
Stellar Structure and Evolution 2017: Exercise list.

April 24, 2017

Directions

This list of exercises was made to help the master students to prepare the �nal examination for
the Stellar Structure Lecture 2017 at Leiden Observatory. By studying and carefully solving this
exercise list, you should be prepared for the exam. The exercise list was made using the lecture
notes of the class (Prof. Pols: https://www.astro.ru.nl/~onnop/education/stev_utrecht_

notes/). Please check the lecture notes and discuss with your fellow students in order to get
a better understanding of the di�erent topics. Please try to be precise and concise but also
try to maintain the solutions as quantitative as possible by using equations, relations, back up
statements, etc. If you have speci�c questions please send an email or make an appointment
with the TAs: Ann-So�e Bak Nielsen (nielsen@strw.leidenuniv.nl) and Luis Henry Quiroga Nuñez
(quiroganunez@strw.leidenuniv.nl).

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is that it links the gravitational potential
energy Egr and the internal thermal energy Eint.

(a) Estimate the gravitational energy Egr for a star with mass M and radius R, assuming (1)
a constant density distribution and (2) the density distribution:

ρ = ρc

(
1−

( r
R

)2)
. (1)

(b) Assume that a star is made of an ideal gas. What is the kinetic internal energy per particle
for an ideal gas? Show that the total internal energy, Eint is given by:

Einit =

∫ r

0

(
3

2

k

µmu
ρ(r)T (r)

)
4πrdr (2)

(c) Estimate the internal energy of the Sun by assuming constant density and T (r) ≈< T >≈
1/2TC ≈ 5 × 106K and compare your answer to your answer for a). What is the total energy of
the Sun? Is the Sun bound according to your estimates?

It is not a coincidence that the order of magnitude for Egr and Eint are the same
1. This follows

from hydrostatic equilibrium and the relation is known as the virial theorem. In the next steps
we will derive the virial theorem starting from the pressure gradient in the form of:

dP

dr
= −Gm

r2
ρ. (3)

1In reality Egr is larger than estimated above because the mass distribution is more concentrated to the centre.
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(d) Multiply by both sides by 4πr3 and integrate over the whole star. Use integration by parts to
show that ∫ R

0

3P4πr2dr =

∫ R

0

Gm(r)

r
ρ4πr2dr (4)

(e) Now derive a relation between Egr and Eint, the virial theorem for an ideal gas.
(f) Also show that for the average pressure of the star

〈P 〉 =
1

V

∫ R∗

0

P4πr2dr = −1

3

Egr
V

(5)

where V is the volume of the star.

As the Sun evolved towards the main sequence, it contracted under gravity while remaining close to
hydrostatic equilibrium. Its internal temperature changed from about 30 000 K to about 6×106K.

(g) Find the total energy radiated during away this contraction. Assume that the luminosity
during this contraction is comparable to L� and estimate the time taken to reach the main
sequence.

2.4 Conceptual questions

(a) Use the virial theorem to explain why stars are hot, i.e. have a high internal temperature
and therefore radiate energy.

(b) What are the consequences of energy loss for the star, especially for its temperature?

(c) Most stars are in thermal equilibrium. What is compensating for the energy loss?

(d) What happens to a star in thermal equilibrium (and in hydrostatic equilibrium) if the
energy production by nuclear reactions in a star drops (slowly enough to maintain hydrostatic
equilibrium)?

(e) Why does this have a stabilizing e�ect? On what time scale does the change take place?

(f) What happens if hydrostatic equilibrium is violated, e.g. by a sudden increase of the pressure.

(g) On which timescale does the change take place? Can you give examples of processes in
stars that take place on this timescale?

2.5 Three important timescales in stellar evolution

(a) The nuclear timescale τnuc
i. Calculate the total mass of hydrogen available for fusion over the lifetime of the Sun, if 70%
of its mass was hydrogen when the Sun was formed, and only 13% of all hydrogen is in the
layers where the temperature is high enough for fusion.
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ii. Calculate the fractional amount of mass converted into energy by hydrogen fusion. (Refer
to Table 1 for the mass of a proton and of a helium nucleus.)

iii. Derive an expression for the nuclear timescale in solar units, i.e. expressed in terms of
R/R�, M/M� and L/L�.

iv. Use the mass-radius and mass-luminosity relations for main-sequence stars to express the
nuclear timescale of main-sequence stars as a function of the mass of the star only.

v. Describe in your own words the meaning of the nuclear timescale.
(b) The thermal timescale τKH .

i-iii. Answer question (a) iii, iv and v for the thermal timescale and calculate the age of the
Sun according to Kelvin.

iv. Why are most stars observed to be main-sequence stars and why is the Hertzsprung-gap
called a gap?

