A science overview of optical interferometry (continued)

R. Waters, University of Amsterdam

Observational methods

- Circumstellar matter is cool: observe at long wavelengths (IR, mm)
- Composition and kinematics: spectroscopy
- Geometry of environment: high resolution imaging

High angular resolution: stars

- Stellar surface structure
- Mass loss of stars (massive, low mass)
- Formation of stars and planetary systems

	Diagnostic	example	application
Some spectral diagnostics accessible at Infrared wavelengths	HI recombination lines	Bra (4.05 µm) Hua (12.87 µm)	Hot star Wind structure OB stars, WR stars
	fine-structurc lines (forbillen)	[FeI] 164 jum [NeI] 12.8 jum	Lov-density gas (atomic/ionic) Y50 's, Planetary Ne bulae, UR stars
	Molecular lines	СО (2.3 µm; 4.7 µm) SiO (4 µm, 8 µm) Hz (2.1 µm; 12 µm)	Cool, dense gas noer stors, ISM 150 disks, cool star outflows, ISM,
	Thermal emission from Just	JZI μm : continuum solid state resonances (e.g. silicate at 10 μm, 18 μm; sic at 11.3 μm	cool regions near stors ISM YSO disks, cool star outflows, ISM,

a to.4 for small (mai , wh) grains Use Wien displacement law Amax T = const - Long wavelength (IR) abservations -= 'poor' -> Size of Justy object shill grows with respect to angular resolution of telescope Enote: density distribution + optical depth effects (e.g. r(h) (.) 1² for BB grains) spatial resolution of telescope (1) 1 - Observed size of dusty objects = f(1) a = 0.5 for black-body grains Just (1) (1) r - x sportial extent of "clusty" Objects. also play an important rible! ^{اللا}لا (ب) اللاعد الله الم spatial resolution : filpically : However...

- Location of dust forming region
- Effects of stellar pulsation on dust formation
- Origin of non-spherical mass loss
- Binarity and AGB mass loss

solid state resurrances) probes wind structure High angular resolution observations: late type stars dust condensation temperature (dust chemistry) "topical" grain size temporal variation of dust praduction conditions spatial distribution of dust (continuum and * Sub-structure on stellar surface ("star-spots" (stellar pulsofian) clensify in outflow (mass loss rate) - optical - Molecular absorption bounds (OH, SiO, CO, * Anguillar size of clust shell thermal emission depends on : * "Stellar" diameter as a function of wordength CeH2, HCN, CS, ...) probe extended temperature of central star mplecular layers geometry depth of shell puo

This page was intentionally left blank