ESO MIDI Data Reduction System (pipeline)

Jeff Meisner

> ./midiDataReduction -a ./argumentFile2.lst IN DIR ~/mididata/alfori/fileset1 OUT DIR ./ **OUT_NAME MIDI_dispersed** MASK DIR ../Masks/ MASK NAME TRF WRITE ./MIDI_transferFunction.trf PROCESSING DISPERSED PROCESSING UNDISPERSED DEBUG 3 **VERBOSE** 0 PLOT FILE 0 **DISPLAY ONLY 0** MEM CHECK 0 CUBE_DATA 0 **COMBINE CHANNELS 1**

Incoherent integration Long Scans Fourier Transform Sum PSD's Subtract noise & Integrate power, Scale properly Image: Scale properly <

Incoherent integration of narrowband data

Estimation of noise level

3-parameter fit:1) White noise level2) Level of 1/f noise3) Power law of 1/f noise

Integration of power under spectrum minus noise, over possible fringe frequencies $\rightarrow V^2$ (unnormalized)

Estimate of error (not yet implemented)

Algorithm also returns estimated optical frequency for each channel (red line)

Photometry estimation:

Use A-open and B-open chopping runs (taken after interferometry)

Future: use the result from chopping *during* interferometry.

Raw Transitions \rightarrow Find rms \rightarrow Discard 3 σ outliers & repeat; Average

Dispersed photometry results, with error bars (red)

Results in graphical form

REPORT:

Normalized Visibility Results:

Wavelength calibration is computed from the interferometry

Channel Wavelength		Net photor	netry Visibili [,]	ty^2 RM	S Visibility	Error per	rcent	
Х	micror	ns THz	ADU/frame	normalized	from p	photomErr	from vis	net
124	8.63	34.744	49.58	0.595	28.6	0.0	28.6	
125	8.57	34.965	50.83	0.577	27.5	0.0	27.5	
126	8.50	35.282	52.34	0.577	26.5	0.0	26.5	
127	8.44	35.527	53.71	0.548	24.8	0.0	24.8	
128	8.37	35.802	52.38	0.495	24.3	0.0	24.3	
129	8.33	36.008	50.43	0.483	23.7	0.0	23.7	
130	8.25	36.334	44.57	0.472	23.7	0.0	23.7	
131	8.20	36.540	38.68	0.469	24.4	0.0	24.4	
132	8.15	36.777	28.75	0.429	26.5	0.0	26.5	
133	8.10	37.031	23.41	0.382	27.4	0.0	27.4	
134	8.00	37.468	16.93	0.430	29.4	0.0	29.4	
135	7.91	37.882	14.09	0.380	32.5	0.0	32.5	

.

When the photometry is wrong, the visibility determination suffers....

END OF TALK ON ESO PIPELINE

Incoherent, coherent and quasi-coherent integration

Incoherent integration

- No attempt to find the atmospheric OPD
- Treats signal as additional noise source (perhaps with a particular spectral content)
- Result dependent on subtraction of assumed noise level

Incoherent, coherent and quasi-coherent integration

Coherent integration

- Use the data (possibly from a different source) itself to estimate the atmospheric OPD τ
- Uses the estimate of τ to correct the data
- Integrate the corrected data to obtain an average

Incoherent estimation as a "special case" of coherent estimation

Real coherent estimation using two interferometric signals with uncorrelated noise sources:

Incoherent estimation as a "special case" of coherent estimation

"**Cheating**" by using the same signal to generate the reference phase:

Incoherent estimation as a "special case" of coherent estimation

Same thing, but also multiply by $|X_1|$ (why not \odot)

Incoherent

Incoherent, coherent and quasi-coherent integration

"Quasi-coherent" integration

Similar to coherent integration, except:

- Uses the group delay estimator to shift the signal by a large amount
- Applies an additional *phase shift* as a proxy for the remaining required OPD correction to ensure coherence
- Therefore applies a frequency-dependent time shift of $\tau_{G} + \phi/v$ instead of $\tau_{\rm G} + \phi/v_0$ Phase Achromatic Shift Correction est Raw Scan Delay * **e**^{j\$} Group delay estimate $\tau_{_{G}}$ Phase residual Prototype Visibility Fringe Find $arg(c(\tau_{G}))$ Spectrum

Correlation

(complex)