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Abstract. Comparison is made between a number of independent computer programs for radiative transfer in molecular rota-
tional lines. The test models are spherically symmetric circumstellar envelopes with a given density and temperature profile.
The first two test models have a simple power law density distribution, constant temperature and a fictive 2-level molecule,
while the other two test models consist of an inside-out collapsing envelope observed in rotational transitions of HCO+. For
the 2-level molecule test problems all codes agree well to within 0.2%, comparable to the accuracy of the individual codes,
for low optical depth and up to 2% for high optical depths (τ = 4800). The problem of the collapsing cloud in HCO+ has a
larger spread in results, ranging up to 12% for the J = 4 population. The spread is largest at the radius where the transition
from collisional to radiative excitation occurs. The resulting line profiles for the HCO+ J = 4–3 transition agree to within 10%,
i.e., within the calibration accuracy of most current telescopes. The comparison project and the results described in this paper
provide a benchmark for future code development, and give an indication of the typical accuracy of present day calculations of
molecular line transfer.
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1. Introduction

Molecular lines are excellent probes of the physical and chemi-
cal conditions in interstellar clouds, protostellar envelopes, cir-
cumstellar shells around late-type stars, photon-dominated re-
gions etc. Furthermore, molecular line transitions play a key
role in probing the properties of galaxies and their evolution.
The interpretation of such lines requires the use of line radiative
transfer programs which can calculate accurately the non-LTE
(local thermodynamic equilibrium) level populations and the
resulting output spectra. See Black (2000) for a recent review.

It is known from stellar atmosphere research that subtle er-
rors in radiative transfer algorithms can lead to significantly
incorrect results (Mihalas 1978). A particularly well-known
problem of this kind is an insufficiently stringent convergence
criterion at high optical depths. In the absence of a posteriori
checks on numerical results, the best way to validate the
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methods is by the use of various techniques, if possible with
many independent codes of different types. Once the reliability
and the behavior of the codes has been established and under-
stood, they can be safely used within the limits of parameter
space within which tests have been carried out.

In this paper, the setup and results of a large-scale campaign
to compare line radiative transfer programs are described. The
test problems are spherically symmetric, and can be modeled
by a 1-dimensional radiative transfer code. Codes capable of
handling more than one dimension could be compared in a sim-
ilar way in the future.

The main aim of this paper is to examine and compare the
various radiative transfer methods that are currently used in the
astrophysical community for modeling the shape and strength
of molecular lines emerging from interstellar and circumstellar
matter. A series of problems is chosen that represent the diffi-
culties that may be encountered in comparison with data from
present-day and future ground-based telescopes, such as the
Sub-Millimeter Array (SMA), the Atacama Large Millimeter
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Array (ALMA) and future airborne and space-borne missions
such as SOFIA and the Herschel Space Observatory. The test
problems and their solutions presented here are available to the
community via a web-site, allowing users to run the same prob-
lems, check the accuracy of their codes and thus speed up the
further development of their own radiative transfer codes. It is
hoped that this will stimulate a more widespread use of these
codes for the interpretation of molecular line observations.

We present two test problems, each at two different optical
depths (i.e. in total four problems). The first problem is a fic-
tive 2-level molecule in a spherical envelope with a powerlaw
density with no systematic velocity and a constant tempera-
ture. This problem is meant to tune all codes before examining
the more complex, realistic problem. The main test problem is
based on the 1-dimensional (1-D) inside-out collapse model,
where the level populations are computed for HCO+ at various
abundances. The HCO+ ion is chosen as a representative ex-
ample of the molecule which samples gas with a large range in
densities and is readily observable in a variety of astrophysical
regions. Both a high and a low optical depth model, represen-
tative of the main isotope HCO+ and the less abundant isotope
H13CO+, are used to check the convergence properties of each
code. All test problems and their results can be found at the
webpage http://www.strw.leidenuniv.nl/∼radtrans.

