated derivatives with respect to the matter
density Ωm, the amplitude of the linear power spectrum σ8, the Hubble parameter h,
the dark energy equation of state w and the scalar spectral index ns. The derivatives
are calculated with the central difference method

∂C`

∂p
≈ C`(p + h)− C`(p− h)

2h
. (2.44)

C`(p) denotes the power spectrum calculated at parameter p. We have used h =
0.002 for Ωm and σ8, since the power spectrum is most sensitive to these parameters,
and h = 0.01 for the other parameters. While the central difference method is not
very accurate with these step sizes, it does serve as a good first order approximation.

Figure 2.3b shows that the parameter that the spectrum is most sensitive to is σ8.
The parameter σ8 is defined as the root mean square mass fluctuations in 8h−1Mpc
spheres. The matter density parameter Ωm is the second most influential parame-
ter. Both of these parameters introduce an amplitude change of the power spectrum.
Therefore, usually S8 = σ8

√
Ωm/0.3 is the inferred parameter in cosmic shear stud-

ies, since σ8 and Ωm are degenerate (e.g., Hildebrandt et al., 2017). The amplitude
change of the matter power spectrum can intuitively be understood as follows. As
the matter density of the universe increases, gravity will be more influential, increas-
ing the amplitude of the power spectrum on all scales. An increase in σ8 increases
the ‘clumpiness of the Universe’. This is because for higher σ8, the initial density
perturbations in the Universe are more likely to reach the overdensity threshold for
collapse, as the fluctuations are stronger. This will increase the number of collapsed
halos at all scales almost equally, also producing a scaling of the matter power spec-
trum. The dark energy equation of state parameter also causes a slight change in
amplitude, but as can be seen in Figure 2.3b, the power spectrum is not very sensi-
tive to this. Finally, a tilt in the power spectrum is introduced by the parameters ns
and h, as these change the power spectrum as a function of scale.

It is possible to observe angular power spectra in different redshift bins, which
is a technique called tomography. This improves the constraints on cosmological
parameters inferred from power spectra, allows for measurement of a varying dark
energy equation of state, and partly breaks the degeneracy between Ωm and σ8.

2.2.3 Tomography

Thus far we have only considered the two dimensional power spectrum and correla-
tion function, which can be used to infer the projected large scale mass distribution.
However, more information is available if the redshifts of the galaxies are known.
With known redshifts, it is possible to split observed galaxies into redshift bins to
obtain multiple two dimensional power spectra. The lowest redshift bin will then
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only be lensed by the local large scale structure, while galaxies in higher redshift
bins will be lensed by structure over a growing range of redshifts. The combination
of these lensing effects can then be used to recover information about the 3D distri-
bution of matter. This also probes the time-evolution, since redshift involves both
distance and time. Splitting the galaxy distribution up into different redshift bins is
called power spectrum tomography.

Defining tomographic redshift bins allows for the calculation of cross and auto
power spectra. Splitting the distribution up into nz redshift bins defines nz auto
spectra and nz × (nz − 1)/2 cross spectra, for a total of nz(nz + 1)/2 power spectra.
Similar to Equation 2.43, the weak lensing power spectrum between tomographic
redshift bins i and j is given by (Hu, 1999; Takada and Jain, 2004; Alsing and B.
Wandelt, 2019)

C`,ij =
∫

Wi(χ)Wk(χ)χ
−2Pδ(k =

`

χ
; χ) (2.45)

where W now denotes the lensing weight function, given by

Wi(χ) =
3ΩmH2

0
2

χ
∫ χH

χ
ni

χ′ − χ

χ′
dχ′ (2.46)

where χH is the distance to the Hubble horizon, and ni(χ) the galaxy redshift distri-
bution in bin i.

We should note that there are some limitations to this method due to the redshift
uncertainties, since the galaxy redshifts are often determined photometrically. If the
redshift uncertainties are too large or biased, the information is washed out over
different redshift bins (Ma, Hu, and Huterer, 2006). Additionally, the possibility of
catastrophic redshift outliers puts stringent constraints on the spectroscopic training
samples (Bernstein and Huterer, 2010; Sun et al., 2009). Still, it has been shown
that using just a small number of redshift bins significantly improves cosmological
parameter constraints (Hu, 1999; Simon, King, and Schneider, 2004).
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Chapter 3

Methods

This chapter will explain the methods used in this thesis. It starts by describing tech-
niques often used for likelihood free inference, being Approximate Bayesian Com-
putation and Population Monte Carlo sampling. Then, the information maximizing
neural network is described. Finally, we describe shortly the software used for cos-
mological simulations.

3.1 Likelihood-free inference

In standard Bayesian analyses, a prior is constructed and the likelihood function is
known analytically. However, often times in cosmology the exact likelihood func-
tion is intractable but forward simulations can be made to generate mock data. The
unknown likelihood function can be bypassed by instead comparing forward simu-
lations to the observed data. This section will introduce the methods used for like-
lihood free inference, which is Approximate Bayesian Computation at its simplest
form. Since a large number of simulations is often needed to approximate the likeli-
hood function, techniques such as Population Monte Carlo sampling are often used,
which we will explain in this section as well.

3.1.1 Approximate Bayesian Computation

The inference problem can be simply posed as Bayes’ theorem (Eq. 2.4), where the
probability of the parameters θ given the data xn is to be evaluated.

f (θ|xn) =
L(θ) f (θ)∫
L(θ) f (θ)dθ

. (3.1)

However, the analytical likelihood L(θ) is often unknown. Approximate Bayesian
Computation (ABC) can be used when the following essential elements are avail-
able: a simulator that can generate mock data from a forward model given some pa-
rameters, a prior probability distribution over the input parameters, and a distance
function between datasets, which often uses summary statistics of the datasets.

First, parameters values are sampled from the prior f (θ), and these are rejected
with a probability that is proportional to L(θ). This can be achieved by generating
forward simulations with the parameter values and comparing the distance between
the observed and simulated data. The fraction of parameter values that have the
smallest associated distances from the observed data are then retained, which is the
approximation of the posterior distribution function. In practice, a distance thresh-
old ε is usually set where simulations are accepted if the distance is smaller than ε
and rejected otherwise. The likelihood function is thus approximated as (Dutta et al.,
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2016)
L(θ) ∝ P(ρ(xs, x) ≤ ε). (3.2)

where ρ is the distance function, xs the simulated datasets and x the observed dataset.
If the distance ε is chosen too small, then an impractically large number of simula-
tions are needed to approximate the posterior. Conversely, if ε is chosen too large,
then the likelihood is simply approximated by the probability that running the sim-
ulator with a value θ produces data within the distance threshold of the observed
data. The distance ε is usually chosen such that there is a good balance between
the computation time and the accuracy of ABC. We should note that because the
threshold ε cannot be set exactly to zero, the posteriors inferred by ABC are always
broader than the exact posteriors, but will be unbiased with small enough ε (Alsing,
B. Wandelt, and Feeney, 2018).

The distance function is also of crucial importance. Due to the curse of dimen-
sionality, an exponentially increasing number of simulations is needed as the di-
mension of the data increases. Therefore, the distance between highly dimensional
datasets is often calculated as the distance between a few informative summary
statistics. Summary statistics are explained in Section 2.1.2. The distance function
we use use throughout this thesis is defined by the distance between the summary
of some generated dataset xs and the observed dataset x, weighed by the Fisher
information of the simulated summaries.

ρ(xs, x) =
√
(xs − x)T F(xs − x), (3.3)

This is the optimal, but not unique choice for a distance measure (Alsing and B.
Wandelt, 2018).

3.1.2 Population Monte Carlo Sampling

There are a few problems with the simple ABC method. The algorithm rejects many
proposed samples when ε is small, leading to a very inefficient algorithm. The algo-
rithm does not use the information of the previously accepted samples to update the
proposal distribution (initially the prior). Beaumont et al. (2008) proposed a weigh-
ing of the particles (a dataset realization with parameters θ) that are accepted in the
previous step of ABC to update the proposal distribution for the current step of ABC.
This approach is called Population Monte Carlo ABC (PMC-ABC).

Following the approach by Hahn et al. (2017), the first step (t = 1) of PMC-
ABC is identical to the ABC, where a set of particles is drawn from the prior and
accepted if the data is within the distance threshold ε set by the user. This process is
repeated until N particles are accepted. Then equal weights are assigned to the par-
ticles wi

1 = 1/N. For the following steps (t > 1), the distance threshold is decreased.
Several approaches can be taken to decrease ε. Lin and Kilbinger (2015), for exam-
ple, set εt to the median of the distances of the previous step t− 1, while Charnock,
Lavaux, and B. D. Wandelt (2018) set it to the 75th percentile of the previous dis-
tances. New particles are drawn from the previous set of particles with probability
proportional to their weights. These particles are now perturbed by a kernel K(θt).
Like the decreasing of the distance threshold, there is no general consensus on the
perturbation kernel. Some examples are setting the kernel as a multivariate Gaus-
sian with zero mean and the covariance of the previous set of particles or uniform
kernels centered on the previous set of particles with a certain width σ. For a re-
view on setting the perturbation kernels, see Filippi et al. (2011). The weights of the
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particles are then updated according to the following rule (Hahn et al., 2017):

wi
t = f (θ)/

(
N

∑
j=1

wi
t−1K(θ j

t−1)

)
(3.4)

The process of drawing new particles, perturbing them with a kernel, updating
their weights and the distance threshold is repeated until a large number of draws
is needed to obtain N accepted particles, as this is a sign the posterior has stopped
changing considerably. The ratio of draws needed to draws accepted before stop-
ping the algorithm is called the criterion and is an important parameter that has to
be defined by the user.

