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Abstract: The tracking of the white light (central) fringe in a broadband optical/IR interferometer,
allows the possibility of long coherent integrations of fringe visibility. Fringe tracking involves the
determination of absolute OPD o�sets (not just narrowband phase) and either real-time correction of
the interferometer's delay lines, or determination of the estimated OPD time series to be applied to
the interferometric data o�-line to e�ect coherent integration of fringe visibility. Algorithms of this
sort will be included in the data reduction software package being developed for MIDI, the 10 micron
interferometric instrument of the VLTI.

Group-delay tracking is a technique which is somewhat more robust than true phase tracking,

but supplies a cruder estimate of OPD variations. Such incoherent techniques are useful for coarse

adjustments to an interferometer's delay lines, and will be part of the real-time software operating in

support of the MIDI instrument. General characteristics of both estimators are compared as regards

sensitivity, detection bandwidth, and behavior in response to dispersion.

1 Introduction

Let us only consider a two element astronomical interferometer receiving (partially) correlated
light from a star. Each of the signals received at the two telescopes has undergone a di�erent
optical path delay (OPD). The di�erence between the delays a�ecting the two beams consists
of two components: 1) The geometrical component due to the position of the object in the
sky relative to the interferometer's baseline, �g; and 2) A stochastic term due to atmospheric
turbulence, which we shall denote �a.

Every long-baseline interferometer requires a delay-line in order to (at least partly) com-
pensate for the relative delay a�ecting the beams. The geometric delay, �g, is deterministic,
and, in principle, can be predicted. The atmospheric term is random and can only be estimated
using the starlight itself. Let us assume that �g is known exactly and is applied to the delay
line, along with a \correction" delay �c which may optionally attempt to follow the atmospheric
delay �a and/or introduce a known delay o�set. An interferometer using the starlight following
this (partial) correction of the di�erential OPD, will be sensitive to the remaining delay o�set
� = �a � �c, and may be able to estimate this quantity.

There are three distinct purposes for estimating or tracking the atmospheric delay �a. The
�rst reason is in order to maintain coherence in the detection of interference. For an uncorrected
o�set delay � , each optical frequency will encounter a phase shift given by � = 2��� . For non-
zero � , there will be a range of phases a�ecting the interfered light. For an interferometric
channel with an optical bandwidth ��, the change in phase across that bandwidth will amount
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to �� = 2��� � . For a boxcar bandpass function, the measured fringe visibility will be
reduced by the familiar factor sinc(�� �). When �� � reaches unity, the interference signal
will be completely cancelled, but even much smaller OPD o�sets, if not accounted for, will lead
to errors in the measurement of visibility. This is avoided by controlling the delay line to insure
that � � 1=��. This level of OPD estimation is often referred to as \coherencing."

The second reason for requiring estimation or tracking of the random di�erential OPD
applies to any instrument employing coherent integration of fringe visibility. Since an inter-
ferometer measures a quantity equal to the underlying visibility rotated by the instantaneous
phase shift � = 2��� , the uncorrected phase shift must either be controlled so that it remains
stable during the period of a coherent integration, or it must be continually estimated, so that
the data can be \derotated" (Meisner 2000) prior to being co-added. In either case, the fringe
tracker must be capable of determining the phase � to within about a radian, a much more
stringent requirement than required for \coherencing," discussed above.

Finally, an astrometric interferometer has the geometric delay itself as the primary ob-
servable, and relies on the fact that the random atmospheric OPD �a is zero mean. Thus an
estimator of di�erential OPD is again required.

Our current work in the area of atmospheric OPD tracking will in part be directed toward the
operation of MIDI, the 10 micron instrument for the VLTI (Leinert 1998). Among its various
modes of operation, MIDI will sometimes require real-time corrections to the VLTI delay-lines.
Additionally, estimation of di�erential OPD will be required for visibility estimation using
coherent integration. The OPD estimation might be derived from the 10 micron MIDI data
itself (as emphasized in the following discussion), or from a separate near infrared instrument
observing either light from the same object, or from a close bright star using a future dual-
beam facility known as PRIMA (Quirrenbach 1998). A fringe sensing unit at 1.6 microns called
FINITO (Gai 2001) is being built which may be superceded by an upgraded device as part of
the eventual PRIMA facility.

