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Abstract

‘We present a theoretical analysis of the astrometric searches for extrasolar planets with the Space
Interferometry Mission (SIM). We present a model for future astrometric measurements with SIM
and and discuss the problem of a reliable estimation of orbital elements of extrasolar planets. We
propose a new method of data analysis and present a numerical test of its application on simulated
SIM astrometric measurements.

1 Introduction

The Space Interferometry Mission (SIM, see http://sim. jpl.nasa.gov/) will measure positions of stars
with precision 4puas in the wide-angle mode and up to 1uas in the narrow-angle mode. This will give a
possibility to study many fundamental astrophysical problems. However, the most important and chal-
lenging goals of SIM is astrometric detection of extrasolar planetary systems including Earth-like planets
around stars from the solar neighborhood. High precision astrometry requires adequately elaborated
models and methods of data analysis. Among others, it is important to develop techniques allowing
reliable detection of planetary signatures and extraction of the orbital elements.

In this paper we present a model of SIM narrow-angle measurements and discuss its accuracy. Our
simple model allows, among others, to analyze higher order effects which are neglected in classical as-
trometry. Moreover, it permits to understand well the nature of an astrometric signal.

We propose also a method called the Frequency Decomposition (FD) to detect planets and help to
obtain their orbital elements. This method was successfully used for PSR 1257412 timing observations [3]
and 16 Cygni B radial velocity measurements [2]. The particular nature of the astrometric observations
requires, however, some modifications of our original approach.

The astrometric signal is a superposition of several effects of different magnitude and a proper analysis
of the observations requires at least rough a priori knowledge of how different effects contribute to the
signal. However, these effects depend on the parameters (such as number of planets, their eccentricities)
which are unknown in advance. So what we propose is a two-step analysis (1) FD to understand the
basic properties of the signal (i.e determine the number of planets and approximate values of their orbital
elements) and (2) a least-squares fit based on a proper model and the starting values of parameters
derived from the previous step to refine the parameters and obtain their uncertainties.

The basic idea of FD is the following. With few exceptions (proper motion, long period planets) the
processes contributing to the signal are periodic. Therefore, our astrometric signal can be successfully
modeled as a multiple Fourier series plus a polynomial of certain degree (to account for the proper motion
and long period planets). FD is a numerical algorithm to obtain the estimates of frequencies, amplitudes
and phases of such model [3]. Full description of this method adopted to astrometric measurements can
be found in [4], here we mention only that it is especially useful for multiple planetary systems where
deciphering the number of planets may be tricky, e.g. two planets in circular 2:1 resonant orbits may
mimic one planet in an eccentric orbit, see[1]; it is helpful while trying to determine whether we observe
an astrometric displacement from a planet in 1-yr orbit or annual parallax, since the parallactic motion
has its own specific Fourier expansion constrained by SIM orbit.
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2 Modeling delays

SIM measures relative positions of stars using Michelson interferometers. A single measurement with SIM
gives the projection of direction to the star s onto the interferometer baseline vector B. The measured
quantity is the optical pathlength delay between the two arms of the interferometer [5]

d=B-s+c+e, (1)

where c¢ is the zero point of the metrology gauge and e represents measurement uncertainty. The search
for extrasolar planet is performed in the so called narrow angle mode where delays toward two stars
(called target and reference) within 1° are measured and compared. For this kind of observation the
measured quantity becomes the relative delay

D=B-(s; — %) +6, 2)

where s; and s are directions from SIM to the target and reference stars, respectively. Such narrow-angle
measurement gives the angular separation between the stars and offers higher accuracy than many errors
scale with the angular distance.

The direction to a star S = S(t) from the Solar System Barycenter (SSB) is changing with time due
to the proper motion and the presence of companions. We model these two effects in the following way

S(t) = So + 8S,(t) + dS. (1), (3)

where Sy is the direction towards the star at epoch to; 6S,(t) and dS.(t) describe changes due to the
proper and orbital motion, respectively. In order to properly calculate these changes let us assume that
the SSB radius vector of each star is given by R = Rg + R, where dR = R, + JR, is decomposed
into parallel and perpendicular to Sg components, respectively. Then, it can be shown that the first and
second order corrections of direction are following

1 1 ([6RL]\? |6R, |
8SM = _— _§R,, 5s® :ﬂ( So — ISR, . 4
R "R 2 UlRoll ) 50 o2 ™R )

If the interferometer is located at Ro(t) in SSB frame then the observed direction towards the star is
s(t) = S(t)+II(t), where II(t) = 7S X (So x Ro(t)) is the parallactic displacement, and 7 is the parallax
of the star.