3.2 Information Maximizing Neural Network

This thesis is centered around a novel concept introduced by Charnock, Lavaux,
and B. D. Wandelt (2018). The concept Information Maximizing Neural Networks
(IMNN) combines data compression with the ideas of deep neural networks. A net-
work is trained to find a (nonlinear) data compression function f : d → x that maps
the data d to compressed summaries x while maximizing the Fisher information
content. The function f transforms the original (unknown) likelihood function, to a
Gaussian-like likelihood (cf. Eq. 2.14) of the form

lnL(d|θ) = −1
2

(
(d− µ f (θ))

TC−1
f (d− µ f (θ)) + ln |2πC|

)
. (3.5)

where µ f (θ) and C f now denote the mean and covariance of summaries obtained by
feeding simulated data, generated at some fiducial parameter values, to the network.

µ f (θ) =
1
ns

ns

∑
i=1

xs
i

(
C f
)

αβ
=

1
ns − 1

ns

∑
i=1

(xs
i − µ f )α(xs

i − µ f )β.
(3.6)

Since f is now a function of the weights and biases of the network, this modification
of the likelihood allows for the calculation of an analog to the Fisher information (cf.
Eq. 2.15), as a function of the weights and biases of the network

Fαβ(θ) = Tr

[(
∂

∂θα
µ f (θ)

)T

C−1
f

(
∂

∂θβ
µ f (θ)

)]
. (3.7)

This Fisher information is optimized by simple back-propagation, as will be ex-
plained briefly. First, to calculate the Fisher information, the derivative of the mean
network output with respect to the input parameters ∂

∂θα
µ f (θ) has to be calculated.

As partial derivatives commute with sums, the derivative of the mean output is sim-
ply the mean of the derivatives of the network outputs. The task is then to calculate
the derivative of the network output with respect to the input parameters.

Two approaches to the calculation of the derivative can be taken. The first ap-
proach is calculating the numerical derivative by providing the network with two
additional sets of simulations, one just above (ds, f id+

i ) and one just below (ds, f id−
i ) the

fiducial parameter values. The output of the network at these simulations can then
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be used to calculate the numerical derivative using the central difference method(
∂x
∂θα

)s, f id

i
≈

xs, f id+
i − xs, f id−

i
∆θ+α − ∆θ−α

, (3.8)

where ∆θ± are the deviations from the fiducial parameter values. In this approach
it is important to set the random seed to the same value when generating the upper
and lower simulations to suppress the sample variance. This drastically reduces the
amount of simulations needed to approximate the derivative.

The second approach that can be taken is to apply the chain rule, splitting the
derivative into the derivative of the output with respect to the input multiplied by
the derivative of the input simulations.

µ f ,α =
1
ns

ns

∑
i=1

nd

∑
k=1

∂xs, f id
ik

∂dk

ds, f id
ik
∂θα

, (3.9)

where k now labels the data point of a simulation. We have found during testing of
Gaussian signals (Section 4) that the second method is more stable, but the same seed
now has to be set for the upper and lower as well as the central simulations. If all in-
put simulations are not generated at the same seed, the network learns prohibitively
slow.

To optimize the Fisher information, we must redefine the output of the network
slightly. By construction, the output of the network is the summary x of some input
simulation d. However, since the quantity that we want to maximize is in this case
the Fisher information, a new ‘true’ network output is defined. The true network
output is defined as the determinant of the Fisher information of ns simulations fed
through ns identical networks, calculated using the additional simulations needed
for the derivatives. A schematic of the network architecture can be viewed in Figure
3.1. The Fisher information content can then be maximized by minimizing the loss
function as a function of the true network output aL = |F|. The simplest choice for
the loss function is to minimize the negative determinant of the Fisher matrix

∂Λ
∂aL = −|F|. (3.10)

However, a regularization factor is often needed in practice, since the Fisher infor-
mation is invariant under linear scaling of the summary. To prevent the output sum-
maries artificially increasing to very large values, the determinant of the covariance
matrix is a good regularization factor. This penalizes the network when the deter-
minant of the covariance becomes too large. The loss function can now be defined
as

∂Λ
∂aL = − log |F|+ λ ∑

α,β

(
Cα,β − Iα,β

)2 , (3.11)

where λ is now a hyper-parameter that sets the strength of the regularization, C the
covariance matrix of the output summaries and I the identity matrix. Furthermore,
we have switched to maximizing the log determinant of the Fisher matrix since this
is often more stable than maximizing the Fisher information directly. An additional
advantage of using the covariance matrix in this way is that the regularization term
imposes that the summaries are more symmetric and less correlated by weighing
the off-diagonal terms of the covariance of the summaries more than the diagonal
terms.
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FIGURE 3.1: Schematic view of the IMNN. A set of ns simulations ds, f id
i

are passed to the network on each training step, producing ns output sum-
maries xs, f id

i . These summaries are combined to calculate the covariance
C f and the upper and lower simulations are used to calculate the deriva-
tive of the mean µ f ,α. Finally, the true output of the network is the Fisher
information Fα,β. Figure adopted from Charnock, Lavaux, and B. D. Wan-

delt (2018).

The loss function is minimized using simple back-propagation until the network
has converged. The trained network then represents the function f : d → x that
compresses the data d to the summaries x. The statistical summary of the data can
be obtained by feeding it to a network with the final weights and biases. A modi-
fied maximum likelihood estimate (MLE) of the parameters of some new input data
can be calculated without any additional forward simulations, by interpolating the
output summary of the network at the trained parameters, f (d f id) = x f id, to the out-
put summary of the network from the new input data. This can be done since we
already know f (d f id) = x f id and the derivative ∂x

∂θ |θ f id from the training data. This
will of course only be a good approximation when the new input data is close to the
data that the network is trained at, due to the fact that we only use the local first
derivative to calculate this estimate. The statistical summaries can then be used to
carry out for example Approximate Bayesian Computation to infer the full posterior
of the parameters that generated the data.
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3.3 Cosmological simulations

To generate cosmological observables, in particular the weak lensing angular power
spectrum, we make use of CosmoSIS1 (Zuntz et al., 2015). CosmoSIS is a modular
code that connects various pieces of cosmological software.

For the calculation of the shear angular power spectra in this thesis we take
the following steps. First, we use the Code for Anisotropies in the Microwave Back-
ground2 (CAMB) (Lewis, Challinor, and Lasenby, 2000; Howlett et al., 2012). This
code evolves initial density perturbations in the Universe to the three dimensional
matter power spectrum. It then uses the Halofit (Smith et al., 2003, originally) fit-
ting model from Takahashi et al. (2012) to compute the non-linear part of the matter
power spectrum. Secondly, we construct a Smail redshift distribution

dn/dz ∝ zαe−(z/z0)
β

(3.12)

parameterized by α, β and z0. The photometric redshift error of the observed galax-
ies is assumed to be Gaussian, with a scatter σz and possibly an additive bias b. This
distribution is constructed in CosmoSIS. The redshift distribution is then split into
nz tomographic redshift bins. The calculated three dimensional matter power spec-
trum is projected into the 2D tomographic redshift bins by another native CosmoSIS
code. This code assumes the Limber approximation (Limber, 1953) and the flat-sky
approximation. Kilbinger et al. (2017) have shown that these approximations are a
good approximation, even for stage IV surveys such as Euclid, when ` > 10. The
steps as explained here are followed for all the shear angular power spectra shown
throughout this thesis.

1http://bitbucket.org/joezuntz/cosmosis
2https://camb.info/

http://bitbucket.org/joezuntz/cosmosis
https://camb.info/
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Chapter 4

Summarizing Gaussian Signals

This chapter will investigate some relatively simple cases where the information
maximizing neural network is trained. This allows us to find cases where the net-
work fails, how to resolve those cases and which problems can in general be ex-
pected when trying to summarize complicated datasets. Additionally, since these
simple cases can be solved analytically, we can see how well the network performs.

In this chapter, the network is trained to summarize different types of Gaussian
signals. We start by summarizing one unknown parameter, the variance, of a one
dimensional Gaussian and then add a second parameter, the mean.

4.1 One unknown parameter

One of the simplest toy models we can construct is where we have n data points
drawn from a normal distribution with zero mean and unknown variance: Xi, ..., Xn ∼
N (0, θ). It should be noted that this example is also explored in (Charnock, Lavaux,
and B. D. Wandelt, 2018), but in less detail, and we repeat the example deliberately
so we can verify that the network works.

The likelihood function (Eq. 2.2) of this model is given by

L(θ) = ∏n
i=1

1√
2πθ

exp
(
−X2

i
2θ

)
= 1

(2πθ)n/2 exp
(
− 1

2θ ∑n
i=1 X2

i
)

.
(4.1)

The log-likelihood is given by

lnL(θ) = −n
2

ln(2πθ)− 1
2θ

n

∑
i=1

X2
i . (4.2)

Thus in this case the minimal sufficient statistic is given by x = ∑n
i=1 X2

i , since this is
the only term that depends on the data. The value that maximizes the score relates
this sufficient statistic to the variance:

0 =
∂ lnL(θ)

∂θ
=

x
2θ2 −

n
2θ2 . (4.3)

Thus the sufficient statistic in terms of the variance is given by

x = nθ. (4.4)
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FIGURE 4.1: Fisher information and value of the loss function as a func-
tion of training epoch.

