Assignment 1

Feb 3, 2015

Exercise 1: I know it when I see it:

It is difficult to give a definition of a star that covers all possibilities. Discuss this point with your colleagues – over a cappuccino – keeping the following objects in mind: Jupiter, protostar, brown dwarf, white dwarf, neutron star, death star.

Exercise 2: Sketch the HR diagram. Define the following stellar objects and, if possible, locate them on the HR diagram.

- a) Dwarfs
- b) Sub-giants
- c) Giants
- d) Asymptotic Giant Branch stars
- e) Horizontal Branch & red clump stars
- f) Blue stragglers
- g) Carbon stars & S-stars
- h) White dwarfs
- i) Planetary nebulae
- j) Brown dwarfs
- k) Cataclysmic variables
- 1) Symbiotic stars
- m) Supernova type Ia
- n) Nova
- o) Luminous Blue variables
- p) Supergiants
- q) Hypergiants
- r) Wolf-Rayet stars (WN, WC)
- s) B[e] stars
- t) Supernovae
- u) Neutron stars
- v) Stellar black holes

Exercise 3:

The lecture notes show a few examples of Hertzsprung-Russell diagrams. Discuss their similarities and differences.

Exercise 4: Estimate the stellar central pressure and temperature

Use the equation for hydrostatic equilibrium. Replace the left-hand side by $\Delta P/R$ and then use the average density to derive an expression for the central pressure.

a) Estimate the central pressure for the Sun and compare to the actual value $(P_c \sim 10^{17} \text{ dyne/cm}^2)$.

- b) Use the ideal gas law and estimate the central temperature and compare to the actual value ($T_c \sim 1.4 \ 10^7 \ K$).
- c) Why is the estimate for the central temperature so much better than for the central pressure?

Exercise 5: Improved estimates of the stellar central pressure and density

As discussed in the lecture, estimates for the central conditions depend on the adopted density distribution. Assume a density law given by

$$\rho = \rho_c \left(1 - \left(r/_R \right)^2 \right)$$

- a) Derive an expression for the mean density
- b) Derive an expression for the central pressure
- c) Estimate the central temperature using the ideal gas law
- d) Calculate the central pressure and temperature for the Sun and for an O5 star (60Msun, 13.4Rsun)
- e) Compare these values with those in the attached table and comment on the results

TABLE 2.2. ZAMS models (continued)

No	M/M _☉	$T_{c,6}$	Pc	$\log P_{\rm C}$	qc	Qenv
1	60	39.28	1.93	16.22	0.73	0
2	40	37.59	2.49	16.26	0.64	0
3	30	36.28	3.05	16.29	0.56	0
4	20	34.27	4.21	16.37	0.46	0
5	15	32.75	5.48	16.44	0.40	0
6	10	30.48	8.33	16.57	0.33	0
7	7	28.41	12.6	16.71	0.27	0
8	5	26.43	19.0	16.84	0.23	0
9	3	23.47	35.8	17.06	0.18	0
10	2	21.09	47.0	17.21	0.13	neg.
11	1.75	20.22	66.5	17.25	0.11	neg.
12	1.50	19.05	76.7	17.28	0.07	neg.
13	1.30	17.66	84.1	17.28	0.03	neg.
14	1.20	16.67	85.7	17.26	0.01	10-7
15	1.10	15.57	84.9	17.22	0	5 × 10-5
16	1.00	14.42	82.2	17.17	0	0.0035
17	0.90	13.29	78.5	17.11	0	0.020
18	0.75	10.74	81.5	-	0	-
19	0.60	9.31	79.1	-	0	_
20	0.50	9.04	100	17.10	0	-
21	0.40	8.15	104	17.04	0	-
22	0.30	7.59	107	17.05		1
23	0.20	6.53	180	17.24		1
24	0.10	4.51	545	17.68		1
25	0.08	3.30	775	17.83		1