2 Phase Estimation of Atmospheric Delay

Consider a set of interferometric data taken at an instant, or at least over a time period short
compared to the atmospheric coherence time. Given a perfect model of everything except � , the
maximum likelihood estimator is obtained as the value �̂ which minimizes the di�erence between
the detected signal (which includes noise) and the signal that would have been predicted on
the basis of � = �̂ . Given a linear estimator of fringe visibility V̂ = f(X) (coherent estimators
are always linear estimators) then this criterion will also generally be equivalent to the one
that minimizes the di�erence between the estimated visibility V̂ and the true visibility V (actual)

(which of course is not usually known!). However we can often take advantage of the fact that
in many con�gurations, errors in the estimate �̂ will tend to only reduce the real part of the
estimated V̂ , at least when we have reason to believe that its phase is zero (or more generally,
will reduce the real part of e�j�V̂ where � is the true phase angle of the source visibility). That
allows us to simply create an estimator which chooses the �̂ which maximizes the real part of
the estimated visibility V̂ = f(X; �).

Let us �rst apply this principle to narrowband interferometric data at an optical frequency
�. Let us assume that the underlying source visibility has zero phase, so that V (actual) is a real
number. The e�ect of a phase shift due to a di�erential atmospheric delay of 2��� , would be
indistinguishable from a phase in the underlying visibility. Thus a coherent estimator which
did not take the atmospheric phase shift into account, would yield the following (incorrect!)



Figure 1: Left: interference at 5 di�erent wavelengths combine to produce global peak of OPD
likelihood as shown by arrow. Center: wideband detection (6 frequency components shown) produces
pronounced peak at zero OPD, with reduced sidelobes. Right: same spectral components subject to
serious longitudinal dispersion, produce \chirped" fringe with poorly de�ned global peak.

estimation of visibility:
V̂RAW = V (actual)e�j2��� (+noise)

A corrected coherent estimator, however, which took into account an assumed phase shift of
2���̂ would be:

V̂CORR = ej2���̂ V̂RAW = V (actual)ej2���̂e�j2��� (+noise)

Again assuming that V (actual) is a positive real number, then the real part of V̂CORR will clearly
be maximized when 2���̂ � 2��� = 2�N or �̂ = � + N 1

�
(plus an error due to measurement

noise). So this method works in principle, but only estimates � subject to an ambiguity of an
integral number of wavelengths. Of course that is a direct consequence of our narrowband model
in which there is no distinction between delays that are separated by exactly one wavelength!

This ambiguity can be removed however, when phase information from multiple wavelengths
is combined. For instance, a spectrally-dispersed interferometer might measure the amplitude of
interference at �ve di�erent wavelengths, producing likelihood functions each of which consists
of a sine wave of this sort at a di�erent frequency, as graphed in the lower left of Fig. 1. Each
sine wave has peaks at likely positions of the OPD. However only at one point do those peaks
coincide. Combining the results from interferometric detection at the �ve wavelengths, (in this
case by simple addition) we arrive at the upper plot in which a �gure of merit corresponding
to a \white light fringe" has been synthesized. On the other hand such a white light fringe
may have been observed directly using a delay-scanning interferometer (after �ltering). In
either case, the position of the unknown delay � has been determined by the maximization of a
function formed as a (weighted and/or phase shifted) sum of components produced by di�erent
wavelengths.

It may be observed that although the central peak of the combined function clearly de�nes
the solution of the OPD estimator, the sidelobes one wavelength on either side of that peak are
not so greatly reduced in magnitude. It is easy to see that the e�ect of detection noise could
very well cause one of the sidelobes to become the global peak, leading to a misestimation
of an entire wavelength. When the correct peak is observed, however, its position will be
found within a small fraction of a wavelength, satisfying our criterion as a phase reference
for coherent integration. This dichotomy is characteristic of phase tracking (coherent) OPD
estimators: a close estimation of the actual delay accompanied by \fringe hopping" errors of
one or more integral number of wavelengths. A histogram of estimation errors generated by
such a simulation is shown in the left pane of Fig. 2 in which one sees frequent errors of about



one wavelength (in this simulation the center wavelength was 10 microns, corresponding to 33
femtoseconds).

Integral wavelength OPD estimation errors of this sort become less frequent with a higher
signal-to-noise ratio, or with data detected over a wider bandwidth. A wider bandwidth will
produce lower sidelobes, as illustrated in the center pane of Fig. 1 which shows the combined
fringe that would be obtained with uniform power detected over a 2:1 wavelength range. This
approximately corresponds to the MIDI instrument which will be sensitive from at least 7 to
14 microns. However the right pane of Fig. 1 illustrates the deleterious e�ect of longitudinal
dispersion that could \blur" the distinct peak seen in the center pane. Even though the same
frequency components are contained in both of these plots, the shift in the phase delay of the
various frequency components (plotted with small squares) causes an increasing group delay
with frequency (plotted with the solid line) so that a \chirped" fringe is produced. This example
illustrates the \worst case" water vapor dispersion expected to a�ect MIDI, corresponding to
travel through a 100 meter delay line at the VLTI �lled with air having 28% relative humidity
at 12 degrees (Hase 2001).