6

4

2

Ne
tw

or
k 

ou
tp

ut
 x

1

Summary of input data
Rejected samples
Accepted samples

0 1 2 3 4 5
1 = 2

0.0

0.2

0.4

0.6

0.8

(
1|d

)

MLE
fid

Analytic posterior
ABC posterior

FIGURE 4.2: top: Network output summary as a function of the unknown
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put values, and the blue points show summaries that are closer than some
value ε = 0.1 to the network output of the input data, shown as the
dashed line. bottom: Histogram of the approximate posterior. The vari-
ance of the input data is shown as the dotted line and the MLE from the

network summary as the dotted line

From Equation 2.13, we compute the Fisher information:

F = −
〈
−x
θ3 +

n
2θ2

〉
=

n
2θ2 . (4.5)

which is 5 in the case we will consider, where n = 10 and θ f id = 1.
We then move to training the information maximizing network. The network

setup that is used consists of two densely connected hidden layers both with 128
nodes. This setup is inspired from Charnock, Lavaux, and B. D. Wandelt (2018),
who also used two hidden layers, but we have found that half the number of nodes
per layer works equally well. The weights and biases are initialized from a normal



4.1. One unknown parameter 27

distribution with zero mean and standard deviation
√

2/kl−1 where kl is the number
of neurons in layer l (K. He et al., 2015). This is a popular initialization method
as it keeps the size of the layers in mind, allowing for more efficient convergence.
The network uses 5000 training simulations, but only 1000 simulations at a time to
calculate the covariance matrix. To calculate the derivative of the network mean, we
generate 1000 upper and lower simulations at θ ± ∆θ, with ∆θ = 0.1. No dropout is
used, but a test set of 1000 simulations is given to the network to track whether the
network is overfitting. After training the network for 1,000 epochs with a learning
rate of 10−2 we obtain a final Fisher information of 4.68 on the training set and 4.75
on the test set, as shown in Figure 4.1. The network has converged to almost the
analytical Fisher information of 5 within 200 epochs.

To verify that the network has indeed obtained an informative summary for the
variance of the data we perform the ABC method described in Section 3.1.1. The
input data, which we want to infer the posterior from, is a noisy realization of 10
data points from a Gaussian with zero mean and unit variance. We use a Gaussian
prior with a mean of 1 and variance of 2 truncated at 0 and 5. From this prior, 105

samples are drawn and the output summaries of the network are plotted in Figure
4.2. The approximate posterior is generated by accepting samples that are within a
distance (defined in Sect. 3.1.1) ε = 0.1 from the network output of the input data.
This value of ε is found by dividing the network output by 20, which we empirically
found to be a good first guess of ε. The calculated posterior agrees well with the
analytical posterior, but we are drawing a lot of points that are far away from the
network output of the input data and the ε value is chosen quite arbitrarily. To
improve on this, we now use the population Monte Carlo method (Section 3.1.2)
with the same prior, and imposing that we stop when only 104 samples are kept in
the approximate posterior (i.e., a criterion of 0.1). The result is shown in Figure 4.3.
An interesting thing that can be taken away from this figure is that the PMC method
finds a slightly worse shape for the posterior than the ABC only algorithm (Fig. 4.2).
However, the maximum a posteriori probability (i.e., the mode of the posterior) is
still the same in both cases. The exact shape of the posterior is dependent on the
value of ε when doing ABC, and dependent on the stopping criterion (the ratio of
draws needed to draws accepted) when doing PMC. This implies that if a good
approximation of the full posterior function is warranted, the criterion and distance
thresholds are still important hyper-parameters which have to be tuned by hand.

We found that the loss function steadily declines for the learning rates 10−2, 10−3,
10−4 and 10−5, with the only difference being the number of epochs required to
converge to a final Fisher information near 5. The ∆θ parameter was varied in [0.001,
0.01, 0.1, 0.3, 0.5] and we found that all of these parameters work about equally well.
For various other values of the variance, we explored θ f id = [2, 3, 4, 5]. This of
course changes the analytical Fisher information available to [1.25, 0.56, 0.32, 0.2]
respectively, which we found the network approximates correctly as well.

We also investigated different values of the number of input data points n. When
changing the number of input data points, the Fisher information changes too. Since
the variance is chosen to be unity, the Fisher information scales linearly with the
number of input data points (Eq. 4.5). The number of data points was varied in
n = [10, 100, 1000, 10000]. For n = 100, the network already struggles to learn the
problem. It finds a Fisher information on the training set of around 50 (the analytical
value), but only approaches around F = 26 on the test set. After more testing, we
found that an increasing amount of simulations is needed for the network to learn
the problem with more data points. This is because providing more data points does
not add much information, and thus we are actually increasing the difficulty of the
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FIGURE 4.3: Results of PMC-ABC using the network to summarize a
Gaussian signal with unit variance. The top panel shows the input data
summary as the dashed line and the generated datasets by the PMC algo-
rithm as the blue dots. The bottom panel shows the approximate posterior

inferred from binning the generated datasets in the top panel.

problem. Therefore, the network needs more training examples to distinguish the
important features from the data and learn the summary statistic correctly.

The number of simulations used to approximate the covariance of the network
outputs ns was found to be an important parameter. We varied ns = [100, 200, 400,
600, 1000] and we found that for less than 400 simulations, the network is not able
to learn the problem due to not being able to approximate the covariance matrix
correctly. When splitting the calculation of the covariance matrix up into 5 smaller
sets of simulations, the network is able to learn the problem with 100 simulations at
a time. This splitting provides variations in the derivative of the mean µ f ,α and the
covariance C of the output of the network, which allows the network to learn the
problem slightly faster with less amounts of total simulations.

The most important parameter was found to be the number of simulations used
to calculate the derivative of the network outputs, this was varied in [50, 100, 200,
500, 1000] and we found that for less than 1000 simulations to calculate the deriva-
tive, the derivative is not approximated correctly and the network is unable to learn
the summary. This is result is quite unexpected, considering that we set the same
random seed for the central, upper and lower simulations. One would expect that
since these simulations are seeded, the derivative is easily approximated and less
perturbed simulations are needed than the central simulations, but apparently this
is not the case. Interestingly, due to the way the network is set up, the number of
derivative simulations was also lower when lowering the amount of simulations
used to approximate the covariance of the output. However, in these versions of
the network (See Table 4.1, version 40-44), the number of derivative simulations did
not hinder the ability to learn. From these two setups, it seems that the number
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TABLE 4.1: Results of the training the network as function of vari-
ous parameters. ns refers to the number of central simulations and
nd the number of simulations slightly above and below the fiducial

parameters.

Version Learning rate num epochs splits ∆θ ns θ f id nd input shape activation Final detF train Final detF test

1 0.1 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu NaN NaN
2 0.01 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 4.92 4.93
3 0.001 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 4.81 4.32
4 0.0001 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 4.51 4.29
5 1E-05 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 3.41 3.16
10 0.001 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 5.53 4.86
11 0.001 5000 5 [0.1] 1000 [1.0] 1000 [100] leaky_relu 50.17 27.34
12 0.001 5000 5 [0.1] 1000 [1.0] 1000 [1000] leaky_relu 3335.04 38.44
13 0.001 5000 5 [0.1] 1000 [1.0] 1000 [10000] leaky_relu 1904.67 14.01
20 0.001 5000 5 [0.001] 1000 [1.0] 1000 [10] leaky_relu 5.12 4.54
21 0.001 5000 5 [0.01] 1000 [1.0] 1000 [10] leaky_relu 4.93 4.42
22 0.001 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 4.89 5.03
23 0.001 5000 5 [0.3] 1000 [1.0] 1000 [10] leaky_relu 4.99 5.09
24 0.001 5000 5 [0.5] 1000 [1.0] 1000 [10] leaky_relu 5.54 5.38
30 0.001 1000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 5.08 4.55
31 0.001 10000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 4.66 4.37
40 0.001 5000 5 [0.1] 100 [1.0] 100 [10] leaky_relu 7.81 5.16
41 0.001 5000 5 [0.1] 200 [1.0] 200 [10] leaky_relu 7.05 4.33
42 0.001 5000 5 [0.1] 400 [1.0] 400 [10] leaky_relu 5.77 4.28
43 0.001 5000 5 [0.1] 600 [1.0] 600 [10] leaky_relu 5.01 5.04
44 0.001 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 4.69 4.69
50 0.001 5000 1 [0.1] 1000 [1.0] 1000 [10] leaky_relu 5.84 4.34
51 0.001 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 5.1 4.77
52 0.001 5000 10 [0.1] 1000 [1.0] 1000 [10] leaky_relu 4.47 4.62
53 0.001 5000 20 [0.1] 1000 [1.0] 1000 [10] leaky_relu 4.8 4.31
54 0.001 5000 50 [0.1] 1000 [1.0] 1000 [10] leaky_relu 4.81 4.95
60 0.001 5000 5 [0.1] 1000 [1.0] 50 [10] leaky_relu 1.24 0.19
61 0.001 5000 5 [0.1] 1000 [1.0] 100 [10] leaky_relu 0.73 0.45
62 0.001 5000 5 [0.1] 1000 [1.0] 200 [10] leaky_relu 0.85 0.62
63 0.001 5000 5 [0.1] 1000 [1.0] 500 [10] leaky_relu 1.18 0.63
64 0.001 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 5.2 4.68
70 0.001 5000 5 [0.1] 1000 [1.0] 1000 [10] leaky_relu 5.03 5.17
71 0.001 5000 5 [0.1] 1000 [2.0] 1000 [10] leaky_relu 1.3 1.2
72 0.001 5000 5 [0.1] 1000 [3.0] 1000 [10] leaky_relu 0.61 0.55
73 0.001 5000 5 [0.1] 1000 [4.0] 1000 [10] leaky_relu 0.3 0.28
74 0.001 5000 5 [0.1] 1000 [5.0] 1000 [10] leaky_relu 0.21 0.18

of derivative simulations cannot be a small fraction of the number of simulations
to approximate the covariance, which contradicts the statement made in Charnock,
Lavaux, and B. D. Wandelt (2018) that relatively few extra simulations are needed
to approximate the covariance. This might be explained by the fact that we use the
chain rule (Eq. 3.9) to calculate the derivative of the network output, and Charnock,
Lavaux, and B. D. Wandelt (2018) use the central difference method (Eq. 3.8). With
the chain rule method, the derivative of the output summaries with respect to the
data ∂x

∂d , is calculated at the central simulations, while the derivative of the data with
respect to the parameters ∂d

∂θ is calculated by using the upper and lower simulations.
If these two terms are not calculated with same amount of simulations, the uncer-
tainty in the terms will differ, which might cause the incorrect approximation of the
derivative.