(c) The dynamical timescale τdyn.

i-iii. Answer question (a) iii, iv and v for the dynamical timescale.

iv. In stellar evolution models one often assumes that stars evolve quasi-statically, i.e. that
the star remains in hydrostatic equilibrium throughout. Why can we make this assumption?

v. Rapid changes that are sometimes observed in stars may indicate that dynamical processes
are taking place. From the timescales of such changes - usually oscillations with a characteristic
period - we may roughly estimate the average density of the Star. The sun has been observed
to oscillate with a period of minutes, white dwarfs with periods of a few tens of seconds.
Estimate the average density for the Sun and for white dwarfs.

(d) Comparison.
i. Summarize your results for the questions above by computing the nuclear, thermal and
dynamical timescales for a 1, 10 and 25 M� main-sequence star. Put your answers in tabular
form.

ii. For each of the following evolutionary stages indicate on which timescale they occur:
premain sequence contraction, supernova explosion, core hydrogen burning, core helium
burning.

iii. When the Sun becomes a red giant (RG), its radius will increase to 200R� and its luminosity
to 3000L�. Estimate τdyn and τKH for such a RG.

iv. How large would such a RG have to become for τdyn > τKH? Assume both R and L
increase at constant e�ective temperature.

3.3 The ρ � T plane
Consider a gas of ionized hydrogen. In the ρ�T plane compute the approximate boundary lines
between the regions where:
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(a) radiation pressure dominates,

(b) the electrons behave like a classical ideal gas,

(c) the electrons behave like a degenerate gas,

(d) the electrons are relativistically degenerate.

4.3 White dwarfs

To understand some of the properties of white dwarfs (WDs) we start by considering the equation
of state for a degenerate, non-relativistic electron gas.

(a) What is the value of K for such a star? Remember to consider an appropriate value of
the mean molecular weight per free electron µe.

(b) Derive how the central density ρc depends on the mass of a non-relativistic WD. Using this
with:

m(z) =

∫ αz

0

4πr2ρdr = −4πα3ρcz
2 dw

dz
(6)

and

M = 4πα3ρcΘn = 4π

(
(n+ 1)K

4πG

)3/2

ρ(3−n)/2nc Θn, (7)

derive a radius-mass relation R = R(M), where Θn = (−z2dw/dz)z=zn (see section 4.1.1).
Interpret this physically.

(c) Use the result of (b) to estimate for which WD masses the relativistic e�ects would become
important.

(d) Show that the derivation of a R = R(M) relation for the extreme relativistic case leads
to a unique mass, the so-called �Chandrasekhar mass�. Calculate its value, i.e. derive:

MCh = 5.836µ−2
e M� (8)

4.4 Eddington's standard model (a) Show that for constant β the virial theorem leads to

Eint =
β

2
Egr = − β

2− β
Eint (9)

for a classical, non-relativistic gas. What happens in the limits β → 1 and β → 0?

(b) Verify eq. (4.25), and show that the corresponding constant K depends on β and the mean
molecular weight µ as

K =
2.67× 1015

µ4/3

(
1− β
β4

)1/3

(10)

(c) Use the results from above and the fact that the mass of an n = 3 polytrope is uniquely
determined by K, to derive the relation M = M(β,mu). This is useful for numerically solving the
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amount of radiation pressure for a star with a given mass.

(d) what does the relation M versus beta teaches us ?

5.1 Radiation transport

The most important way to transport energy form the interior of the star to the surface is by
radiation, i.e. photons traveling from the center to the surface.

(a) How long does it typically take for a photon to travel from the center of the Sun to the
surface? [Hint: estimate the mean free path of a photon in the central regions of the Sun.] How
does this relate to the thermal timescale of the Sun?

(b) Estimate a typical value for the temperature gradient dT/dr. Use it to show that the di�erence
in temperature ∆T between two surfaces in the solar interior one photon mean free path `ph apart
is

∆T = `ph
dT

dr
≈ 2× 10−4K (11)

In other words the anisotropy of radiation in the stellar interior is very small. This is why radiation
in the solar interior is close to that of a black body.

(c) Verify that a gas element in the solar interior, which radiates as a black body, emits ≈ 6×1023

erg cm−2s−1.

If the radiation �eld would be exactly isotropic, then the same amount of energy would radiated
into this gas element by the surroundings and so there would be no net �ux.

(d) Show that the minute deviation from isotropy between two surfaces in the solar interior one
photon mean free path apart at r ∼ R�/10 and T ∼ 107 K, is su�cient for the transfer of energy
that results in the luminosity of the Sun.

(e) Why does the di�usion approximation for radiation transport break down when the surface
(photosphere) of a star is approached?

5.4 Conceptual questions: convection

(a) Why does convection lead to a net heat �ux upwards, even though there is no net mass
�ux (upwards and downwards bubbles carry equal amounts of mass)?