2. Molecular line radiative transfer

The radiative transfer problem is represented by an equation
describing the emission, absorption and movement of photons
along a straight line in a medium:

dIν
ds
= jν − ανIν (1)

with the notation adopted from Rybicki & Lightman (1979).
Equation (1) is the differential description of the intensity Iν
along a photon path (ds) at frequency ν, where jν [erg s−1 cm−3]
and αν [cm−1] denote the emission and absorption coefficients.
Another way of writing Eq. (1) is:

dIν
dτν
= S ν − Iν , (2)

where S ν = jν/αν is referred to as the source function (the
emissivity of the medium per unit optical depth), and the op-
tical depth τν is defined in differential form as dτν = αν ds.
Equation (2) can be written in integral form, which is the form
that is most often used in radiative transfer codes:

Iν(τ) =
∫ τ

0
S ν(τ′)eτ

′−τdτ′ , (3)

where τ is the optical depth between the point where Iν is eval-
uated and spatial infinity along the line (i.e., s = −∞). This in-
tegral is evaluated along all possible straight lines through the
medium. In practice, these will be a discrete sample of lines
covering space and direction as well as possible.

For the problem of molecular line transfer the emission and
absorption coefficients are determined by the transition rates
between the various rotational and/or vibrational levels of the
molecule, and the population of these levels. For a transition

from level i to level j (where the energy of level i is greater
than that of level j) the emission and absorption coefficients
are given by:

ji j(ν) = niAi jφi j(ν) , (4)

αi j(ν) = (n jB ji − niBi j)φi j(ν) , (5)

where ni and n j [cm−3] are the population densities of the up-
per (i) and lower ( j) level, and Ai j, Bi j and B ji are the Einstein
coefficients. The function φi j(ν) represents the line profile for
this transition, which is properly described as a Voigt profile,
a combination of a (micro-turbulent) Gaussian and intrinsic
Lorentzian line broadening.

The source function for a particular transition S i j is in-
dependent of velocity if one assumes complete frequency re-
distribution, i.e., the frequency deviation from line center of
absorbed and emitted photons are uncorrelated. The source
function then becomes:

S i j =
ji j(ν)

αi j(ν)
=

niAi j

n jB ji − niBi j
· (6)

The relative level populations ni are determined from the sta-
tistical equilibrium equation:∑
j>l

[
n jA jl + (n jB jl − nlBl j)J jl

]
−
∑
j<l

[
nlAl j + (nlBl j − n jB jl)Jl j

]

+
∑

j

[
n jC jl − nlCl j

]
= 0 , (7)

where Ci j = ncolKi j with Ki j the collisional rate coefficients in
cm3 s−1 and ncol the density of collision partners, taken here to
be H2 in J = 0. J jl is the integrated mean intensity over the line
profile:

Ji j =
1

4π

∫
Iν(Ω) φ(ν) dΩ dν . (8)

The symbol Ω represents the spatial direction in which the in-
tensity Iν(Ω) is measured.

A useful concept for the analysis of radiative transfer cal-
culations is the excitation temperature Tex of the transition be-
tween level i and level j, given by

Tex =
−hνi j

k

[
ln

(
g j

gi

ni

n j

)]−1

, (9)

where k is Boltzmann’s constant and gi the statistical weight of
level i. The energy difference between the two levels is given
by hνi j. In local thermodynamic equilibrium (LTE), Tex equals
the local gas temperature, while if Tex higher or lower, the ex-
citation is super- or sub-thermal. In addition, the intensity is
proportional to Tex in the optically thin limit.

Equations (3)–(8) form a coupled set of equations. The way
in which the quantities depend on each other is depicted in
Fig. 1. The intensities are found by integrating the source func-
tion (Eq. (3)). The source function and extinction coefficients
depend on the level populations (Eqs. (4)–(5)). These in turn
depend on the intensities (Eqs. (7)–(8)). To solve this set of
equations one must determine the radiation field and the level
populations simultaneously. Since the radiation field couples
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ni

Iν

J νSν αν

ανEq 5:       calculation

I0

Eq 8: Mean intensity calculation

Eq 7: Statistical equilibrium eq.

Eq 3: Radiative transfer equation

Eq 6: Source function calculation

Fig. 1. Flow diagram of the molecular line radiative transfer problem.
Since the problem is coupled (follow arrows), several iterations are
needed to calculate the true level populations ni. All adopted symbols
are explained in Sect. 2

the level populations at different spatial positions to each other
through the transfer integral (Eq. (3)), the only way of solving
this system directly seems to be through complete linearization
and solving a huge matrix equation involving all level popula-
tions at all spatial positions. In practice, the evaluation of the
matrix elements and the inversion of the problem consumes far
too much CPU-time as well as memory and is therefore beyond
current computing capabilities. An alternative and much sim-
pler way is to iteratively evaluate all equations, following the
arrows, as illustrated in Fig. 1. This method is called “Lambda
Iteration” and includes formal integral codes as well as Monte
Carlo methods. Though simple, its principal disadvantage is
that it converges slowly at high optical depths. Many radia-
tive transfer codes therefore use a hybrid scheme: the direct
inversion of a simplified subset of the equations, and iteration
to solve the remaining problem. In this paper we have used
codes of the Lambda Iteration type (including Monte Carlo
methods), of the “Complete Linearization” type, and hybrid
schemes such as “Approximate/Accelerated Lambda Iteration”
and “Accelerated Monte Carlo”.