Omitting many details we can write the first order general formula for the relative delay measurement
in the following form.

D=D°4+D"t+ D" -Ro(t) +d°-R*(t) +¢, (5)

where D° =B (S} — §3), D* =B - (m V} — 1 V%), D™ = [m (B - S§)S§ — m2(B - S2)S3] — (m1 — m2)B,
the indices 1,2 refer to the target and reference star respectively; d¢ = m (B - e4, B - €5) and {e,, e5,e,}
defines the local frame centered at point S of the celestial sphere. Above, we assumed that only the
target star has companions and by R*(t) we denote its position in the barycentric frame of the system.

One can determine the relative position of the target and reference star using two interferometers
or, as it is planned for SIM, by performing two measurements with one interferometer for two different
orientations of its baseline. Here we assume that a single observation is done for two orthogonal baseline
orientations By and B,. Thus a single observations is given as a two component vector D = (Dy, D)
of the relative delays. Each component D; has the form (5) where coefficients DY, D¥, DT and df are
calculated with the formulae (5) and B = B;, i = 1,2 respectively. To simplify the exposition we assume
also that B; and B are parallel to e, and eg, respectively.

Assuming that the target star possesses a planetary system with N planets we can represent R*(t)
as a multiple Fourier series with coefficients depending on elements of planets. Similarly, we can expand
Ro(t). Then we obtain the following representation of the model

D=D°+D"t+ Z [6””“ cos(nokt) + §™* cos(nokt)]
k=1

N oo
+ Z Z [6]’“ cos(n;kt) + Sik cos(njkt)] , (6)
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where N denotes the number of planets, no and n; denote the mean motion of SIM and j-th planet,
respectively. The above form of parametrization of the model allows to apply FD method described in
details in [3]. Using it we can determine proper motions of planets n; and successive vectorial amplitudes
Ci* and S7*. It can be shown that knowing two first amplitudes for k = 1,2 we can determine orbital
elements of planetary orbits provided that eccentricities are not too big. As a test with v And two
planetary system showed, this reconstruction of orbital elements is more precise than expected. Fig. 1
shows magnitudes of harmonics corresponding to each planet in this system and to parallactic motion.
It is important to notice that for application of FD method harmonic expansion of parallax effect in (6)
is not necessary. We made it to show only that it gives an effect similar to a planet around the target

star.
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Figure 1: The amplitudes of subsequent harmonic terms for the relative delays D;, Dy (left and right
panel respectively) corresponding to the planet I (a), II (b) and the parallactic motion (c).
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2.1 Second order effects

The above first order model gives a good approximation for qualitative description of expected effects.
However, SIM will deliver unprecedented 1uas precision in the narrow-angle mode and thus it is important
to understand limitations of the model. It can be accomplished by analyzing higher order terms. For the
baselines perpendicular to Sg, the second order corrections correspond to the term that is responsible for
the actual angular displacement (see equation (4)) and we have

SR IORL[ _ ([I6R])?
sy IR, 3 _ .
S = TRl ol = IR @)

They can be calculated if we put dR = —Ro(t) + R*(t) + Ry (t) where Ry (t) = Vot + Vgt, and Vo,
VR are the tangential and the radial velocity of the star. We obtain

188 < 7*(IRo (M) + IR*®II° + [Rv (1)]* — 2Ro(t) - R*(t) — 2Ro() - Ry (1) + 2R*(1) - Ry (1)).