(b) Explain the Schwarzschild criterion(
dlnT

dlnP

)
rad

>

(
dlnT

dlnP

)
ad

(12)

in simple physical terms (using Archimedes law) by drawing a schematic picture . Consider both
cases 5rad > 5ad and 5rad < 5ad. Which case leads to convection?

(c) What is meant by the superadiabaticity of a convective region? How is it related to the
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convective energy �ux (qualitatively)? Why is it very small in the interior of a star, but can be
large near the surface?

5.5 Applying Schwarzschild's criterion

(a) Low-mass stars, like the Sun, have convective envelopes. The fraction of the mass that is
convective increases with decreasing mass. A 0.1 M� star is completely convective. Can you
qualitatively explain why?

(b) In contrast higher-mass stars have radiative envelopes and convective cores. Determine if
the energy transport is convective or radiative at two di�erent locations (r = 0.242R� and r =
0.670R�) in a 5M� main sequence star. Use the data of a 5 M� model in the table below. You
may neglect the radiation pressure and assume that the mean molecular weight µ = 0.7.

r/R� m/M� Lr/L� T[K] ρ [g cm−3] κ [g−1cm2]
0.242 0.199 3.40×102 2.52×107 18.77 0.435
0.670 2.487 5.28×102 1.45×107 6.91 0.585

6.2 Hydrogen burning

(a) Calculate the energy released per reaction in MeV (the Q-value) for the three reactions in
the pp1 chain. (Hint: �rst calculate the equivalent of muc

2 in MeV.)

(b) What is the total e�ective Q-value for the conversion of four 1H nuclei into 4He by the
pp1 chain?
Note that in the �rst reaction (1H + 1H� 2H + e+ + ν) a neutrino is released with (on average)
an energy of 0.263 MeV.

(c) Calculate the energy released by the pp1 chain in erg/g

6.4 Helium burning

(a) Calculate the energy released per gram for He burning by the 3α reaction and the 12C+α
reaction, if the �nal result is a mixture of 50% carbon and 50% oxygen (by mass fraction).

(b) Compare the answer to that for H-burning. How is this related to the duration of the He-
burning phase, compared to the main-sequence phase?

7.2 Dynamical Stability

(a) Show that for a star in hydrostatic equilibrium (dP/dm = -Gm/(4πr4)) the pressure scales
with density as P ∝ ρ4/3.

(b) If γad < 4/3 a star becomes dynamically unstable. Explain why.

(c) In what type of stars γad ≈ 4/3?

6



Exercises Stellar Structure and Evolution 2017

(d) What is the e�ect of partial ionization (for example H � H+ + e− ) on γad? So what is
the e�ect of ionization on the stability of a star?

(e) �Pair creation� and �photo-disintegration� of Fe have a similar e�ect on γad. In what type
of stars (and in what phase of their evolution) do these processes play a role?

8.1 Homologous contraction (1)

(a) Explain in your own words what homologous contraction means.

(b) A real star does not evolve homologous. Can you give a speci�c example? [Think of core
versus envelope]

(c) Fig. 8.3 shows the central temperature versus the central density for schematic evolution
tracks assuming homologous contraction. Explain qualitatively what we can learn form this �gure
(nuclear burning cycles, di�erence between a 1 M� and a 10 M� star, ...)

(d) Fig. 8.4 shows the same diagram with evolution tracks from detailed (i.e. more realistic)
models. Which aspects were already present in the schematic evolution tracks? When and where
do they di�er?

8.2 Homologous contraction (2)

In this question you will derive the equations that are plotted in Figure 8.2b.

(a) Use the homology relations for P and ρ to derive:

Pc = CGM2/3ρ4/3c (13)

To see what happens qualitatively to a contracting star of given mass M, the total gas pressure
can be approximated roughly by:
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P ≈ Pid + Pdeg =
<
µ
ρT +K

(
ρ

µe

)γ
(14)

where γ varies between 5/3 (non-relativistic) and 4/3 (extremely relativistic).

(b) Combine this equation, for the case of NR degeneracy, with the central pressure of a contracting
star in hydrostatic equilibrium (eq. 13, assuming C ≈ 0.5) in order to �nd how Tc depends on ρc.

(c) Derive an expression for the maximum central temperature reached by a star of mass M.

8.3 Application: minimum core mass for helium burning

Consider a star that consists completely of helium. Compute an estimate for the minimum mass
for which such a star can ignite helium, as follows.

� Assume that helium ignites at Tc = 108 K.
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� Assume that the critical mass can be determined by the condition that the ideal gas
pressure and the electron degeneracy pressure are equally important in the star at the moment
of ignition.

� Use the homology relations for the pressure and the density. Assume that Pc,� = 1017g
cm−1s −2 and ρc,� = 60 g cm−3

9.1 Kippenhahn diagram of the ZAMS

Figure 9.8 indicates which regions in zero-age main sequence stars are convective as a function of
the mass of the star.