Finally, as Table 4.1 shows, for many different hyper-parameters and random
initializations of the network, the analytical Fisher information of 5 was indeed ap-
proached closely. This indicates that not much fine-tuning is needed to find a net-
work that summarizes the information correctly.
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4.2 Two unknown parameters

As a second step, we move to multiple unknown parameters. In this case, we draw
n data points drawn from a Gaussian distribution with unknown mean and vari-
ance to see if the network can learn to summarize both parameters. We define
θ = (θ1, θ2)T, where θ1 = µ and θ2 = σ2. This problem is also easily solved analyti-
cally, but we investigate it to see how the network performs on multiple parameters.
The likelihood is given by (Eq. 2.2)

L =
n

∏
i

1√
2πσ2

exp
[
− (di − θ1)

2

2θ2

]
. (4.6)

From which the log-likelihood can be found

lnL = −n
2

ln(2πθ1)−
n

∑
i

(di − µ)2

2θ2
. (4.7)

There is a single sufficient statistic which describes the mean and a single sufficient
statistic which describes the variance. These summaries can be found by finding the
maximum of the likelihood. We can calculate the analytical Fisher information by
taking the negative of the second derivative of the likelihood function (Eq. 4.6), and
then taking the expectation by evaluating this at the fiducial parameter values (cf.
Eq. 2.13). The first derivative of the log-likelihood with respect to the mean is given
by

−
n

∑
i

2µ− 2di

2θ2
. (4.8)

If we differentiate this with respect to θ2, we obtain a function of (di − µ) of which
the expectation value is zero and therefore the diagonal elements of the Fisher infor-
mation matrix are zero. The upper left element of the matrix is obtained by again
differentiating the score with respect to the mean, and the lower right element of the
matrix was already calculated in Equation 4.5. Thus, we obtain a Fisher information
matrix of

F =

[
n
θ2

0
0 n

2θ2
2

]
(4.9)

If we choose n = 10 data points drawn from a fiducial mean of θfid
1 = 0 and

variance of θfid
2 = 1 the analytical Fisher information is n2/2θ3

2 = 50.
This problem was also explored as a function of learning rate, input shape, ∆θ,

number of simulations to approximate the covariance, number of splits, and num-
ber of derivative simulations. The most important parameter was again number of
simulations used to approximate the derivative. 1000 simulations were needed to
approximate the derivative correctly. The same network setup is used as in the pre-
vious section. After training for 500 epochs, the learning curve is shown in Figure
4.4, where the analytical Fisher information of 50 is well approached, but again not
quite reached on the test set. The output of using the summaries to do approximate
Bayesian computation is shown in Figure 4.5, inferring the parameters of an input
dataset generated at µ = 0, σ2 = 1. We have drawn 105 datasets from a multivariate
Gaussian prior with mean [1, 2], and diagonal covariance [2, 2], truncated in the first
dimension as −3 <µ < 3 and in the second dimension as 0<σ2<5. The prior is pur-
posely offset from the input parameters now, to see whether the ABC method still
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FIGURE 4.4: Fisher information and value of the loss function as a func-
tion of training epoch for a network that summarizes Gaussian data with

unknown mean and variance.

works even when the prior is chosen away from the parameters, and to make sure
we are not just sampling the prior. The prior mean is still within 1σ of the input pa-
rameter values however, since we would otherwise not be sampling the interesting
part of the parameter space. It is interesting to see that in Figure 4.5, the first output
summary is a quadratic function of the mean. This shows that the network does in-
deed find non-linear mappings between the input data and the summary statistics.
The 2D posterior is also plot in Figure 4.6, which shows that the input parameters
are in good agreement with the posterior inferred from ABC, and that we are indeed
not simply sampling the prior distribution.
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Bayesian computation using the summaries generated by the network.

The input parameter values are indicated as blue lines.
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Chapter 5

Summarizing Weak Lensing Data
Vectors

5.1 One parameter

In this chapter, we build up the complexity of the problem gradually. We start simple
in this section by not yet employing tomographic redshift bins and investigate the
behaviour of the network for a single free parameter: Ωm. The weak lensing power
spectra, C`, are generated with CosmoSIS, as explained in Section 3.3 and the defini-
tion of the weak lensing power spectrum was derived in Section 2.2. We assume a
Euclid-like survey without any complex masking or boundary effects, for simplicity.

To calculate the weak lensing power spectrum, we must specify the source red-
shift distribution n(z). For Euclid, the source redshift distribution is known (Laureijs
et al., 2011; Amendola, Appleby, D. Bacon, et al., 2013; Schaan et al., 2017) and given
by the following equation

dn/dz ∝ zαe−(z/z0)
β

(5.1)

with α = 1.3, β = 1.5 and z0 = 0.65. The total number of sources observed per
area of the sky is n = 30 arcmin−2 and the total area Euclid will cover is 15,000
deg2. We use redshift bounds 0 ≤ z ≤ 2 and normalize the distribution to match
the expected number of observed sources. The shape noise, due to observing a finite
sample of galaxy ellipticities, is assumed to be σe = 0.26, following Schaan et al.
(2017). We define the observed power spectrum as the theoretical power spectrum
contaminated by shape noise as follows

Cobs(`) = C(`) +
σ2

e
n

(5.2)

where n is the observed number of galaxies in the survey. The redshift of the sources
is in practice not known exactly, but is determined via photometric redshifts. It is
common in the literature to assume the galaxies have a photometric redshift zph dis-
tribution P(zph|z) that is a Gaussian function of the true redshift z. This distribution
is usually assumed to be a Gaussian with mean z, a scatter σz(z) and possibly a bias
bz(z). For a Euclid-like survey, typical parameters that are used are σz = 0.05(1 + z)
and bz(z) = 0, which we adopt here as well.

The observed power spectra will be noisy realizations of the theoretical power
spectrum. To simulate this effect, we calculate the expected covariance matrix of the
observed lensing power spectrum, which is given by (Scoccimarro, Zaldarriaga, and
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FIGURE 5.2: Initial behaviour of the loss function and Fisher information
when training the information maximizing neural network without mod-

ifying the input data. It is obvious that the network is not learning.

Hui, 1999)

Cov[Cobs(`a), Cobs(`b)] = 〈Cobs(`a)Cobs(`b)〉 − 〈Cobs(`a)〉〈Cobs(`b)〉

=
2Cobs(`a)Cobs(`a)δK

ab
(2`a + 1)∆` fsky

+ CovNG (5.3)

where the first term on the right-hand side is the Gaussian contribution and the
second term the non-Gaussian contribution. In the Gaussian limit, all Fourier modes
are independent random variables, and thus uncorrelated. This is imposed by the
Kronecker delta. The number of modes at a given ` is (2`+ 1)∆l fsky, where fsky is
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the fraction of the sky observed by Euclid. For simplicity, we will only consider the
Gaussian part of the covariance in this study. For an analysis of the impact of the
non-Gaussian part of the covariance see e.g., Takada and Jain (2009). The general
covariance matrix of the power spectrum C`, would be a n`× n` dimensional matrix,
where n` indicates the amount of ` modes, but because in the Gaussian assumption
different modes are uncorrelated, the off-diagonal terms of this matrix are zero, and
we can realize the noisy power spectra from one-dimensional normal distributions
with variance Cov` as given in Equation 5.3

C` ∼ N (Cobs
` , Cov`). (5.4)

We compute the power spectrum at n` = 100 equally log-spaced samples, be-
tween ` = 50 and ` = 3000 following Takada and Bridle (2007). We base our
fiducial parameters at which the training data will be generated on Alsing and B.
Wandelt (2019), but define the amplitude of the power spectrum in terms of As in-
stead of σ8. The fiducial cosmological parameters are As = 2.1× 10−9, Ωm = 0.315,
Ωbh2 = 0.0244, h = 0.674, ns = 0.965, w0 = −1.03. The theoretical power spectrum
calculated for these parameters is plotted in Figure 5.1. The figure shows the 1σ
Gaussian error bars calculated with Equation 5.3. We can see that at small ` the sam-
ple variance dominates, and that we are not yet probing the small physical scales
where the shape noise becomes important.

The setup for the information maximizing neural network is mainly the same
as the setup that was used in Chapter 4. The number of simulations used at once
to approximate the covariance of the network outputs is 1000, and we again use 5
different training splits, for a total of 5000 simulations. For the derivative of the net-
work outputs, we feed 1000 simulations at Ωm ± ∆θ with ∆θ = 0.02. The test set
totals 1000 simulations at the fiducial Ωm and 200 simulations for the derivative. We
use the same architecture of the network that was found to be suitable for summa-
rizing Gaussian noise in Chapter 4, a densely connected network of two layers, but
we now set 256 nodes per layer, as our input data-vector is larger. The learning rate
parameter is set to 10−4 after testing the behaviour of the neural network for an ini-
tially small amount of epochs and the leaky ReLu activation function is used. Unless
otherwise specified, this setup will be used throughout the rest of this work.

Initially, the Fisher information calculated by the network was not improving,
and the behaviour of the loss function was quite random, as Figure 5.2 shows. This is
because the data had not yet been standardized, so the values of the power spectrum,
which are of the order ∼ 10−9, will be in the machine round-off error regime when
combining them with the initial values of the weights and biases of the network,
which have around values of order unity. Additionally, logarithmic space is a more
natural space to define the power spectrum in, as is evident from Figure 5.1. We thus
imposed the standardization of the simulated data ds

i by taking the natural logarithm
of the data.