As we can see there are two types of second order corrections. The first type includes the second order
corrections due to the proper motion, parallax and companions. For the proper motion it is easy to
obtain the exact value of the correction

_LIVall [ Vel 7o _ 7

= — Vi Vg AT?, (8)

AS, =
7 4 |Ro|l IRl 4

where AT is the time span of the mission. We calculated its value for the sample of 150 stars from
the Hipparcos catalogue with the largest proper motion. The results are shown in Fig. 2. As one can
see AS, is indeed significant for such stars and without any doubt has to be included into the model.
For the remaining corrections due to the motion of the interferometer (i.e. the second order parallactic
correction) and the presence of a companion we have the following upper limits

2 4/3

m )
AS.~5x107¢ % pas  for planetary companions,
pc Mg ( - 6)

m2, P? (9)
Mo 57 pas  for stellar companions,

AS. ~ 49 73
d?,cMMo(l + Mg /My )¥/3(1 — e)?

AS, ~49 d;cz pas,

where d,, is the distance to the star in parsecs, Mz, mass of the star in solar masses, m s, mass of the
companion in solar masses, maz,, » mass of the companion in Jupiter masses, P, orbital period in years
and e eccentricity, a, and e, are the semi-major axis of the star’s orbit and its eccentricity, respectively.
Above we assume that SIM semi-major axis is 1 AU. The other type of second order corrections includes
all ”mixed” terms. We find that
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Figure 2: AS,, for 150 stars with the largest proper motion from the Hipparcos catalogue. The solid lines
represent AS,, for 1, 10 and 100 parsecs as a function of V7 Vi. Time span of the mission AT = 10yr
was assumed.
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Figure 3: AII, for 150 stars with the largest proper motion from the Hipparcos catalogue. The solid
lines represent AII, for 1, 10 and 100 parsecs as a function of V. Time span of the mission AT = 10yr
was assumed.

where Vigg is the velocity of star in hundreds of km/s and ATy, is the time span of the mission in years;
ATl,, AT, are upper limits of 272 |Ro(t) - R*(¢)| and 272|R*(¢) - Ry (t)|, respectively. The upper limit
for mixed second correction due to parallax and proper motion is AIl, = 72agVAT. The value of AIl,
was calculated for the same sample of stars as in Fig. 2. Again, one can observe that AII, is significant
and a proper model has to take it into account (see Fig. 3). We estimated also the third order angular
displacement 6S®) due to the proper motion. It is given by 6S®) ~ %(Vﬁ + V2)3/2 AT?, and is bigger
than 1u for several stars with big proper motions. The global second order effects on delays are illustrated
in Fig. 4.

The above analysis clearly shows that a variety of second order effects and possibly in few cases third
order effects will be detectable with SIM.
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Figure 4: Second order effects in the simulated delays for the relative measurements between v And and
HD 10032 for the baseline vector orientations B; (a) and By (b); (¢,d) the same effects when the radial
velocity of both stars is zero; (e,f) the residuals from the least-squares fit of the first order model to the
simulated data used in (a,b).
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ABSTRACT

We present the concept of piston angular anisoplanatism and derive the temporal evolution of the optical path
differences between the two pupils of an astronomical interferometer due to random fluctuations of the atmospheric
refraction index, obtaining expressions for the temporal power spectra of phase fluctuations caused by differential
piston and photon noise. This allows us to evaluate the residual phase variance left in a fringe tracking servo-loop
system and obtain estimates for the sky-coverage due exclusively to differential piston effects, concluding that in the
V-band the percentage of sky that can be observed is a few percent while in the K-band we should be able to cover
the entire sky.

1. INTRODUCTION

For a long time it has been recognized that optical path differences originated from random fluctuations of the
atmospheric index of refraction may cause a fringe displacement which if not corrected can completely blur and
cancel out the visibility function. Thus, current small-aperture interferometers in operation already incorporate
active fringe tracking systems which use the science object to track the fringes. These interferometers are very limited
in sky-coverage due mainly to their small apertures which impose rather strong constraints on the limiting magnitude
(my, =5-T). On the other side, their small apertures of the order or ro makes non compulsory the use of adaptive
optics. This situation is completely different for the new generation of optical ground-based interferometers!~3
with apertures of 8m and 10-m diameter and adaptive optics systems to correct from atmospheric degradation
before cophasing the wavefronts from each single aperture. However, whereas tip-tilt and higher-order atmospheric
effects have been studied in detail (e.g see Ref. 4-6) the effects of atmospheric differential piston on adaptive optics
interferometry have been somehow overlooked and rarely found in the literature.”8

