NOTES CH 3

EQUATION OF
STATE FOR STARS



LOCAL THERMODYNAMICAL EQUILIBRIUM=LTE

1.The interior of a star is a very optically thick medium:

~1 cm

where lph is the mean free path of photons between scatterings and/or absorption

In a region of several mean free path but << R
matter and radiation are in thermal equilibrium and
can be described by the same local temperature

mixing locally is very effective: well defined local composition

we can calculate microscopic thermodynamical properties
as a function of the local temperature, density and composition

In each position within the star,
radiation has a black body spectrum with that local temperature

Note: thermal equilibrium # LTE



THE EQUATION OF STATE
EOS

» Def: A relation between the pressure exerted by a system of
particles of known composition, temperature and density:

P=P(T,p, X)




IDEAL OR PERFECT GAS
EOS

Def: an ensemble of free, non-interacting particle so that the
internal energy is given by the sum of the particles’ kinetic energy

6
Good description for ionised gas in a star with T~10 K. One can show that the ratio
of Coulomb interaction energy per particle and mean kinetic energy per particle is

€
¢ ~ 1% see 3.1 in Prialnik’s book
b <T >

and section 3.6.1 notes

Note: Cristallization can happen in cooling white dwarfs (3.6.1)

Note: gas is completely ionised in the hot stellar interiors but in cooler
(<10 6 K) atmospheric layers there maybe partial ionization (3.5)




THERMODYNAMICAL QUANTITIES

number density n= f n(p)dp definition of n(p) =momenta distribution
0

internal energy density U = r exn(p)dp = n{ep) definition of perfect gas
0

pressure P= % F pvpn(p)dp = %n(pvp) P= flux of momentum
0

Relation between U & P

We need the particle energy €, = € — mec®  and velocity v, = —

NR limit: | p < TC
2

2
<pvp>:<%>:2<ep> * P:3n<ep S

ER limit | p > mcC

= e
ep_pc}<pvp>:<pc>:<ep>-> P:_:_EU

’Up:C




fo pvpn(p)dp

T m——

44
TO COMPUTE THE EOS WE NEED

n(p)dp

LET’S REFRESH OUR KNOWLEDGE OF STATISTICAL MECHANICS

23




CLASSICAL IDEAL GAS

Consider:
*Gas of identical, non-interacting particles (perfect gas), with mass “m”, non
relativistic (p << mc)
*At LTE, at temperature T

the momentum distributionis a Maxwell-Boltzmann distribution:

n
QrmkT)32 €

n(p)dp = “PI2mKT 42 dp,

ﬁ pvpn(p)dp with= 15 — £

m™m

5 P = nka

NOTE: true also for a relativistic Maxwellian distribution




MIXTURE OF IDEAL NON DEGENERATE GASES

2L e . .
i = mean atomic mass per ion
AZ mu l’l‘lOn mu ]. 12
My ﬁm C
. Z; X; e 1 P mean molecular weight

)
A =TT per free electron

Mo =21 —

Ne = 2 4iN; =

1 1 R
Pgas: ion_I_Pe:( | )RPT:_IOT
Hion He 2!

R = kp/my = the universal gas constant




MEAN MOLECULAR WEIGHT

1 1 1 (Z; + 1) X;
% Hion e AZ

it is the inverse sum of the mean atomic mass per ion
and the mean molecular weight per electron

Fully ionised hydrogen Z=A =1 gas while fully ionised He and metals Z/A ~1/2

1 1
b X +3v+1iZ -

0.6

X=0.7, Y=0.28, Z=0.02




QUANTUM MECHANICAL STATISTICAL DESCRIPTION OF GAS

€¢_9

*Perfect gas, with mass “m” and spin “‘s
*At, at LTE temperature T
*Fermions

More generally, then in the previous case, we state that the
distribution of its numerical density as a function of its linear

momentum is

dn(p) 4mg p° Fermi-Dirac

dp h3 &fr _ 1 distribution
g = 2st| energy level degeneracy

M chemical potential = is the work necessary to change the particle number by dN:
dW/dN
24

€ = (pC)2 — total energy
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WDS ARE MADE OF “COLD” GAS

Degenerate gas of fermions at T—>0

dn 17€_<;tu
d_p: | 0, €> u

Here the chemical potential is called Fermi energy Er = u

. . Fr \*
The corresponding Fermi momentum pr = mey/ | — | —1
mc?

Fermi temperature kT = Ep — mc?

e — — S _ - — e -

“zero’” temperature distribution can be assumed if a gas
has T <<T¢ (i.e.KT <<y

e —— = =




THERMODYNAMICAL PROPERTIES:
NUMBER DENSITY

n = /n(p)dp

) \1/3
3 (_3n2h@ '
& Pr 3

— 1/3
S P (e
Q mc '

simply counting

particles in a :
sphere with particle density determines Fermi Energy

radius pr




THERMODYNAMICAL PROPERTIES:
PRESSURE

fo pvpn(p)dp

T m—————

_ g mc

224n2h3PP(xF)
X (2x —3) \/x2—|—1—|—31n(x—1— \/xz—i—l)

let’s now specialise to WD typical conditions...




DEGENERATE ELECTRON PRESSURE IN WDS
g=2&M=Mme

6.002 x 10°! Pa Fp (xF) ,

1/3 1/3
PF Ye o
5 Mec _(0.5) (109 kg.m—3> ’

Fp(x) x(2x2—3)\/x211!31n(x+\/x2+1)

for typical density and number of free electron per nucleon (Ye),
electron are mildly relativistic X ~1.




DEGENERACY TEMPERATURE FOR ELECTRONS

Degeneracy if T is <<Tr

2
Iy = m;c (\/1+x%—1) (\/1+x%—1)

Typical central temperature ~107 K

» electrons are fully degenerate in aWD




NUCLEONS ARE NON DEGENERATE IN WDS

mversely proportlonal ( Tr x n2/3 /m
to mass |

V.

Tr o ~ 2000 X T ;/m

Tr pm =3 % 10°K < Twp < Tpe & 6 x 10°K

e —— — — _——

In aWD the condition Te << Tke is attalned weII before Tn/p << TFe/p
In fact in WD only eIectrons are degenerate

————— === = —




DEGENERATE ELECTRON PRESSURE IN WD

two extreme regimes:
Tp <1  p<i0%gcm °

5/3
P ~ 3 x 102 Ba (Y,/0.5)%/° i
A Bl te/0 D) 10%g/cm?

N
W

log P (dyn cm™2)

rp > 1 p > 1069 cem ™3

[\
e}

P%E) ]_020B YveO54/3 IO NI RO NP NP PO R
X a (Y,/0.5) 1055 T3

log p/ue (g em™)

» P x p"

WD's pressure does not depend on temperature =>
does have to be hot to be in hydrostatic equilibrium




RADIATION

photon are bosons with gs = 2 and p = 0 and completely relativistic

2 1 =
47Tp2 dp Bose-Einstein
h3 e/kT _ 1 distribution

n(p)dp =

Ep::pC:hV

87 vidy
c3 ehvIkT _

n(v)dy = Planck function




BLACK BODY RADIATION

Properties of blackbody radiation

* |sotropic
» Continuous spectrum
* Increasing T increases

B, at all frequencies
- peak hv__ =282kT

w(T)=aT"
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RADIATION PRESSURE

[l — o energy density

o e
* Prad—gU——gCLT

A MIXTURE OF GAS AND RADIATION
2 g e
s — b =0
Praa = (1-B)P

Pl‘ad, - Pgas,classical * T/‘al/:3 > 107;4_1/3




SUMMARY
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