
POLYTROPIC & 
ENERGY TRANSPORT

NOTES: CH 4 & 5



EQUATION OF STATE (EOS)FOR STARS

SUMMARY PREVIOUS CLASS

P = P (⇢, T,X)

LOCAL THERMAL EQUILIBRIUM + IDEAL GAS

relation with internal energy (for both gas & photons)

ultra relativistic case

U = 3P

photons 
electrons in massive WD

non relativistic case

U =
3

2
P

gas in Main Sequence 
(MS) stars and protons 

in WDs
U = �P
in general



EQUATION OF STATE (EOS)FOR STARS

SUMMARY PREVIOUS CLASS

P = P (⇢, T,X)

LOCAL THERMAL EQUILIBRIUM + IDEAL GAS

classical limit: NR & R
Pgas = nkbT =

R

µ
⇢T

stars on the main 
sequence

degenerate gas T=0
Pgas,d = Knr ⇢

5/3

Pgas,d = Kur ⇢
4/3

white dwarfs & 
cores of late 
stage stars

radiation

Prad =
1

3
aT 4

black body 
spectrum

Pressure is additive
P = P

e� + P
ion

+ P
neutron

+ P
rad

= P
gas

+ P
rad

Pgas = �P

Prad = (1� �)P



SUMMARY PREVIOUS CLASS

from O.R. Pols
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Chapter 4

POLYTROPIC STARS
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CHAPTER 4
POLYTROPIC RELATION

•                       where K and    are constantP = K⇢� �
Examples:

2) the response of pressure to adiabatic compression or expansion (Ch 3.4) 

P / ⇢�ad

�ad = const.

4

3
< �ad <

5

3
�ad =

5

3
(� = 3/2)

�ad =
4

3
(� = 3)

NR

UR{ For a mixture of gas and radiation:

1) the pressure of degenerate electrons (see previous class) 

polytropic index n:



P0LYTROPIC STELLAR MODEL
• for a newtonian star the mechanical structure of a star is fully determined by:

P = K⇢�+ + =

with



LANE-EMDEN EQ.

• with a dimensional analysis it is possible to build a length-
scale from G, K, and ρc

normalised variables

only n< 5 have a finite size (at x=xmax) and it is physically acceptable



LANE-EMDEN SOLUTIONS

in evidence solutions for n=1, 2/3, 2,3,4



LANE-EMDEN EQ.
It is possible to find relation between R, M, central density



 mass & radius for n=3/2 n=3

: the more massive, the denser, the more 
relativistic…

with a mass limit given by UR limit!

Mass & Radius

M / R�3

M = const.

� = 5/3

� = 4/3



Chandrasekhar mass

full calculation

NR

UR

classical WD, observations



EDDINGTON ``STANDARD MODEL”

Unique relation between beta and Mass: 
the more massive the star, the more radiation dominated

Let’s assume � = const. (for radiative stars this is roughly true)

Pgas = �P =
R

µ
⇢T

P =
aT 4

3(1� �)

T =
�Pµ

⇢R

}
Polytropic relation with n=3

= K⇢4/3



Chapter 5

ENERGY TRANSPORT IN 
STELLAR INTERIOR
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LOCAL ENERGY CONSERVATION

• first law of thermodynamics  [changes per unit mass in a time      ]