2. EFFECT OF THE DIFFERENTIAL PISTON ON THE VISIBILITY

Let us assume an ideal situation where random fluctuations of the atmospheric refractive index distort the incoming
wavefront by introducing a constant offset but of different values on the portions of wavefronts intercepted by
each of the pupils of an astronomical interferometer*. Assuming identical atmospheric transmissions up to the two
interferometers and along its two arms, the fringe pattern on the image plane is given by:

I() = 2Ipp(F)(1 + V cos(é(r) - 6pp)) W

where 7 is a vector on the image plane, Ipy, is the diffraction limited pattern due to a single aperture (i.e. an Airy
disk if we assume circular apertures), V' is the instant visibility, ¢pp the phase caused by the differential piston (and
therefore the DP subscript) and ¢(7) the phase due to both spatial and temporal coherence. Once we have selected
the point of observation in the image plane ¢(7) has a constant value so that the averaged visibility V will differ from
the instant visibility due to temporal changes of ¢pp. Assuming that ¢pp behaves as a Gaussian random variable
with variance ag it can be readily found that the time average visibility function V is given by::

7 = Ven(-72) @)

*The difference of these offsets is referred to as differential piston in what follows.
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3. DIFFERENTIAL PISTON ANGULAR ANISOPLANATISM

The loss of correlation between the differential piston when looking towards the on-axis science object and the differ-
ential piston measured from an off-axis bright reference source translates in a residual phase difference referred to as
differential piston angular anisoplanatism. Adopting the same terminology as in Ref. 9 we consider an interferometer
made up of two pupils of diameter D and a center-to-center distance (i.e baseline) equal to A. The instrument
is assumed to be pointing towards zenith and observing an on-axis scientific target while correcting for differential
piston by observing a bright reference source at an off-axis angle . Further, consider an atmosphere with a Von
Karman power spectrum with outer scale Ly, all turbulent power concentrated in a single layer at an altitude h above
the interferometer and a Fried parameter ro at the observing wavelength . Referring to Fig. 1-left for the definition
of the geometrical elements s, d12 and da1, it can be shown that the phase variance due to differential piston angular
anisoplanatism (c4)Z,,; is given by:

ani

8/3 o091 — Jo (228) — Jo (222)] + Jo (2z42) + J, (22%
(0-45)21“' = 036647{-8/3 (g) /0 [ 0( 'TD) 0( mD)] + 201(1/1(‘;D ) + 0( z D )Jf(:c)dx (3)
:c[:c2+ (w%) ]

In Fig. 1-right we show the behavior of the anisopistonic optical path difference rms (0p)ani = 27 (0¢)ani/A for
an LBT-like configuration (D = 8.4 m, A = 14.4 m) due to a single turbulent layer with r(0.55pum) = 0.2 m at
h = 10 km above the telescope for several Ly values.

anisopistonic error rms[pum]

I B

7 D 0 4 60 8 100 120

off-axis [ar csec]

Figure 1. Left: geometrical elements considered for the calculations of phase variance due to differential piston
angular anisoplanatism. Right: anisopistonic optical path difference rms (op)qni a8 a function of the off-axis angle
of the reference source for a single-layer turbulent atmosphere (see text for the details on the rest of parameters).
Plotted curves refer to Ly = 10, 20, 50, 100 m and oo from the least to the steepest curve. Solid and dotted lines
represent the cases where the reference source is displaced along and orthogonally to the baseline, respectively.

4. SERVO-LOOP DELAY EFFECTS

The second source of differential piston phase residuals in an adaptive optics interferometer is due to the fact that
the correction is applied with a certain delay during which little changes are expected to occur. In order to estimate
the contribution from this source to the total differential piston variance we must first compute the temporal power
spectrum of the differential piston. Once such temporal power spectrum is obtained, the temporal behavior of phase
residuals in our servo-loop is obtained by considering the servo-loop transfer function.