(a) Why are the lowest-mass stars fully convective? Why does the mass of the convective envelope
decrease with M and disappear for M ∼ > 1.3 M�?

(b) What changes occur in the central energy production around M = 1.3 M�, and why? How is
this related to the convection criterion? So why do stars with M ≈ 1.3 M� have convective cores
while lower-mass stars do not?

(c) Why is it plausible that the mass of the convective core increases with M?

9.2 Conceptual questions

(a) What is the Hayashi Line (HL)? Why is it a line, in other words: why is there a whole
range of possible luminosities for a star of a certain mass on the HL?

(b) Why do no stars exist with a temperature cooler than that of the HL? What happens if
a star would cross over to the cool side of the HL?
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(c) Why is there a mass-luminosity relation for ZAMS stars? (In other words, why is there a
unique luminosity for a star of a certain mass?)

(d) What determines the shape of the ZAMS is the HR diagram?

9.3 Central temperature versus mass

Use the homology relations for the luminosity and temperature of a star to derive how the central
temperature in a star scales with mass, and �nd the dependence of Tc on M for the pp-chain
and for the CNO-cycle. To make the result quantitative, use the fact that in the Sun with Tc
≈ 1.3×107 K the pp-chain dominates, and that the CNO-cycle dominates for masses M ≈ > 1.3
M�. (Why does the pp-chain dominate at low mass and the CNO-cycle at high mass?)

10.1 Conceptual questions

(d) Explain the existence of a Hertzsprung gap in the HRD for high-mass stars. Why is there no
Hertzsprung gap for low-mass stars?

(e) What do we mean by the mirror principle?

(f) Why does the envelope become convective on the red giant branch? What is the link with the
Hayashi line?
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10.3 Red giant branch stars

(a) Calculate the total energy of the Sun assuming that the density is constant, i.e. using the
equation for potential energy Egr = -3/5 GM2/R. In later phases, stars like the Sun become red
giants, with R ≈ 100R�. What would be the total energy, if the giant had constant density.
Assume that the mass did not change either. Is there something wrong? If so, why is it?

(b) What really happens is that red giants have a dense, degenerate, pure helium cores which
grow to ∼ 0.45M� at the end of the red giant branch (RGB). What is the maximum radius the
core can have for the total energy to be smaller than the energy of the Sun? (N.B. Ignore the
envelope � why are you allowed to do this?)

(c) For completely degenerate stars, one has

R = 2.6× 109µ−5/3
e

(
M

M�

)−1/3

(15)

where µe is the molecular weight per electron and µe = 2 for pure helium. Is the radius one
�nds from this equation consistent with upper limit derived in (b)?

10.4 Core mass-luminosity relation for RGB stars

Low-mass stars on the RGB obey a core mass-luminosity relation, which is approximately given
by:

L ≈ 2.3× 105L�

(
Mc

M�

)6

(16)

The luminosity is provided by hydrogen shell burning.

(a) Derive relation between luminosity L and the rate at which the core grows dMc/dt. Use
the energy released per gram in hydrogen shell burning.

(b) Derive how the core mass evolves in time, i.e, Mc = Mc(t).

(c) Assume that a star arrives to the RGB when its core mass is 15% of the total mass, and
that it leaves the RGB when the core mass is 0.45 M�. Calculate the total time a 1 M� star
spends on the RGB and do the same for a 2 M� star. Compare these to the main sequence (MS)
lifetimes of these stars.

(d) What happens when the core mass reaches 0.45 M�? Describe the following evolution of
the star (both its interior and the corresponding evolution in the HRD).

(e) What is the di�erence in evolution with stars more massive than 2 M�?

Extra Exercise 1

a) Using the homology relation for ZAMS stars derive
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L ∝ 1/kµ4M3 (17)

R ∝ µ(ν−4)/(ν+3)M (ν−1)/(ν−3) (18)

Using the following assumptions:
� Radiative stars

� Thermal equilibrium
� Hydrostatic equilibrium
� Constant opacity
� Ideal gas EOS
� Hydrogen burning ε ∝ ρ Tν

b) Compare the above relation with data in Figure 9.5 and comment on why there are
di�erences and by which violation of assumptions are they caused.

Extra Exercise 2

Write and discuss any 3 outstanding features of massive stars' evolution.

Extra Exercise 3

Describe the unique features of nuclear burning in massive stars.
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Extra Exercise 4

Derive the Mestel cooling law for white dwarfs (see equation below) and discuss it's dependences
on M and µion. The derivation should be accompanied by written comments that allow us to follow
the mathematics.

τ ≈ 1.05× 108yr

µion

(
L/L�

M/M�

)−5/7

(19)

Extra Exercise 5

Describe mass loss in massive stars.

Extra Exercise 6

Describe in detail the properties of AGB stars.
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