3. Methods and codes

In this paper four methods and eight different codes are com-
pared. Any practical method discretizes the problem to deter-
mine the level populations at each position. A short description
is given in this section of each of these codes. The first method
(LI) is not used, but given as an introduction for the other meth-
ods. In Table 1, the different codes and principal authors are in-
dicated. Detailed descriptions of each of the codes can be found
in the references given.

3.1. Lambda Iteration (LI)

The Lambda Iteration method is the most basic method of all.
It involves the iterative evaluation of level populations and in-
tensities until the system has converged. The name “Lambda
Iteration” originates from the fact that the process of itera-
tion can be mathematically written into a formalism involving
a “Lambda Operator”. This Lambda Operator represents the

entire procedure of computing the line-weighted mean inten-
sities Ji j from the source function. It involves the formal inte-
gral Eq. (3) along all possible lines through the medium, and
includes the angle-frequency integrations of Eq. (8) to obtain
the J. The Lambda Operator is defined as:

Ji j = Λi j[S i j] , (10)

and is therefore a global operator. The Λν operator is a matrix
operator connecting all points and all levels to each other. To
solve the radiative transfer numerically, the problem has to be
discretized both in space and frequency and initial level pop-
ulations have to be assumed. With these level populations, the
Lambda Operator is constructed by solving the radiative trans-
fer for Iν and J, which is inserted in Eq. (7) to calculate the new
level populations. The procedure is repeated until the relative
change in the level populations or mean intensities between two
successive steps falls below a desired convergence criterium.
The time to reach convergence of the solution is proportional
to τ2 for τ � 1 and is therefore extremely slow for highly op-
tically thick regions. The very small local changes in the level
populations in successive iterations could then be easily mis-
taken for convergence.

3.2. Monte Carlo (MC)

The Monte Carlo (MC) method is based on the simulation of
basic physical processes with the aid of random numbers. This
makes the formalisms of these codes relatively simple and in-
tuitive as one has to deal only with the basic formulae. But
one must take proper care of the statistics and be sure that all
regions in space and frequency are well sampled by the ran-
domly distributed photon packages. The Monte Carlo method
for molecular line transfer has been described by Bernes (1979)
for a spherically symmetric cloud with a uniform density. A
major advantage of MC codes is the possibility of non-regular
grids, in particular for multi-dimensional problems. In fact,
MC methods are straightforward to extend from 1-D to 2-D
(Hogerheijde & van der Tak 2000) and even 3-D (Park & Hong
1998; Juvela 1997). One of the major disadvantages of the
method is the long CPU time which is needed to lower the
random error intrinsic in the method. This error decreases in-
versely proportional to the square root of the number of sim-
ulated photons. In addition, the method suffers from similar
convergence problems as Lambda Iteration, as it is formally
a variant of the Lambda Iteration method.

Thus far, the Monte Carlo method has been implemented
in two ways. In one set of codes, the radiation field is ran-
domly sampled by discrete photons that are emitted and ab-
sorbed in the material. In the other set, the radiation field is
sampled by random directions along which the radiative trans-
fer is evaluated.

3.3. Approximated/Accelerated Lambda Iteration (ALI)

This scheme is similar to the Lambda iteration scheme, with the
difference that the equations are pre-conditioned to speed up
the convergence. The simplest (but still highly efficient) way to
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implement the ALI scheme is by splitting the Lambda Operator
into the local self-coupling contribution and the remainder:

Λi j = (Λi j − Λ∗i j) + Λ
∗
i j (11)

with Λi j the lambda operator between the i and j levels and Λ∗i j
the diagonal (local), or tridiagonal (local+nearest-neighbor),
part of the full Lambda operator. In general more reliable con-
vergence properties are obtained with tridiagonal or higher
bandwidths (Hauschildt et al. 1994). Since an approximate op-
erator Λ∗i j of this kind is easily invertible, and since its matrix
elements are relatively easy to calculate, one can use this oper-
ator for the matrix inversion, and use the iteration for solving
the remainder (non-local part) of the transfer problem. Since
the self-coupling of a cell at high optical depth is the bottle-
neck that slows down convergence in Lambda Iteration codes,
this removal of the local self-coupling by direct inversion of
Λ∗i j can speed up the convergence drastically. A full description
of the method was given by, e.g., Rybicki & Hummer (1991,
1992).