~d′
s
i = ln(~ds

i ). (5.5)

This standardization resulted in the learning curve given in Figure 5.3a. This figure
shows that the network converges to a Fisher information of around 2× 107 within
2000 epochs, after which the loss function does not change significantly anymore.
The trained network is now the function that compresses an input data vector of
dimension 100 to a single number. We use the summaries calculated by the trained
network to perform Approximate Bayesian Computation (ABC). The input data to
infer the posterior of is a noisy simulation at Ωm = 0.315. A uniform prior over Ωm in
the range [0.29, 0.33] is used because while ABC is rather inefficient, CosmoSIS allows
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erated.

FIGURE 5.3: Network results after re-scaling the input data by taking the negative
logarithm. (A) shows the learning process and (B) shows the results of ABC.

the power spectra to be calculated in parallel for uniform priors. This turned out to
be faster than doing Population Monte Carlo (PMC) sampling in one dimension,
but it should be noted that this is simply an implementation problem and generally
PMC will converge faster. We draw 20,000 simulations from the prior and set the
threshold ε such that 5% of all simulations are accepted. The results of ABC are
plotted in Figure 5.3b. Figure 5.3b shows good agreement of the inferred posterior
and the input parameter Ωm = 0.315. The maximum likelihood estimate (MLE) in
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Note that it looks equivalent to Figure 5.3a, but the Fisher information is

about two orders of magnitude smaller.
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unit variance after the logarithm has been taken.

FIGURE 5.4: Network results after re-scaling the input data by taking the negative
logarithm and subsequently mapping to zero mean and unit variance. (A) shows

the learning process and (B) shows the results of ABC.

this figure is obtained from interpolating the output of the network on the training
data to the output of network on the ‘real’ data using the derivative of the network
at the trained simulations. Figure 5.3b shows that the MLE is in this case a good
estimate of the true parameter, since the data is generated at the same parameter as
the training data for the network.

In the field of machine learning, the data is often standardized to make the dis-
tribution of the data have zero mean and unit variance. In the ideal case, this should
not impact the end results, but usually makes learning faster, as the network does
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not spend the first part of training performing some re-scaling to the scale of the
features. To investigate whether this is also the case with weak lensing data vectors,
we have trained another version of the network with data that was first standard-
ized to logarithmic space according to Equation 5.5, and subsequently mapped to
have zero mean and unit variance. The learning curve of this network is shown in
Figure 5.4a. This Figure shows the same behaviour as Figure 5.3a but the Fisher
information is two orders of magnitude less. The network does not converge sig-
nificantly faster than the previous network, and from Figure 5.4a it seems that the
network has maximized the Fisher information. However, when using this network
as the compression function for ABC, we found that the summary statistic does not
capture the right information about the parameter Ωm. This becomes apparent from
Figure 5.4b, which shows a large bias towards low Ωm, and also a larger scatter in
the output summary as function of Ωm than in Figure 5.3b. This behaviour is likely
due to the fact that the weak lensing data vector spans several orders of magnitude
and re-scaling this vector to have zero mean and unit variance removes that infor-
mation. Finally, standardizing the data without mapping it to logarithmic space first
produced a behaviour of the loss function similar to that of Figure 5.2, where the
network was unable to decrease its loss function. The optimal re-scaling of the data
is thus taking the logarithm, this is the re-scaling that we use throughout the rest of
this work.

5.2 Tomography and multiple parameters

In this section we generalize the approach of Section 5.1 to multiple tomographic
redshift bins and multiple parameters. We choose to look at the two parameters
that cosmic shear is most sensitive to, σ8 and Ωm, but we stress again that cosmic
shear actually only probes a degenerate combination of these parameters (see Sect.
2.2.2). The distribution of source redshifts is now split into nz = 3 tomographic
redshift bins. This produces a total of nz× (nz + 1)/2 = 6 power spectra, three cross-
correlation and three auto-correlation spectra. The weak lensing power spectrum in
redshift bin ij is calculated according to Equation 2.45:

C`,ij =
∫

Wi(χ)Wk(χ)χ
−2Pδ(k =

`

χ
; χ) (5.6)

The shape noise contamination now only applies to auto-correlation spectra, since
the shapes of galaxies in different redshift bins are assumed to be uncorrelated. This
is imposed by the Kronecker delta δK

ij in

Cobs
(ij)(`) = C(ij)(`) + δK

ij
σ2

e
ni

, (5.7)

here ni refers to the average number of galaxies in redshift bin i. In the case of
tomography, the Gaussian covariance between angular power spectra in different
tomographic redshift bin combinations ij and i′ j′ is given by (Takada and Bridle,
2007)

Cov`,(ij),(i′ j′) =
Cobs
(ii′)(`)C

obs
(jj′)(`) + Cobs

(ij′)(`)C
obs
(ji′)(`)

(2`+ 1)∆` fsky
. (5.8)

where fsky is the sky coverage, and (2`+ 1)∆` fsky is the number of modes at a given
`, which is adjusted for the partial sky coverage of Euclid. The general covariance
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FIGURE 5.5: Theoretical power spectra calculated for a Euclid-like sur-
vey with three tomographic redshift bins. The error bars are given by the

diagonal of the Gaussian covariance matrix.

matrix, including the non-Gaussian term, would have dimensions nl× (nz + 1)/2 by
nl × (nz + 1)/2, with nl being the number of sampled multipoles and nz the number
of redshift bins. This is due to the non-Gaussian correlations between different `
modes. The Gaussian part of the covariance matrix is diagonal in `, which means
there is correlation only between the same `s in different tomographic power spectra.
This allows us to define nl matrices of dimensions (nz + 1)/2 by (nz + 1)/2. Again,
we set nl = 100 multipole bins that are logarithmically spaced between ` = 50 and
` = 3000.

The fiducial cosmological parameters at which training data is generated are
now defined as σ8 = 0.811, Ωm = 0.315, Ωbh2 = 0.0244, h = 0.674, ns = 0.965,
w0 = −1.03, following Alsing and B. Wandelt (2019). The parameters of interest are
now denoted by θ = [Ωm, σ8], and we use ∆θ = [0.02, 0.02] for the simulations just
above and below the fiducial parameters. The six calculated power spectra with the
diagonal part of the covariance matrix as the error bar are shown in Figure 5.5. This
figure shows that because we split the distribution up into several redshift bins the
shape noise now starts to become important in some of the power spectra at the high
` modes.

The network has the same setup as the previous section, but now the input data
vector is the flattened vector of the six noisy power spectra shown in Figure 5.5.
Thus, the input data vector is now a 600 dimensional vector, which will be com-
pressed to two numbers. The learning curve of the information maximizing network
is shown in Figure 5.6a. The network converged within a few hundred epochs, but
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FIGURE 5.6: Results after training a network to compress weak lensing data vectors
with two free parameters, Ωm and σ8 and three tomographic redshift bins. (A)

shows the learning process and (B) shows the inferred posterior.

there is a small discrepancy between the training and the test loss. We have found
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FIGURE 5.7: Equivalent to Figure 5.6b, but with a tighter prior on Ωm.

that using architectures with more nodes or layers does not fix this small discrep-
ancy. However, some discrepancy between the training and test set is to be expected
for increasingly complex datasets since the network is trained to optimize the Fisher
information for the training set, and will thus generally perform better on the train-
ing set. Since the test loss is not increasing, we can be reasonably sure that we are
not overfitting.

To investigate the fidelity of the final trained network, we again perform like-
lihood free inference on some input data. The input data that is fed to the trained
network is a noisy weak lensing data vector generated at Ωm = 0.315 and σ8 = 0.811.
For the ABC algorithm, we use a uniform prior over Ωm in the range [0.20, 0.40] and
a uniform prior over σ8 in the range [0.70, 0.90]. Again, 20,000 simulations are drawn
from this prior and 5% of the simulations are accepted. The resulting 2D posterior
is shown in Figure 5.6b. The degeneracy in Ωm and σ8 is visible as the posterior is
elliptical, showing equiprobable contours going upwards in σ8 with decreasing Ωm.
With a tighter prior on Ωm we can lift some of the degeneracy, as an example, a
uniform prior of Ωm in the range [0.29, 0.33] produces the posterior shown in Figure
5.7. We see that in all cases the posterior agrees well with the input parameters of
Ωm and σ8, indicating the network has learned to summarize the weak lensing data
vectors in an unbiased way, in the general case of multiple parameters and multiple
tomographic redshift bins.
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FIGURE 5.8: Network output x1 and x2 as a function of the input param-
eters sampled at 50 points via a Latin hyper-cube design that maximizes
the minimum distance between points in the parameter space. The fidu-
cial parameters at which the network was trained and at which the input

data is generated is indicated by the red dot.

5.3 Fitting the output summaries

The main computational bottleneck after training the network are the forward sim-
ulations of the weak lensing power spectra that we had to generate to compute the
posterior via ABC. If an inexpensive model for this would be available, one could
draw as much samples as is necessary to converge to the true posterior. From the
behaviour of the output of the network as a function of the parameters (e.g., Figure
5.3b), it seems reasonable that we could fit a relatively simple function to approxi-
mate what the summary statistics the network would return given data generated
from some input parameters. If this function is a good approximation, output sum-
maries can be predicted immediately from the input parameters, allowing for com-
putationally very cheap likelihood free inference. Building such a network emulator
is the goal of this section.

5.3.1 Plane fit

We will begin with the first order approximation that the output summaries are a
linear function of the input parameters, which essentially means fitting a plane to
the network output. Before we can fit the output of the network as a function of the
parameters, we must first sample the parameter space by simulating (ideally as few
as possible) forward models and giving those to the trained network. Random sam-
pling of the parameter space is sub-optimal, it is usually better to use a Latin hyper-
cube design (McKay, Beckman, and Conover, 1979). Latin hyper-cubes partition the
range of every parameter into M segments such that the entire N dimensional space
is divided into MN cells. A sample point is then drawn and accepted if no other sam-
ple points lie along the same partition in any dimension (i.e., samples are not in the
same row or column). In this way, all defined sub-ranges of the possible parameter
combinations are simulated. We impose the additional criterion that the minimum
distance between the points has been maximized, the maximin criterion (Johnson,
Moore, and Ylvisaker, 1990).

