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LOCAL THERMODYNAMICAL EQUILIBRIUM=LTE

1.The interior of a star is a very optically thick medium:

where         is the mean free path of photons between scatterings and/or absorptionlph
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⇡ 1011

In a region of several mean free path but << R  
matter and radiation are in thermal equilibrium and  
can be described by the same local temperature  

~1 cm

Note: thermal equilibrium LTE6=

we can calculate microscopic thermodynamical  properties  
as a function of the local temperature, density and composition

mixing locally is very effective: well defined local composition

In each position within the star, 
 radiation has a black body spectrum with that local temperature 



EOS
THE EQUATION OF STATE

• Def: A relation between the pressure exerted by a system of 
particles of known composition,  temperature and density:

P = P (T, ⇢, X)



EOS
IDEAL OR PERFECT GAS

• Def: an ensemble of free, non-interacting particle so that the 
internal energy is given by the sum of the particles’ kinetic energy

• Good description for ionised gas in a star with T~10
6
 K. One can show that the ratio 

of Coulomb interaction energy per particle and mean kinetic energy per particle is 

• Note: Cristallization can happen in cooling white dwarfs (3.6.1)

✏C
kb < T >

⇡ 1% see 3.1 in Prialnik’s book  
and section 3.6.1 notes

• Note: gas is completely ionised in the hot stellar interiors but in cooler 
(<10 6 K)  atmospheric layers there maybe partial ionization (3.5)



THERMODYNAMICAL QUANTITIES

definition of perfect gas

definition of n(p) =momenta distribution 

P= flux of momentum

We need the particle energy ✏p = ✏�mc2 and velocity vp =
pc2
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LET’S REFRESH OUR KNOWLEDGE OF  STATISTICAL MECHANICS

TO COMPUTE THE EOS WE NEED



CLASSICAL IDEAL GAS
Consider:

•Gas of identical, non-interacting particles (perfect gas), with mass “m”, non 
relativistic (p << mc)
•At LTE, at temperature T

the momentum distribution is a Maxwell-Boltzmann distribution:

vp =
p

m
with

P = nkbT

NOTE: true also for a relativistic Maxwellian distribution



MIXTURE OF IDEAL NON DEGENERATE GASES
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MEAN MOLECULAR WEIGHT

Fully  ionised hydrogen Z=A =1 gas while fully ionised He and metals Z/A ~1/2 
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it is the inverse sum of the mean atomic mass per ion  
and the mean molecular weight per electron

X=0.7, Y=0.28, Z=0.02



QUANTUM MECHANICAL STATISTICAL DESCRIPTION OF GAS

•Perfect gas, with mass “m” and spin “s”
•At, at LTE temperature T
•Fermions

More generally, then in the previous case, we state that the 
distribution of its numerical density as a function of its linear 

momentum is

total energy

μ  chemical potential = is the work necessary to change the particle number by dN: 
dW/dN

Fermi-Dirac 
distribution

g = 2s+1 energy level degeneracy
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DONEC QUIS NUNC

==> classical Maxwell-Boltzmann distribution



WDS ARE MADE OF “COLD” GAS

Degenerate gas of fermions at T—>0

Here the chemical potential is called Fermi energy

The corresponding Fermi momentum

Fermi temperature

“zero” temperature distribution can be assumed if a gas 
has T << TF (i.e. KT << μ)
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particle density determines Fermi Energy

simply counting 
particles in a 
sphere with 

radius pF

THERMODYNAMICAL PROPERTIES: 
NUMBER DENSITY

n =

Z
n(p)dp



THERMODYNAMICAL PROPERTIES: 
PRESSURE

let’s now specialise to WD typical conditions...



DEGENERATE ELECTRON PRESSURE IN WDS
&

for typical density and number of free electron per nucleon (Ye), 
electron are mildly relativistic XF ~1.



DEGENERACY TEMPERATURE FOR ELECTRONS

Degeneracy if  T is << TF

Typical central temperature ~107 K 

electrons are fully degenerate in a WD



NUCLEONS ARE NON DEGENERATE IN WDS

TF / n2/3/m

TF,e ⇠ 2000⇥ TF,p/n

inversely proportional 
to mass

In a WD the condition Te << TF,e is attained well before Tn/p << TF,e/p . 

In fact, in WD only electrons are degenerate

TF,p/n = 3⇥ 106K < TWD ⌧ TF,e ⇡ 6⇥ 109K



DEGENERATE ELECTRON PRESSURE IN WD
two extreme regimes:
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⇢ ⌧ 106g cm�3

P ⇡ 3⇥ 1020 Ba (Ye/0.5)
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WD’s pressure does not depend on temperature =>  
does have to be hot to be in hydrostatic equilibrium

P / ⇢�



RADIATION  

photon are bosons with gs = 2 and µ = 0

✏p = pc = h⌫

and completely relativistic

Planck function

Bose-Einstein  
distribution



BLACK BODY RADIATION



A MIXTURE OF GAS AND RADIATION
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SUMMARY

from O.R. Pols
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