In addition to dispersing the energy of the fringe in delay space, the global peak has been
reduced by a quarter, barely surpassing the left sidelobe. However having calibrated the disper-
sion of the delay line, one can use the phase shift as a function of optical frequency to retrieve
the undispersed fringe (center pane, Fig. 1) from the dispersed data. That allows for an OPD
estimator (and visibility estimator) to defeat the e�ect of material dispersion, when known,
thus increasing the estimator's ability to correctly identify the central fringe.

It should also be pointed out that these examples involve the simple addition of the data from
di�erent optical frequency components. More generally, data need to be weighted according to
their signal and noise levels, in order to maximize the SNR of the combined �gure of merit.

Beyond these corrections to data received at one point in time, a more powerful approach to
the \fringe hopping" problem involves a probabilistic analysis of noisy data from a time series
of interferograms. Using the a priori statistics of atmospheric turbulence, the smoothness of
the atmospheric OPD process can help resolve 2�N phase ambiguities in the total solution
from a series of interferometric data (Meisner 1996). A further description of this technique
is beyond the scope of this overview, however it is applicable to all modes of interferometric
data production in which a continuous data stream of suÆcient SNR is produced with gaps not
much larger than the atmospheric coherence time parameter.

3 Group Delay Tracking

In the literature (Nisenson 1987) \Group Delay Tracking" has referred to OPD estimation from
spectrally dispersed detection, based on a somewhat di�erent rationale, but which leads to a
method not dissimilar from the phase tracking methods discussed in the previous section. We
shall see that the major di�erence involves taking the magnitude rather than the real part of
the complex likelihood function, leading to a somewhat weaker estimator, but one which is less
sensitive to inaccuracies in the assumed model.

Let us recall the de�nitions of phase and group delay. Given phase shift as a function of
frequency, the phase delay is de�ned as the (negative) ratio of phase to (radian) frequency,
while the group delay is de�ned as the (negative) derivative of phase with respect to (radian)
frequency:
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Since a phase, �, only has meaning modulo 2�, there are multiple branches of the \phase delay"



function obtained by adding 2�N to all phases. This can be seen in the right pane of Fig. 1 in
which a single choice of phase peaks has been arbitrarily selected to illustrate the phase delay
at 6 di�erent frequencies. However the group delay, DG, is unique, and can be just as well
obtained from any branch of the phase delay function DP :
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Although in the presence of dispersion, the group delay may not resemble the phase delay
(as illustrated in Fig. 1), what is important from the standpoint of fringe tracking, is that
atmospheric OPD variations are approximately achromatic, and will o�set the phase delay and
group delays equally and by an amount independent of optical frequency. By tracking changes
in one we are just as well tracking changes in the other.

The approach taken to obtain the estimator of group delay from spectrally dispersed inter-
ferometric data, follows directly from the de�nition of group delay. Changes in the phase of
interference between spectral channels are proportional to group delay, and it can be clearly
seen that the fourier transform of a spectrum will produce a peak (in magnitude) at a group
delay which corresponds to that phase di�erence between spectral channels. This will still be
true in the case that only the real part of the correlation is available, with the consequence
that the estimator produces peaks at both the positive and negative positions of the true de-
lay, leading to the frequently stated over-generalization that the sign of the delay cannot be
retrieved from such data.

Although this rationale is dissimilar from that of the phase tracking estimator (reduction of
the di�erence between the received data and the predicted data given an assumed �̂), the results
are strikingly similar. Put very simply, the di�erence between the coherent \phase" estimator
and the so-called \group delay" estimator, is that while the former identi�es the OPD which
maximizes the real part of the \synthesized fringe" or likelihood function (in the upper graphs
of Fig. 1), the group delay estimator maximizes the magnitude of the same complex function
(only the real parts of these functions have been plotted). This is equivalent to �nding the
peak of the envelopes plotted in Fig. 3, which are the magnitudes of the analytic signal of the
delay-scanned fringe obtained from observations using VINCI.

4 Comparison of the Estimators

The di�erence between maximization of the real part of the fringe shown and the maximization
of its magnitude, leads to qualitative changes in the types of estimation error achieved, and
the tracking of the time evolution of the atmospheric OPD. As we have seen, with narrowband
detection, the coherent estimator is subject to integral wavelength errors in the estimation of
delay, due to noise which can confuse identi�cation of the central fringe. However when the
central fringe is correctly identi�ed, the errors are suÆciently small (less than a radian) in
order to allow the estimator's use as a phase reference for coherent integration of visibility.
The group delay estimator does not have the \fringe hopping" problem at all, but has a much
higher estimation error than attainable using the phase estimator (Lawson 2000). In all but
very high SNR observations, its average error is in excess of a radian. Thus it is ideal for
\coherencing" (keeping an interferometer's delay lines within an acceptable range) but is not
suitable as a phase reference. A comparison of the errors between the two methods is shown in
the histograms in Fig. 2 in which both methods have been applied to the same simulated data.