We generate 50 samples in total from the parameter space where 0.2 ≤ Ωm ≤ 0.4
and 0.7 ≤ σ8 ≤ 0.9. The 50 samples are shown in Figures 5.8a and 5.8b which respec-
tively show the first and second output of the network for the 50 input simulations.
The figures show clearly that the two summaries are correlated. The correlation is
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even more evident in Figure 5.9, where we plot the output summaries colored by
S8 = σ8

√
Ωm/0.3. The fact that the output summaries are correlated is not surpris-

ing, given that σ8 and Ωm are degenerate and the combination of both, S8, is actually
the only parameter that we can infer. Thus the minimum amount of sufficient statis-
tics in this setup is actually only one, and it seems that the network has learned this
as well. Therefore, even though the summaries are regularized against having corre-
lation (Equation 3.11), one of the summaries is now partly redundant as both contain
overlapping information. We still fit both summaries with a plane function, as we
need two equations to infer both parameters.

x1 = a1Ωm + b1σ8 + c1

x2 = a2Ωm + b2σ8 + c2.
(5.9)

The fit is calculated with a robust least squares method, using the soft L1 loss function
ρ(z) = 2

√
(1 + z)− 1. The soft L1 loss is the smooth approximation of the classic

L1 loss function, we choose this loss function as it is more robust against outliers.
The best fit parameters calculated with robust least squares differ less than a percent
from the best fit parameters calculated with general least squares, which is expected
as Figure 5.8 showed no clear outliers. The plane seems to be a reasonable first
model, since the residuals shown in Figures 5.10a and 5.10b indicate a relatively
good fit. The fit on x2 better than on x1, which is also to be expected since Figure 5.8
showed that x2 has much lower scatter than x1. The fit can now be viewed as the
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FIGURE 5.10: Residuals of the plane fit f (Ωm, σ8), to the first and second
output summary of the network. The residuals are plotted against the

index of the 50 data points in the Ωm, σ8 plane.

FIGURE 5.11: Posterior inferred by Approximate Bayesian Computation
using the fitted plane model as the forward model. A slight bias towards
higher S8 is visible, as the posterior lies more to the upper right of the

input parameters, given by the blue lines.

cheap model that calculates the ‘forward simulations’ and we use this model to do
ABC.

We use the same uniform priors for ABC as in the previous section. Figure 5.11
shows the inferred posterior, which shows we have introduced a small bias towards
higher Ωm and σ8. It also shows that the degeneracy in Ωm and σ8 is made slightly
worse because the plane fit is only a linear approximation, which is only valid near
the input parameters. By extrapolating this linear approximation, we impose a per-
fect degeneracy over Ωm and σ8 over the full range of possible values of Ωm and
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FIGURE 5.13: One sigma uncertainties on each of the 50 output summaries
of the network, calculated by 1000 Monte Carlo realizations of the parti-

cles sampled by the Latin hyper-cube.

σ8. The fits to x1 and x2 are plotted in Figures 5.12a and 5.12b. Here the fiducial
input simulation is indicated by the red dot, and the most likely values, as will be
explained later, are indicated by the black dot, which is indeed slightly biased up-
wards.

The most likely value of Ωm and σ8 of some input data can be inferred directly
if we have the fitted model by setting Equation 5.9 equal to the output summaries
of the input data. Solving these equations gives us the values Ωm = 0.32 and σ8 =
0.82, which are quite close to the input values. To estimate the uncertainty on these
parameters, we must estimate the uncertainty on the fit.

The uncertainty on the fitted parameters can be estimated if we do a simple least
squares fit. We have already confirmed the difference with robust least squares to be
small, so in this case outliers are not of concern. To quantify the uncertainty correctly,
we must first have some idea about the uncertainty of the calculated summaries x1
and x2. For this, we use a Monte Carlo method. We draw 1000 noisy realizations of
every of the 50 power spectra generated. This is still a cheap calculation, since we
only have to add different realizations of Gaussian noise to the already calculated
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power spectra. These 1000 noisy realizations are propagated trough the trained net-
work, and the standard deviation in the output of the network will be used as the
uncertainty on the summaries. The 1σ uncertainty on each of the 50 data points is
plotted in Figure 5.13, which shows the average 1σ uncertainty is 0.041 for x1 and
0.022 for x2, which are quite low given the values of the output summaries. Using
this as the estimate for the error on the summaries, we find that the best fit least
square parameters p ∈ [a1, b1, c1, a2, b2, b3] have fractional uncertainties p/σp given
by [0.1, 0.2, 0.03, 0.0010.002, 0.0002] respectively, where we can immediately see again
that x1 does not follow a plane fit as well as x2. For the most likely parameters we
now propagate these uncertainties, taking into account the covariance of the fitted
parameters. We find after solving Equation 5.9 with the simple least square param-
eters, the values of σ8 = 0.82± 0.08, Ωm = 0.31± 0.05. This means that the input
parameters of Ωm = 0.315 and σ8 = 0.811 lie just outside of the 1σ boundary. This
shows that the fitting the network with this simple function still retains much infor-
mation about the parameters, although at the cost of a stronger degeneracy between
Ωm and σ8 and a slight bias towards higher S8 due to the linear approximation of the
summary statistics.

5.3.2 Gaussian Process

The results of the previous section show that fitting the output summaries of the
network can provide us with a promising network emulator which allows us to do
very fast likelihood-free inference. The plane fit, however, is not in general a good
option, and while the fit seemed to work relatively well given the limited complexity
of the model, we can do better with more advanced methods.

In this section we fit the output of the network with a probabilistic model, a
Gaussian process (see Rasmussen and Williams, 2005, for an in-depth description).
The two main advantages of fitting a Gaussian process are that we do not make
any assumption about the specific form of the process that we try to model and that
there is a natural way to quantify the uncertainty in the data points inferred from
the model.

Gaussian processes are recently becoming more popular in cosmology, as they
can be used as accurate, but fast emulators, which will are becoming more and more
important in the precision-era of cosmology. Gaussian processes have been used
for example to emulate the halo mass function (T. McClintock et al., 2019), the mat-
ter power spectrum (Lawrence et al., 2017) and for reconstructing the Planck 2018
probability distributions with a massive speedup in computation time (Thomas Mc-
Clintock and Rozo, 2019).

To define a Gaussian process, first we define a stochastic process where the points
θ in parameter space are assigned random variables by some real function f (θ), in
our case this function is the trained network. This stochastic process is called a Gaus-
sian process if we assume the joint distribution of a subset of these random variables
P( f (θ1), ..., f (θN)) is a multivariate Gaussian distribution. Gaussian processes can
thus define a distribution over functions, allowing us to perform the fitting in func-
tion space, rather than in parameter space. In reality, we are not interested in mod-
elling the actual input data itself, but only in inferring the relationship between the
input data and target data.

While a multivariate Gaussian is completely determined by its mean and covari-
ance, a Gaussian process is completely determined by its mean function m(~θ) and
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covariance function k(~θ,~θ′), defined as (Rasmussen and Williams, 2005)

m(~θ) = E[ f (~θ)]

k(~θ,~θ′) = E[( f (~θ)−m(~θ))( f (~θ′)−m(~θ′))]
(5.10)

A Gaussian process has no analytical representation of the probability density func-
tion, but is usually written as

f (~θ) ∼ GP
(

m(~θ), k(~θ,~θ′)
)

. (5.11)

where the mean is often set to zero, since this is simply a translation that can be
added afterwards. The covariance function, or kernel k defines the smoothness of
the Gaussian process. An often used kernel is the squared exponential kernel, which
is considered a general good choice for a kernel function (Seikel and Clarkson, 2013).
The squared exponential kernel is given by

k(~θ,~θ′) = σ2
f exp

(
− (θ − θ′)2

2l2

)
. (5.12)

where l is a hyper-parameter that defines the characteristic length scale of the prob-
lem and σf is a hyper-parameter that defines the signal variance. The squared expo-
nential kernel imposes high covariance between outputs that are generated at close
parameter (~θ) values which falls off rapidly as the distance between the input pa-
rameters increases.

Formally, to determine the optimal hyper-parameters l and σf for our problem,
we have to marginalize the marginal1 Gaussian likelihood function over the hyper-
parameters. This marginal likelihood function, neglecting terms not sensitive to
hyper-parameters, is given by (Seikel and Clarkson, 2013)

lnL = ln p( f (~θ)|~θ, σf , l)

= −1
2

ln |k(~θ,~θ) + C|
(5.13)

where k is given by equation 5.12, and thus depends on the hyper-parameters. How-
ever, marginalizing over the log-likelihood is expensive. If the likelihood is well-
behaved and we take a reasonable starting point for the hyper-parameters, we can
find the best hyper-parameters with a simple optimization routine that maximizes
the marginal likelihood (e.g., Seikel and Clarkson, 2013).

Before we model the output summaries of the network as a Gaussian process,
it is useful to re-map the summaries to a new space. As Section 5.3.1 showed, the
summaries we sampled by a Latin hyper-cube are highly correlated, which is to be
expected since we are probing the degenerate combination S8 = σ8

√
Ωm/0.3. Thus a

single summary should suffice to carry all information about S8. We re-map the out-
put summaries by finding the unit eigenvectors ~v1 and ~v2 of the covariance matrix of
the summaries. The eigenvectors define the mapping that transforms the covariance
matrix to a diagonal matrix (with the corresponding eigenvalues on the diagonals),
thus resulting in a space where the two summaries are uncorrelated. In this space, a
single summary statistic carries all information about the parameters, and the other
statistic is uninformative about the parameters. Applying this transformation to the

1The marginal Gaussian likelihood function here refers to the likelihood that is marginalized over
the function space, not the hyper-parameter space.