4.1. Temporal Power Spectrum of Differential Piston Phase Fluctuations

To do so we have first obtained the temporal auto-covariance function of the differential piston under rather general
assumptions, namely: Taylor hypothesis and spatial isotropy of the field of random atmospheric refractive index
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fluctuationst. After obtaining the temporal auto-covariance we are ready to find the temporal power spectrum by
just applying the Wiener-Khinchin theorem. Assuming a Von Karman spectrum to model the random fluctuations
of the atmospheric index of refraction, the expressions for the temporal power spectra corresponding to the cases of
wind parallel and perpendicular to our interferometer baseline are:

rﬂ)(f) = 0/\32022 cwf*—/ dh C2(h) v(h) ¥ F”( Ok ; D, Lo) [l—cos (%f)] 4)
ri) = S seews ¥ [T ancim) o ¥ P (150D, A L) )

where 1) is the zenith angle, D the aperture diameter, A the interferometer baseline, C2(h) and v(h) the structure
constant of the refractive index fluctuations and wind velocity at height A, respectively, and F!l and FL- are defined
according to the following integrals:

=11
1 x5 x \?| ¢ wD
a2 ()| B (2R ) 6
| "m[ (yL0> N ©

Fi(y; D, A, Lo) = /Oldx\/lx_?_xz[1+<;%>2]%nJI (”Dy> [1—cos(?y 1—x2)] )

In Conan et al.® the authors provide the expression of the temporal power spectrum of differential piston phase
fluctuations but in the more simple case of a Kolmogorov spectrum and wind parallel to baseline. Our expression for
FD& reduces to theirs for the parallel case with a single layer and Ly — oo. Additionaly we have tested our results by
comparing against simultaions conducted with LA30S? code.!® We conclude this section by remarking the fact that
considering the particular parallel and perpendicular cases removes no generality as far as we can always express the
differential piston phase power spectrum for any wind direction in terms of I‘IqL( f) and I‘j;( f)- To do this in addition
of a vertical wind speed profile we must also consider the vertical profile of wind directions 6(h) with respect to the
interferometer baseline.

F”(y7Da Aa LO)

4.2. Convolving with the Servo-loop Transfer Function

We assume the servo-loop of an adaptive fringe tracking system as made of a correcting element (i.e. delay line),
a fringe sensor, an integrator and a feedback element to close the loop. In our calculations we assume a correcting
element fast enough not to introduce any significant delay in the correction so that we can approximate H.(f) = 1.
The transfer function for the fringe sensor H,(f) takes into account the integration time 7 plus the delay associated
to it, so it is described by (e.g. see Ref. 6) Hy(f) = (1 —exp(—j2nf7))/(j2nf7). We consider a pure integrator with
transfer function H;(f) = 1/(j2nf7) and a unit feedback element (i.e. H¢(f) = 1). The residual differential piston
phase rms o in the servo-loop system is given by:

(62), = 2 / "t [Ty (6) T () ®)

where the subscript 7 makes reference to the integration time and |T(f)|* is the square modulus of the servo-loop
error-input transfer function given by (e.g. see Ref. 6):

1 2 (2mfr)* _@rfr)? + F@rfr)t )
1+ H,(HHi(f)|  @rfr)t — 4sin’(afr)[(2nfr)2 —1] 1+ 2(2nfr)*
tThe Taylor hypothesis, or frozen turbulence approximation, assumes that each turbulent layer moves rigidly without

changing its shape. By adopting this hypothesis we can directly link time variations of any quantity related to the wavefront
with its spatial variations.

ITs (NI =
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Performing the integration involved in Eq. 8 with |Ty(f)|? and ['y(f) given by Eq. 9, Eq. 4 and Eq. 5 is an
extremely cumbersome task. Therefore we proceed by using approximate expressions for the error-input transfer
function in close-loop operation and instead of Eq. 4 and Eq. 5 we make use of the asymptotic behaviours of FLL( b
and F;( f) in Ref. 11. Now the integration in Eq. 8 can be readily done to obtain the residual differential piston
phase variance according to the expression:

2 =]
(05)r = Ao secy (?) D132 {(1 + A vy + /0 dh C2(h) v®(h) [Az cos® O(h) + Agsin® G(h)]} (10)

where let us recall that 7 is the integration time, v, = [;* dh CZ(h) v#(h) is the 2nd order velocity moment and
where for a Kolmogorov spectrum (i.e. Ly = oo): Ag = 5.81, A; =0, Ay —0.69(D/A)'/3 and A3 = —0.16(D/A)'/3.
For finite outer scales Ag = 0.643 and:

4 {0 ifLo < 3D (11)
7\ 3.61x 1072 (Lo/D)%/3 5F1(4/3,3/2;5/2;—0.09(Lo/D)?) if Ly > 3D
3.61 x 1072(Lo/D)3/3 [ 2F1(4/3,3/2;5/2; —0.09(Lo/D)?) + 9.02 x 10~2(Lo/A)] —
Ay = ] 107 1072(Lo/A)%/3 5 F1(4/3,3/2;5/2; —0.04(Lo/A)?) ifLo < 3D (12)
—1.07 x 1072(Lo/A)%/3 (1 — 0.474(D/A)Y/3) 2F1(4/3,3/2;5/2; —0.04(Lo/A)?) ifLo > 3D
4. - [ 231x 10=2(Lo/D)11/3 ifLo < D (13)
8 7 1 -8.31x1072(Lo/D)%3y(3/2,3A%/(4D?)) exp(—8.32A%/L3) if Ly > 3D

5. DETECTOR NOISE EFFECTS

The last source under consideration of residual differential piston phase is that generated by photon noise in our
fringe tracking sensor. A recent work!2 suggests the fact that current working interferometers are still detector-noise
limited, or at least that the detector-noise contribution is not negligible at all. Yet in our approach we consider only
photon-noise as far as our analysis is to be applied to Michelson interferometers with very large pupils. We have
adopted the phase-tracking method described in Ref. 13 and the reader is referred to that work for details on it.
According to Ref. 13 the expected phase variance under photon-noise limited (and hence the subscript pn) wide-
band fringe tracking is given by (04)3, = #°/(4V?N) where V is the visibility and N is the number of detected
photo-electrons and implicitly contains time and wavelength bandwidth dependences. Assuming white photon-noise
and that it passes through a boxcar averager with time constant 7 we can write:

100nm
Tpn(f) = T(qu)?m = an—D2 100-4m—10 (02—)\> (14)
where 'y, (f) is the power spectrum associated with the photon noise in terms of the two pupil collecting surface
2D (D in units of [m]), the quantum efficiency of the fringe sensor 1, the magnitude m of the reference star and
the bandwidth A\ of the sensing light. The transfer function T, we must use with I'py is, according to Ref. 6, the
overall transfer function of the closed loop as it is assumed that the noise in the device enters through the fringe
sensor and propagates across the integrator and feedback elements:

Hs(f)Hz(f) : ~ 1 (15)
T+ H(OH()| = 1+@nfriie

The residual variance due to the presence of photon noise (a;)pn within the servo system is then readily evaluated
to be:

i (9P = |

00 31/47r100.4m710 100nm
(U;)zm = 2/0 df|Tpn(f)|2 Ton(f) = 27)V2D2£ = ) (16)
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6. APPLICATION: SKY COVERAGE FOR 8M-CLASS INTERFEROMETERS

We consider the configurations corresponding to Keck (D = 10m, A = 85m), LBT (D = 8.4m, A = 14.4m), VLTI
UT1-UT2 (D = 82m, A = 57m) and VLTI UT1-UT4 (D = 8.2m, A = 130m). For Keck and VLTI we use
available SCIDAR measurements for the atmospheric turbulence profiles above Mauna Kea'# and Cerro Paranal.l®
In absence of atmospheric turbulence profiles for LBT we have considered a modified Hufnagel-Valley model.® These
atmospheric turbulence profiles have been normalized to the median r(0.5um) values above each site: 20.4, 13.3 and
14.1 cm for the Keck,!* LBT!® and VLTL!? respectively . Wind profiles in Ref. 15 and Ref. 18 are used for Keck
and VLTI and due to the absence of such data for LBT, we assume the standard Bufton wind model with ground
wind speed set to 5 m/s. Finally, to our knowledge there is no vertical 6 profile so that we will assume a uniformly
random wind direction profile along the atmosphere. In the same manner as we define the concepts of anisoplanatic
angle and the high-order critical time constant we define the isopistonic angle fp and the pistonic critical time 7p.
Thus, we define fp as the angular radius of a circular region where the anisopistonic error reduces the fringe visibility
to no more than 80% of the unperturbed value. The 20% visibility reduction happens when the residual piston error
op is about A/10. The pistonic critical time 7p is defined as the value at which (a;)r = 1rad implying a ~40% fringe
visibility reduction. Following Ref. 6 the fractional sky coverage and the density number of stars of visual magnitude
less or equal to m,) are given by:

fractional sky coverage = 79?2 x (average star density),,
1.45 exp(0.96 m,) (stars/rad?)

(average star density)m,
(17)

where 1 is the angular radius around the reference source within which the isopistonic error reduces the visibility by
a tolerable value. The limiting magnitude m, will be determined by the trade-off between the maximum integration
time before (ai)T degrades V' and the minimum required time beyond which (‘72)1’" preserves V to its desired value.
Considering that in addition to the fringe visibility caused by differential piston there will be other sources of visibility
reduction (e.g. differential tilt, high-orders correction effects, finite bandwidth, etc) we find appropriate to set our
goal to achieve a visibility reduction of 50% due to differential piston. Taking ¢ = @p leaves a budget of 0.94 rad?
to be distributed between (03), and (0})pn of which we arbitrarily allocate a 90% to the former and a 10% to the
latter. This arbitrary allocation yields integration times for the fringe sensor ranging from ~6 ms to ~10 ms. From
here we proceed by assuming a fringe detector with a total throughput of 40% and sensing done in the V-band. The
value for the limiting magnitude in the V-band together with the expected fractional sky coverage values are also
provided in Table 1. Thus, while in the V-band the expected sky coverage is only a few per cent, in the K-band we
should be able to cover the entire sky.

Table 1. Summary of the parameters and results of the estimates on sky coverage.

K-BAND V-BAND Sky Coverage
Interferometer Op TP Op 7p | Limiting K-band V-band
[arcsec] [ms] | [arcsec] [ms] my (%) (%)
L(] = 20 m
Keck 24.3 29.2 | 6.00 7.30 18.4 100 18
LBT 21.9 44.3 5.43 11.1 18.5 100 19
VLTI 27.1 70.4 | 6.68 17.6 18.6 100 44
Lo =50m
Keck 13.0 25.0 3.24 6.25 184 72 4.5
LBT 134 391 333 9.78 18.5 84 5.2
VLTI 15.6  45.1 3.90 11.3 18.6 100 7.9
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7. CONCLUSION

Our calculations on the effects of differential piston for adaptive optics interferometry show that the sky-coverage in
the V-band is indeed quite small, while close to full coverage in the K-band. These results are very much dependent on
the particular C2(h) and v(h) profiles as well as on the outer scale. At this point we do not claim that a particular
interferometer will be able to cover twice as much sky as the other since the profiles used for any of them have
been obtained with very different resolutions thus affecting the exact sky-coverage values obtained. Instead, these
values should be viewed as orders of magnitude so that we conclude that the new generation of optical ground-based
interferometers should be able to cover the sky at a level of 20-40% in the V-band and at 100% in the K-band if
only differential piston were present nd assuming Lo = 20m, while for Lo = 50 we still reach a 100% sky-coverage in
the K-band while in the V-band we are limited to 5-10% sky coverage. Further considerations including the effects
of residual tip-tilt correction between the two pupils (the so-called differential tilt) as well as residual higher-order
corrections are likely to further constrain the sky-coverage of these interferometers, a question which should be
studied in more detail.
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Layer oriented approach to multiconjugation in Adaptive Optics
Massimiliano Tordi

Abstract

A new scheme for multiconjugation in adaptive optics is presented. This approach, proposed
by Ragazzoni, Marchetti and Farinato, uses single detectors conjugated at the same altitude as
the deformable mirrors. This solution results in a simple optical design, less expensive in terms
of computing power, that can be easily managed by changing the integration time and the spatial
sampling, in order to reach more faint limiting magnitudes and increase the sky coverage with
natural guide stars.