An important property of the group delay likelihood function, given by the envelope (mag-
nitude) of the complex phase function in delay space, is that it is non-negative. This has two



Figure 2: Histograms of OPD estimation errors using simulated narrowband10 micron interferometric
data. Left: coherent (phase) estimation produces small errors with frequent \fringe jumps." Center:
group delay (incoherent) estimator produces larger errors which are normally distributed. Right:
group delay estimator combining 10 frames of data to improve SNR providing a consequent decrease
in estimation error.

desirable consequences. First, it allows one to combine the functions from consecutive interfer-
ometric frames in order to improve the sensitivity of the estimator. It would not be possible
to similarly combine the coherent (phase) likelihood functions which are oscillatory, for the
addition of such functions produced at di�erent times during which the OPD has varied by a
wavelength would result in cancellation. Thus coherent results can only utilize data limited by
the atmospheric coherence time parameter, while group delay (incoherent) results face no such
restriction.

The error histogram for such a simulation, in which group delay functions from 10 frames
have been combined, is shown in the right pane of Fig. 2. The average error has been reduced
due to the increase in the SNR of the combined group delay functions. Combining a much
greater number of samples in time would eventually lead to larger errors again, as the OPD
variations during the interval of the data employed begin to dominate. However the sensitivity
of the technique will increase so long as the expected change in � does not exceed the width of
the fringe envelope. Thus narrowband systems (with broad fringe envelopes, as in the left pane
of Fig. 1) can better take advantage of lengthy incoherent averaging of group delay estimators
in order to extract weak signals from the noise.

A second important consequence of the non-negativity of the group delay function, appears
in cases where there is a substantial variation in the phase of interference over optical frequency.
This could either be due to dispersion in the optical system as previously discussed, or due to the
actual source structure in a well resolved astronomical source. In either case, exact knowledge
of the phase function would allow us to \derotate" the raw data and recover the undispersed
fringe. But lacking such a priori knowledge, we would �nd the group delay estimator to be
much more robust, again, because it has no danger of adding functions of opposite polarity.

The net e�ect that dispersion will have, depends on the degree and type of dispersion.
Especially in narrowband interferometric data, dispersion will often be of the type depicted in
the right pane of Fig. 3. The two fringes shown here, and their spectra, are from two di�erent
observations by VINCI on the same night. The fringe on the left shows little dispersion, but
the one on the right has a clear o�set between the phase delay and the group delay, leading to
a slope in the phase of its spectrum; such dispersion in the K band is almost surely due to air
in the delay line (Lawson 2000). To �rst order, such dispersion can be described as a simple
addition of a constant phase to all frequency components (which is equivalent to a slope in the
phase if the arbitrary zero delay point is adjusted to constrain the phase at midband to zero
as was done in these plots). For a constant phase shift � therefore, we would have a modi�ed
fringe x0 = ej�x. This would have a great impact on a coherent estimator which would try to
maximize the real part of x0. Its estimate would be shifted by �=(2��), but more importantly,



Figure 3: Average fringes measured using VINCI, the 2 micron test instrument of the VLTI. Left is
from an observation of Sirius, right is V806 Centauri observed on the same night. Bottom: magnitude
and phase of their fourier transforms showing change in dispersion (probably of instrumental origin).
The arbitrary \zero delay" point has been adjusted to produce zero phase at midband.

the dominance of the central fringe would be weakened. This can be seen in the right pane of
Fig. 3, in which there is approximately a half wavelength o�set between the phase and group
delays, producing two almost equal peaks of the real fringe. A naive phase estimator would be
hopelessly confused!

On the other hand, the group delay estimator would see no di�erence between the mag-
nitudes of x and x0 = ej�x. The group delay estimate is utterly insensitive to this level of
dispersion! It would, however, be a�ected negatively by the more serious dispersion depicted
in the right pane of Fig. 1. In this case, the entire envelope of the fringe has been widened.
In fact, the group delay is a strong function of optical frequency (as shown), thus broadening
the estimator due to the combination of these components. However even in this case, the
detrimental e�ect of that broadening is not nearly as drastic as its e�ect on the phase estima-
tor, which as previously discussed, would be confused by noise in its choice between two phase
peaks of similar heights.
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