heat

workcompression adds energy 

luminosity
@q =

✓
✏nuc � ✏⌫ � @l

@m

◆
@t

@t

l = a⇡r2F



LOCAL ENERGY CONSERVATION

luminosity
l = a⇡r2F

+

(s =entropy)
second law of thermodynamics

dq = Tds = du+ PdV = du� P

⇢2
d⇢



THERMAL EQUILIBRIUM

luminosity
l = a⇡r2F

equilibrium = no changes in time

neutrino luminosity

nuclear reaction luminosity
At equilibrium over whole star

neglecting neutrino losses, we re-obtain

L = Lnun

Ė
tot

= L
nun

� L = 0



MECHANISMS TO TRANSPORT ENERGY FROM HOT STELLAR 
INTERIOR TO THE COOLER ATMOSPHERE

RELATIVE IMPORTANCE: MASS DEPENDENT

by motion of radiation

by motion of gas particles (e-)•HEAT DIFFUSION

radiative diffusion

heat conduction
random thermal 

motion of particles 

•CONVECTION
bulk motion of 

particles 

MASSIVE STARS
SUN-LIKE

SUBSOLAR



MECHANISMS TO TRANSPORT ENERGY FROM HOT STELLAR 
INTERIOR TO THE COOLER ATMOSPHERE

by motion of radiation

by motion of gas particles (e-)•HEAT DIFFUSION

radiative diffusion

heat conduction
random thermal 

motion of particles 

✓ Equation of heat conduction, valid for all particles in LTE 
(gas & photons)

F = �KrT

with conductivity K =
1

3
hvi l Cv

mean free path

mean velocity

specific heat per unit volume



FACTS ALREADY KNOWN TO US

RADIATIVE DIFFUSION

✓ If nuclear source is suddenly quenched (Lnuc =0) it takes a Kelvin-
Helmholtz timescale (~107 yr) for the star to realise it. this is also 
the time for photons to diffuse outwards => stars very opaque. 

✓ locally the radiation field is close to black body => 
there is some anisotropy in the field that gives rise to heat diffusion

U = u⇢ = aT 4



PHOTONS:

RADIATIVE DIFFUSION 

K =
1

3
hvi l Cv

and mean free path ?

conductivity

equation of radiative transfer without absorption

I⌫(s) = I⌫(s0)e
�

R s
s0

⇢⌫ds
0
= I⌫(s0)e

�⇢⌫�s

homogeneous medium

optical depth: d⌧⌫ = ⇢⌫

Cv ⌘ dU

dT
= 4aT 3 hvi = cand

mass absorption coefficient or opacity cm2 g-1

�s =
1

⇢⌫
⌘ l⌫

I⌫(s)

I⌫(s0)
= e�1

mean free path: length over which the intensity is suppressed by ``e”

then



Thomson scattering
A free electron has a cross section to radiation independent of frequency 

given by

�T = 6.7⇥ 10�25 cm2

for pure hydrogen

andmu = 1.66⇥ 10�24 g
1

µe
⇡ 2

1 +X
= 1

T =
ne

⇢
�T =

�T

µemu
= 0.4 cm2 g�1

lT =
1

⇢T
⇡ 1.7 cm



PUTTING ALL TOGETHER:

RADIATIVE TEMPERATURE GRADIENT

Krad =
4

3

acT 3

⇢
opacity 

averaged over 
frequency (see 

later) working in spherical symmetry and solving for grad T:

r—>m

This is the temperature gradient  needed in a star to transport the luminosity “l”
• when this happens a star or region within a star is said to be radiative

• temperature decreases from the core towards the atmosphere (thus pressure)



RADIATIVE TEMPERATURE GRADIENT

logarithmic temperature gradient as a function of depth 
(Pressure) for a star in hydrostatic equilibrium, where energy is 

transported only radiatively

+ =



ROSSELAND MEAN OPACITY

Derivation:

Frad =

Z 1

0
F⌫d⌫ = �


c

3⇢

Z 1

0

1

⌫

@U⌫

@T
d⌫

�
rT

Energy density 
U⌫ = h⌫ n(⌫)

Frad = � c

3⇢

✓Z 1

0

@U⌫

@⌫
d⌫

◆ R1
0

1
⌫

@U⌫
@⌫ d⌫

R1
0 (@U⌫

@⌫ )d⌫
rT

✓Z 1

0

@U⌫

@⌫
d⌫

◆
= 4aT 3

harmonic mean of opacity = transparency:  
i.e. frequency with smaller opacity are weighted more

=
1

k



LOCAL EDDINGTON LIMIT

In hydrostatic equilibrium this should be smaller than the inward gravitational force

in radiative zones, the radiative temperature implies a Pressure gradient:

Prad =
1

3
aT 4

1

⇢

dPrad

dr
 Gm

r2

dT

dr
= � 3⇢

16⇡acT 3

l

r2}
⇢

4⇡c

l

r2
 Gm

r2

l  Gm4⇡c

⇢
= 3.8⇥ 104

✓
m

Msun

◆✓
0.34



◆
Lsun ⌘ Ledd

Thomson scattering X=0.7



LOCAL EDDINGTON LIMIT

l  Gm4⇡c

⇢
= 3.8⇥ 104

✓
m

Msun

◆✓
0.34



◆
Lsun ⌘ Ledd

• l=Ledd   when P ~ Prad: i.e. for radiation dominated stars=> for massive stars

• l>Ledd in zones of large opacity (low T) like outer layers of Sun 

• Since  L ~Mx   x > 1 eventually L>=Ledd  as M increases

When l > Ledd  convection must take over to 
ensure hydrostatic equilibrium



HEAT CONDUCTION

• Where ideal gas conditions of 
temperature and density hold, heat 
conduction is unimportant relative 
to radiative transport 

• main sequence stars 

mean free pathF = �KrT

with conductivity K =
1

3
hvi l Cv

mean velocity
specific heat per unit volume

�T = 6.7⇥ 10�25 cm2note:

} Krad � Kcd

lph is mean free path for ' lT

IDEAL GAS:

�c = 10�18 � 10�20 cm2

electron collision:

hvi =
r

3kT

m
⌧ c

lc
lph

⇡ �T

�c
= 10�7 � 10�5



HEAT CONDUCTION

• When conditions for degenerate electrons 
hold, heat conduction can dominate 
radiative transport: 

• degenerate core of evolved stars 

• white dwarfs 

mean free pathF = �KrT

with conductivity K =
1

3
hvi l Cv

mean velocity
specific heat per unit volume

degenerate electron gas:

degenerate electron collision:

pF
mec

⇡ 0.8 hvi ! c

lc
lph

� 1 }Krad ⌧ Kcd



HEAT CONDUCTION
In general

conductive opacity

the mechanism that dominates energy flux is that with the smallest 
opacity (highest transparency)

the opacity determined how large the temperature gradient should be 
in order to carry a given luminosity 



OPACITY
• conductive opacity: important only in degenerate electron gas

At high density and low temperature it becomes very small and flux 
of energy important



OPACITY
• Thomson scattering : elastic scattering of photons with free electrons

degree of ionisation drops drastically for T < 104 K ==> too few electrons, opacity strongly reduced 

T =
�T

µemu
= 0.2 (1 +X) cm2 g�1

h⌫ ⌧ mec
2 fully ionised

• Free-free absorption : inverse process of bremsstrahlung (ion + free e-)

Kramer opacity↵ ⇡ 3.8⇥ 1022 (1 +X)⇢T�7/2 cm2 g�1

(Rosseland mean over frequency)

for T > 104 K , below photons not 
energetic enough to ionise electrons  

• Bound-free absorption : absorption of photons by bound electrons

Z= metallicity
bf ⇡ 103Z ⇥ ↵ ===>bound- free dominates over free-free for Z > 10-3

104 K  T  108 K

• Bound bound absorption : photon induced electron transitions T< 106 K.
cross section maybe large because the lines are broaden by motion



OPACITY
• The negative hydrogen ion: bound-free absorption of a photon by H-

Important in cool stars and atmosphere (e.g. Sun’s atmosphere)
Neutral H can form a bound state with another electron—>H-  

with a small ionisation potential (0.75 eV) so it is easily ionised with T~3-6 103 K 
Free electrons come from single ionised atom such as Na, K, Ca…so it is sensitive 

to metallicity and temperature

• at lower temperature becomes negligible

• at T >104 K H- disappears and Kramer dominates

• Molecules: dominant in T < 4 103 K
•  Dust: dust formation and opacity important at T < 1.5 103 K

T



IT IS A COMPLICATED FUNCTION AND OPACITY NEEDS TO BE ADD FREQUENCY 
BY FREQUENCY AND THEN AVERAGED OVER

OPACITY  = (⇢, T,X)

SO STELLAR STRUCTURE CODE INTERPOLATE PRE-CALCULATED TABLES

note: these are Rosseland mean opacities

thomson scattering
recombination of H 

H- opacity

Kramer 
(free-free 

bound-free) 

molecule and dust 
formation

dominated by Kramer 
high opacity in atmosphere

dominated by Thomson 
lower opacity in atmosphere