48 Chapter 5. Summarizing Weak Lensing Data Vectors

1.15 1.10 1.05 1.00 0.95
x1

152

154

156

158

160

162

x 2

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

S 8
=

8
m

/0
.3

FIGURE 5.14: Equivalent to Figure
5.9, but after transforming to the
space where the two summaries are

uncorrelated.

0.20 0.25 0.30 0.35 0.40
m

0.70

0.75

0.80

0.85

0.90

8

152

154

156

158

160

162

x 2

FIGURE 5.15: Re-mapped second
output summary as a function of Ωm

and σ8.

0.20 0.25 0.30 0.35 0.40
m

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

8

Fit to x2

150

152

154

156

158

160

162

164

FIGURE 5.16: Gaussian Process fit to the re-mapped second output sum-
mary.

summaries previously shown in Figure 5.9 yields the summaries as shown in Figure
5.14. Figure 5.14 indeed shows that all information about S8 is now contained in the
second summary, as the second summary is now clearly correlated with S8 while the
first is uncorrelated.

To fit the Gaussian process to the re-mapped second output summary x̂2, we
choose the value for the initial hyper-parameter σf to be equal to the sample variance
of the 50 re-mapped output summaries σx̂2 = 9.4. For the characteristic length scale
l we take a large initial guess of l = 5, since the fitted function should be rather
smooth, as the results of the plane fit were already decent, and the output summary
seems to be a smooth function of both parameters, as is shown in Figure 5.15. This
initial guess was found to be a good starting point after trying multiple scale lengths,
lower scale lengths were found to over-fit the summary. We maximize the likelihood
(Eq. 5.13) with a quasi-Newton optimizer and find that the optimal parameters are
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FIGURE 5.17: Posterior inferred from Approximate Bayesian Com-
putation using the fitted Gaussian Process as an emulator for the for-
ward simulations and the network. The posterior previously inferred
from using 20,000 full forward simulations and propagating these
through the network is shown in orange and the input parameters

are indicated in black.

σf = 12.1 and l = 1.9. The resulting Gaussian process looks like a good fit, which
can be appreciated from comparing Figures 5.15 and 5.16.

The Gaussian Process now defines our network emulator and we can use it to do
Approximate Bayesian Computation. The setup of the ABC is the same as before,
except that the Gaussian process now generates the summary statistics directly from
the parameters. The resulting posterior is shown in Figure 5.17. Figure 5.17 shows
that the posterior generated with the Gaussian process agrees very well with the
posterior that was calculated with a full set of 20,000 forward simulations in Section
5.2. This shows that we can infer an accurate unbiased posterior by fitting just 50
simulations generated by a Latin hyper-cube design, which provides a massive re-
duction in computation time when compared to the 20,000 full forward simulations
we had computed before.
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Chapter 6

Discussion

6.1 Robustness of the network

To discuss the results given in the previous chapter properly, we should first review
the robustness of the information maximizing neural network. This is the aim of this
section, where a few additional tests of the robustness are also performed.

Random processes It is important to realize that we are dealing with random pro-
cesses, as the initialization of the information maximizing neural network is a ran-
dom process, and the inference of the posterior through approximate Bayesian com-
putation (ABC) is a random process. Ideally, these should not effect the final re-
sults, given that the network is trained to convergence and that enough samples are
drawn for ABC. For the ABC we used 20,000 simulations with relatively small pri-
ors of width 0.2 in Ωm and σ8 space. This is an approximate step-size in parameter
space of 0.001. The number of simulations is thus not of concern, as we actually
over-sampled the parameter space somewhat heavily. During the inference of Gaus-
sian signals, Table 4.1 showed that the final Fisher information converged to around
the same value for a broad range of hyper-parameters and thus also various dif-
ferent initializations of the network. Additionally, since we did not have to re-run
the network multiple times in Chapter 5, we can conclude that for the setups used
throughout this thesis the output of the network is at least robust against the precise
seeding of the random number generators that are used.

Training parameters An important thing to note is that thus far in this work, the
values of the parameters at which the information maximizing neural network was
trained were kept the same when generating some ‘observed’ data for which we
inferred the posterior to check the fidelity of the output summaries. While we can
use relatively tight priors on Ωm and σ8 obtained from previous experiments such
as the Planck Collaboration, Aghanim, et al. (2018), it is unrealistic that the network
will be trained at exactly the parameters of the Universe.

We investigate whether the network summaries are still informative about the in-
put data when the network is trained at some fiducial parameters which are chosen
away from the parameters with which the input data is generated. For this purpose,
a new network is trained at the parameters Ωm = 0.20 and σ8 = 0.70. After training,
we propagate a power spectrum generated from Ωm = 0.315 and σ8 = 0.811 through
the network. Both output summaries are used in a full forward-simulation approx-
imate Bayesian computation, which produces the posterior shown in Figure 6.1a.
The figure shows clearly that the network is robust against being trained at param-
eter values that are away from the parameters at which the input data is generated.
No bias is apparent, and the posterior is equivalent to the posterior generated with
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a network that was trained at Ωm = 0.315 and σ8 = 0.811 (Figure 5.6b). This proves
that the actual parameters at which the network is trained are not of much concern
when inferring Ωm and σ8.
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FIGURE 6.1: (A): Posterior generated by ABC of a network trained
at Ωm = 0.20 and σ8 = 0.70, while the input parameters of the input
data are 0.315 and 0.811, which are indicated by the blue lines. (B):

Equivalent, but with a network trained for only 10 epochs.
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Network convergence In this work the neural networks were trained for many
epochs after the loss function had flattened, to be sure that the loss function had in-
deed converged. The training was computationally quite cheap, because of the fact
that simple fully-connected architectures with only a few hidden layers were used. If
more effects, such as for example intrinsic alignment or photo-z biases, are included
in the data a more complex network might be needed to maximize the information
content. In fact, if the input data is much more complex, such as for example a
highly dimensional shear map, some form of an (often more computationally inten-
sive) convolutional neural network would likely be necessary to capture all available
information. In this case, running the network for thousands of epochs beyond the
initial flattening of the loss function might be prohibitively expensive.

To test the behaviour of a network that has not converged yet, we train the net-
work for only 10 epochs, and use this network as the compression function to do
ABC in the exact same way that was done before. The resulting posterior is shown
in Figure 6.1b, which shows, surprisingly, that the posterior is almost exactly the
same as the posterior generated with a fully trained network. We have found that
the magnitude of the output summaries differs between the trained and untrained
network, but the shape of the output summaries as a function of the parameters does
not. Therefore, we see two possible explanations for this result. First, it could be that
the network has not actually maximized the information content yet, but simply
lowered the covariance between the initial summaries such that the regularization
term in the loss function (3.11) becomes lower, and the Fisher information increases
up to convergence. This converged Fisher information might not be the total amount
of information available in the data however, but simply the total amount that the
network can extract from the data given the architecture of the network. Second,
it could be that the random initialization of the weights and biases of the network
already creates a complex enough non-linear function that it provides a one-to-one
mapping of the data to a summary statistic. The parameters Ωm and σ8 only intro-
duce a scaling of the amplitude of the power spectrum, so a simple function such as
the mean of the power spectrum would already be sufficient to distinguish power
spectra generated at different parameters.

We have tried some more complex densely connected architectures by changing
the number of hidden layers between 2 to 4 and tweaking the number of nodes, but
we have not found significantly different performance by the network. In all cases
the Fisher information was of comparable magnitude. This implies that a simple
extension of the architecture is not enough to extract more information from the
input data, but a more complex architecture might be able to.

6.2 Interpretation of the results

One parameter Following the layout of the previous chapter, we start by consid-
ering the results of the inference of Ωm with as input data noisy power spectra gen-
erated without tomographic redshift binning. Figure 5.3b showed that the output
summary is a strong linear function of Ωm. A simple linear function is not unex-
pected because of the simple scaling of the power spectrum at all scales with chang-
ing Ωm. Since σ8 was not a free parameter in the initial setup, there is no degeneracy
and the posterior on Ωm was quite narrow. From the agreement of the posterior with
the input parameter of Ωm = 0.315, we can conclude that the network used for the
inference of Ωm has successfully summarized all information available in the noisy
power spectra.
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From Figure 5.4a, which showed the Fisher information of the network on data
mapped to zero mean and unit variance, and the discussion in the previous section,
we can deduce that convergence of the Fisher information or loss function of the net-
work does not imply that all the information in the data is captured. While Figure
5.4a showed that the network converges to a Fisher information of around 5× 104,
the output summaries are now very biased towards low Ωm as Figure 5.4b showed.
There is nothing that implies that something has gone wrong in the process of train-
ing the network, and the only way to know that the network was biased was in this
case because we knew the value of the input parameter. This poses a problem for the
application of the network to real data, since one might think from the convergence
of the loss function that the network has captured all information, while a strong un-
known bias is introduced and the wrong parameter value is inferred. It is therefore
important in an analysis of real data to train various different setups and compare
the Fisher information and posteriors of these setups.

Two parameters The results of Section 5.2, where we train the network to infer
both Ωm and σ8 are mostly in line with the results of the one parameter case. The
posteriors generated agree well with the input values of Ωm and σ8, but a strong de-
generacy between these parameters is apparent. While this degeneracy is expected
from theory, it should be partly broken by splitting the distribution up into three
redshift bins and we would thus expect tighter constrains on the individual param-
eters as well (see e.g., Merkel and Schäfer, 2017, for Euclid forecasts). However,
as the one dimensional posteriors from the histograms in Figure 5.6b show, the in-
dividual parameters are basically unconstrained as both parameters have almost
uniform posteriors. To investigate this problem, we train three networks with data
vectors generated without redshift bins, with three tomographic redshift bins and
with six tomographic redshift bins respectively. We would expect the constraints on
the parameters to improve as the number of redshift bins increases. Contrary to this
expectation, Figure 6.2 shows that the constraints do not depend on the number of
redshift bins used. This confirms that the network is not able to identify and learn
the information that is added by adding more redshift bins. We suspect that this is
due to the general simple feed forward architecture of the network. By this are not
referring to the number of hidden layers or nodes, but the general setup that the
first hidden layer takes the input power spectra as one large flattened data vector
of dimension 600 in the case of three tomographic redshift bins. By concatenating
different power spectra, we make it more difficult for the network to distinguish
how many separate power spectra we are inputting. A possible way to solve this
would be to train six different networks to infer the cosmological parameters for
each power spectrum and then combine those posteriors to get the total constraints
on Ωm and σ8. For the combination of these posteriors, the covariance of the power
spectra should be carefully taken into account. Perhaps a better method is to define
multiple separate input layers that are joined before the network output is given. In
this way, it is clear that six distinct data-vectors are given, but the information is still
combined inside the network.