In addition to this operator splitting technique, one can
apply certain iteration-improvement schemes such as the Ng-
acceleration method (Ng 1974). These are methods that can
improve the convergence of any linearly converging iteration
scheme. In the Ng-method one uses the previous results to esti-
mate the convergence behavior of the problem. After every four
iteration steps an extrapolation can then be performed towards
the expected convergence. The number of iterations is not a
strict requirement but four is typically found to give a reliable
and significant acceleration. This scheme is very effective as
can be seen in Figs. 1 to 3 in Rybicki & Hummer (1991), where
the number of iterations is plotted versus the convergence.

3.4. Accelerated Monte Carlo (AMC)

The difference in Accelerated Monte Carlo and Monte Carlo
methods can be similarly described as the ALI compared to LI
method. Most important is the splitting of the mean intensity in
an external field and a local contribution. Formally,

J = (Λ − Λ∗)[S †ul(J)] + Λ∗[S ul(J)] (12)

= J
external

+ J
local

(13)

=
1
N

∑
i

I0,ie−τi +
1
N

∑
i

S ul[1 − e−τ] (14)

with S†ul(J) the results from the previous iteration and N the
number of photons. This is an important issue as in the stan-
dard Monte Carlo approach, most time is taken by photons
trapped in an optically thick cell, where due to absorption and
randomly directed emission the photons follow a random walk
path through the cell, with one step for each iteration.

The splitting can be done in different ways. Juvela (1997)
implements a diagonal lambda operator in Eqs. (12)–(14)
by counting explicitly those photons which were emitted
and absorbed within the same cell. A reference field de-
scribed by Bernes et al. (1979) is used to decrease the
random fluctuations caused by the Monte Carlo sampling.
Hogerheijde & van der Tak (2000) perform sub-iterations to

calculate the local contribution in each cell, thus ensuring that
in each cell the local field and populations are always consistent
with the external field due to all other cells. A third possibility
of acceleration, adopted by Schöier (2000), is the use of core-
saturation (Rybicki 1972; Hartstein & Liseau 1998), where op-
tically thick line center photons are replaced by the local source
function.

3.5. Local linearization (MULTI type codes)

This method was developed by Scharmer & Carlsson (1985)
and Harper (1994) to produce the MULTI and SMULTI line
radiation transport codes respectively. This approach perturbs
Eqs. (2) to (8) linearly, neglecting second order or higher
terms. The linearization greatly reduces the effect of high op-
tical depth terms and allows rapid convergence. The MULTI
and SMULTI codes use the Olson diagonal approximate op-
erator (Olson et al. 1986) scheme to save on storage. This op-
erator uses the diagonal of the Λ matrix when computing the
solution to the linearized equations. Although this adds in ap-
proximations and delays convergence, it greatly reduces the re-
quired storage capacity and so for many problems it allows the
problem to be tackled in the first place. Olson’s scheme sim-
ply assumes that the changes in the intensity are related to the
changes in the source and opacity terms (the level populations).
The main difference to the other schemes is that the solution to
the linearized equations returns changes, δn and δJ to the level
populations and the mean intensities respectively. There is al-
ways the possibility that a converged solution contains unphys-
ical negative populations, and this provides a useful indicator
for poor sampling and errors. In the version used here a ALI-
type scheme to complement the MULTI is used, providing nu-
merical stability but also slower convergence in optically thick
media.

3.6. Radiative transfer codes

Each code described in this paper uses one or more of the above
techniques to calculate a converged set of level populations. In
this section we list the codes which use each of the conver-
gence methods listed above. Then for each code we describe
how convergence is accelerated, how each code samples the
volume under consideration, and state the convergence criteria
used by each code.

1. Monte Carlo (MC):
– F. Schöier (Schöier 2000); the rate of convergence de-

pends on the number of model photons and the iterative
procedure. In the problems presented here, the coun-
ters of stimulated emission are reset after each set of
5 iterations. The number of iterations needed for con-
vergence in the “classical” Monte Carlo scheme is of
the same order as the maximum optical depth in the
model. The core saturation method is included to speed
up the convergence in the high optical depth case. To
reach an accuracy of ∼10−2 in the derived level popula-
tions, ∼105−106 model photons per iteration are gener-
ally needed in the optically thick case.
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Table 1. Codes used.

Label1 Author method dimensions Reference
A Juvela AMC 1D, 2D & 3D Juvela (1997)
B Hogerheijde & AMC 1D & 2D Hogerheijde & van der Tak (2000)

van der Tak
C Schöier MC 1D Schöier (2000)
D Doty ALI 1D
E Ossenkopf ALI 1D & 2D Ossenkopf et al. (2001)
F Dullemond ALI 1D & 2D Dullemond & Turolla (2000)
G Yates (S)MULTI 1D Rawlings & Yates (2001)
H Wiesemeyer ALI 1D & 2D Wiesemeyer (1997)

1 Label used in Figs. 4 and 6 for each of the codes.

2. Accelerated Lambda Iteration (ALI):
– V. Ossenkopf (Ossenkopf et al. 2001); all discretiza-

tions are done by the code such that sufficiently small
differences between the grid points are guaranteed. This
concerns the radial shells, the grid of rays, the fre-
quency grid, and the number of levels used. The con-
vergence is measured in terms of radiative energy densi-
ties, not level populations, which are extrapolated from
the Auer acceleration scheme. Locally, the code may
take into account turbulent sub-clumping using the sta-
tistical description of Martin et al. (1984), but this is not
used here.

– S. Doty; the input data are interpolated onto the
spatial grid of the problem with a variable method
(log/linear/combined). This, coupled with extreme care
in the ray-tracing integration, helps to ensure high ac-
curacy. A local approximate lambda operator and Ng
acceleration are used to solve both the line and con-
tinuum transfer. Convergence is determined by changes
in both level populations and the local net heating
rate, with small (≤10−4) changes required for the entire
spatial grid for both accelerated and non-accelerated
iterations.

– C.P. Dullemond (Dullemond & Turolla 2000); the for-
mal integration proceeds via a short-characteristics
method using the three-point quadrature formula of
Olson & Kunasz (1987). The discrete local angles µi

are chosen using the tangent-ray prescription. This
means that successive short characteristics match up
and no interpolations are required. At every grid point
there are 41 angular points in µ with three extra around
µ � 0 to prevent undersampling. Using the ALI method
with a local operator and Ng acceleration, the system
is iterated towards a solution with a convergence crite-
rion 10−6 in level population.

– H. Wiesemeyer (Wiesemeyer 1997); the rate of conver-
gence is improved by applying the method of mini-
mization of residuals (Auer 1987). Other acceleration
methods, such as vector and matrix extrapolation, are
currently being implemented. The solution to the equa-
tion of radiative transfer is evaluated by various numer-
ical methods (either quadrature rules, or multi-value
methods), according to the accuracy required by the

problem to be solved. The code uses long characteris-
tics, to preserve an isotropic distribution of rays at any
point of the model volume, following the multivariate
quadrature rule of Steinacker et al. (1996). Its perfor-
mance is thus rather optimized to solve smooth prob-
lems in more than one dimension. All discretizations
are performed by the code.

3. Accelerated Monte Carlo (AMC):
– M. Juvela (Juvela 1997); this code uses the reference

field method to reduce random fluctuations. The veloc-
ity is discretized into 50 channels and the number of
rays per iteration was taken to be 350. The ray genera-
tion is weighted such that the same number of rays was
shot through each annulus. The random number gener-
ators are reset after each iteration, making it possible
to use Ng acceleration on every third iteration starting
with the fifth iteration. Convergence was tested only
for the eight lowest levels down to 1 × 10−3 in level
population.

– M. Hogerheijde & F. van der Tak (Hogerheijde &
van der Tak 2000); in this code, one cell at a time is
considered, with N rays entering the cell from random
directions. The radiative transfer is followed along each
of these rays, starting with the CMB field at the edge of
the cloud. In this way it is possible to calculate sepa-
rately the local contribution to the radiation field in the
target cell, allowing significant reduction of the com-
puting time for optically thick cells. For a first order
estimate of the radiation field, the same set of random
numbers is used to describe the ray directions for each
iteration, thus resembling a fixed-ray (ALI) code. This
process yields a solution free of random noise but with
possible inadequate sampling of directions and veloci-
ties. In the second stage a different set of random num-
bers is used for each iteration, providing true random
sampling of the radiation field. The number of rays is
increased for each cell until convergence is reached,
ensuring proper angular sampling of the radiation field
everywhere. The equations of statistical equilibrium are
solved in each iteration to a fractional error of 10−6 in
all levels except the highest. The user specifies a signal-
to-noise ratio S ; the MC noise is reduced by increasing
the number of photons such that the fractional error of
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the levels between iterations is smaller than 1/S . For the
test problem, S = 100 was used.