Fitting summaries Section 5.3.1 showed that a simple model to fit the output sum-
maries of the network was already capable of providing a promising emulator. This
model could be fit to only 50 simulations sampled from a Latin hyper-cube design.
However, it is likely that the simple model only worked because of the problems
that were discussed in Section 6.1 regarding the convergence of the network and the
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FIGURE 6.2: One and two dimensional posteriors inferred from the
summary statistics of networks trained on weak lensing data vectors

with one, three and six tomographic redshift bins.

inability to retrieve all available information from the data. The Gaussian process
which was fit in Section 5.3.2 is a very versatile model without initial assumptions
about the form of the model and is therefore likely still a good method to fit the
output summaries in the case that all the information is extracted from the data by
a more complex network. Figure 5.17 showed that the posterior generated from
the Gaussian process agrees very well with the posterior generated from 20,000 full
forward simulations. This provides a tremendous speedup in the case when the
forward simulations are computationally very expensive. Further research has to
determine whether the Gaussian process will be versatile enough to fit the probably
more complex function that defines the output summaries given the parameters.

6.3 Comparison with other studies

In this section we will address how the information maximizing neural network
compares to other data compression techniques used in cosmology. The three main
data compression schemes that aim to compress data down to the number of param-
eters (n) are approximate score compression, regression neural networks and the informa-
tion maximizing neural network (Alsing and B. Wandelt, 2019).

Approximate score compression (Alsing and B. Wandelt, 2018) finds the sum-
maries by calculating the score function, which is the derivative of the log-likelihood
with respect to the parameters, and thus a vector of length n. Alsing and B. Wandelt
(2018) showed that the score function defines the compressed summary statistics.
The main advantage of this method is that the compression is analytical, since the
score function has an analytical expression, and that we thus know the mapping
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between data and summary statistics. The disadvantages are that we must assume
the likelihood function to calculate the score function and that the score function is
usually a function of some statistical properties of the data, such as the mean and
covariance. While usually the Gaussian likelihood approximation may be justified
under the central limit theorem, non-Gaussian terms may significantly affect current
and future weak lensing surveys (Sellentin and Heavens, 2018). Additionally, calcu-
lating the statistical properties of the data may require many forward simulations of
the data model, defeating the purpose of the data compression step.

Regression neural networks are deep neural networks that are trained to esti-
mate the parameters from the data directly. Commonly in cosmology, convolutional
neural networks (CNNs) are trained on shear/convergence maps or matter distribu-
tion maps (Schmelzle et al., 2017; Ravanbakhsh et al., 2016; Ribli, Pataki, and Csabai,
2019; Fluri, Kacprzak, Lucchi, et al., 2019). The output of the network can be seen
as a direct prediction, or as a massively compressed summary statistic, which can
then be used in a likelihood or likelihood-free inference setting. These neural net-
works do typically require the simulations to span a broad range of the parameter
space, in comparison to the information maximizing neural network that is trained
only at some fiducial point in parameter space. This is still an emerging area of re-
search, as only recently have CNNs be applied to observed weak lensing data for
the first time (Fluri, Kacprzak, Lucchi, et al., 2019). The advantage of this method is
that little assumptions are made about the analysis process, which gives the neural
network much freedom in building a model to extract the information from the data
optimally. The disadvantage of this method is that the entire data analysis process
becomes a black box and no guarantee is given that the output of the network is
robust against different input datasets.

The information maximizing neural network combines both techniques, to find
summaries without assuming the likelihood by fitting the compression function
only. The advantages are a combination of the advantages of the previous tech-
niques. First, we do not require the entire parameter space to be sampled, only some
fiducial point in the parameter space. Second, we do not have to make assumptions
about the likelihood function that reduce the optimality of the compression. Third,
the entire data analysis process is not a black box, but only the compression func-
tion is. Still, the compression function can be visualized by plotting the output of
the network as a function of different input parameters. The main disadvantage is,
as we have noted in the previous sections, that it is difficult to determine whether
the information has been optimally compressed or simply compressed to the limit of
the given network architecture, because the compression part of the process is still
opaque.

We think it is likely that in the future the data compressing network used through-
out this work will not replace the classic power spectrum analysis, but rather aug-
ment the analysis by finding additional summaries that the power spectrum might
not capture. If the Gaussian likelihood function is found to be a good assumption
for weak lensing data, or a correction is found for this assumption, we would rec-
ommend approximate score compression as a first-step compression summary, since
the method is analytical. The information maximizing neural network can then be
used to augment this summary, by extracting the extra information that is missed by
the first-step compression.



6.4. Shortcomings and suggestions 57

6.4 Shortcomings and suggestions

This study presents the first application of the information maximizing neural net-
work to weak lensing data. Therefore, many simplifying assumptions have been
made throughout this work. Firstly, the weak lensing data vector that are gen-
erated are generated from calculated noisy realizations of angular power spectra,
rather than noisy shear or convergence maps. This means a first-step compression
is already implicitly made, and some information may already be lost. It would
be interesting to see how the information maximizing neural network performs on
simulated shear maps, and whether additional information can be extracted to aug-
ment the power spectrum summaries. Secondly, we have not included many effects
present in real weak lensing data, and it is important to see how the network reacts to
these effects. The things we have not modeled yet include, but are not limited to, the
non-Gaussian covariance terms between different angular power spectra (Takada
and Jain, 2009), a biased photometric redshift uncertainty model, catastrophic red-
shift outliers, survey masking or boundary effects, and the intrinsic alignment of
galaxies.

Additionally, the approximate Bayesian computation method that we have used
to do likelihood-free inference has some drawbacks. We have used the most naive
approach, where many simulations are generated and a quite arbitrary distance
threshold is set as the acceptance criterion. Even though we have also considered
the Population Monte Carlo extension of this method, the stopping criterion for this
method still has to be set quite arbitrarily. We have throughout the previous chapter
set the threshold such that a small subset of the total amount of simulations were
accepted, which is not a bad first guess. However, there are some better methods,
such as setting the threshold such that only the region of parameter space is accepted
where the output summary is approximately a linear function of the parameters, or
by first performing simulations to calibrate the threshold value (see Bertorelle, Be-
nazzo, and Mona, 2010, for a review). Implementing such a technique would make
the posteriors more robust against different datasets and trained networks.

Lastly, it is clear that a better network architecture is needed. As concluded in
section 6.2, the network is not sensitive to different numbers of tomographic bins,
while increasing the number of bins should improve the constraints. To better in-
vestigate what information the network is missing, it would also be necessary to
compare the posteriors with posteriors from a standard likelihood analysis of the
power spectra, analogous to the analysis in Hildebrandt et al. (2017) for example.
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Chapter 7

Conclusion
This work has presented the first application of the information maximizing neural
network (IMNN) to weak lensing data vectors. We have implemented the IMNN
and verified its functionality by first summarizing Gaussian signals, of which the
resulting summaries and posteriors are known analytically. The Gaussian signals
have shown that the network can reduce the dimensionality of input data to the a
number of summaries equal to the number of free parameters. These summaries
were still informative about the data, as the posteriors inferred by likelihood-free
inference matched the analytical posteriors very well.

Mock weak lensing power spectra for a Euclid-like survey were generated with
some simplifying assumptions and the IMNN was trained to summarize these. First,
the only free parameter was set to be Ωm. We found that data standardization to
logarithmic space was needed for the network to extract the most informative sum-
maries from the data. With this standardization, the summaries generated by the
network were found to construct a convincing posterior for Ωm in a likelihood-free
inference setting. The approach was generalized to multiple parameters and mul-
tiple tomographic redshift bins. The network was found to create unbiased sum-
maries informative about Ωm and σ8, but did not seem to extract the information
that was added by splitting the source galaxies into tomographic redshift bins. We
suggest that a more complex network architecture is needed to extract this informa-
tion.

The computational bottleneck after training the network was found to be the
large amount of forward simulations needed for the likelihood-free inference al-
gorithm. As is becoming more and more common in cosmology, we attempted to
avoid this bottleneck by fitting an emulator that returns the expected value of the
summary statistics given the cosmological parameters. The emulator was fitted on
a small number of network outputs, optimally sampling the parameter space via
a Latin hyper-cube design. First, it was shown that a linear approximation of the
summaries works relatively well, but may introduce a small bias in the final pos-
terior. We then fitted a Gaussian process, which makes no assumptions about the
functional form of the emulator. By transforming the summaries to the space where
they are uncorrelated, we could fit a single Gaussian process. The posterior inferred
by using this emulator agreed very well with the posterior obtained from 20,000 full
forward simulations. This showed that the Gaussian process is a promising accurate
and unbiased emulator for the summary statistics.

The results have been found to be robust as a function of different hyperparame-
ters, but it is clear that there are still some problems with the current implementation.
We have found that convergence of the loss function does not imply that all infor-
mation has been extracted from the data. Future studies should aim to find a more
complex network architecture that can extract the information from tomographic
power spectra. We think it is likely that due to the opaque nature of the neural net-
work, the IMNN will not replace classic power spectra analyses, but rather augment
them by extracting the information classic analysis methods might miss.
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