4. Complete linearization (MULTI-type):
– J. Yates (Rawlings & Yates 2001); in the problems pre-

sented, the SMMOL code used 400 rays through the
cloud to compute the intensities at each radial grid-
point in the spherical cloud using a finite difference
method to compute the intensities. The grid sampling
along each ray can adapt simply to take account of large
changes that affect the optical depth, typically caused
by velocity changes along the ray. In this calculation,
typically 100 grid-points were used to sample the full
absorption profile. The SMMOL codes uses a conver-
gence criterion of 1×10−4 for both the level populations
and the mean intensities.

4. Description of the test models

4.1. Models 1a/1b: A simple 2-level molecule

The first two test problems (problems 1a/1b) have a simple and
cleanly defined setup without velocity gradients and using a
constant temperature and line width. Complicating factors such
as a different treatment of the spatial grid and frequency sam-
pling are thus kept to a minimum, so that every code should in
principle be able to solve these problems down to their speci-
fied accuracy.

The simple 2-level molecule test setup consists of a spheri-
cally symmetric cloud with a power law hydrogen number den-
sity specified by

nH2 (r) = nH2 (r0)
(

r
r0

)α
cm−3 , (15)

where r is the radius in cm. We take nH2 (r0) = 2.0 × 107 cm−3,
r0 = 1.0× 1015 cm and α = −2. The kinetic temperature of this
problem is taken to be constant: Tkin(r) = 20 K. The abundance
of the molecule (which we will specify below) is constant as
well: Xmol(r) ≡ nmol(r)/nH2 (r) = Xmol, and the systematic ve-
locity is zero everywhere. The spherically symmetric cloud
ranges from rin = 1.0 × 1015 cm to rout = 7.8 × 1018 cm. For
r < rin and for r > rout the density is assumed to be zero. The
incoming radiation at the outer boundary is the T = 2.728 K
microwave background radiation.

We choose a fictive 2-level molecule which is specified by

E2 − E1 = 6.0 cm−1 = 8.63244 K (16)

g2/g1 = 3.0 (17)

A21 = 1.0 × 10−4 s−1 (18)

K21 = 2.0 × 10−10 cm3 s−1 (19)

in which the downward collision rate is C21 = nH2 K21 s−1.
The total (thermal+turbulent) line width a is given by a =
0.150 km s−1. The line profile is assumed to be a Gaussian:

φ(ν) =
c

aν0
√
π

exp

−c2(ν − ν0)2

a2ν20

 (20)

where c is the speed of light in units of km s−1, and ν0 is the
frequency at line center.

We solve the problem for two different abundances:

Problem 1a: Xmol = 1.0 × 10−8

Problem 1b: Xmol = 1.0 × 10−6.

Problem 1a is a simple case with a moderate optical depth
(τ � 60 from star to infinity at line center). Problem 1b has
much higher optical depth (τ � 4800) and is therefore numeri-
cally stiffer.

This problem was originally described and worked out by
Dullemond & Ossenkopf (see Dullemond 1999).

4.2. Models 2a/2b: A collapsing cloud in HCO+

The second two problems (problems 2a/2b) are examples of
problems typically encountered in the field of sub-millimeter
molecular line modeling. These problems have much of the
complicated physics included, such as velocity- and temper-
ature gradients, non-constant line widths, multiple levels etc.
Moreover, the problem is based on a numerical model provided
externally, and therefore introduces the complication of a given
intermediate-resolution spatial grid. The resulting spread of the
results therefore gives a good indication of how accurate the
predicted line strengths and shapes for a typical every-day-life
model calculation are.

The model on which these “realistic” test problems are
based was constructed by Rawlings et al. (1992, 1999) to an-
alyze HCO+ data for an infalling envelope around a protostar.
The prototypical example of such a “class 0” young stellar ob-
ject is B335. The model describes how the cloud core collapses
from the inside-out. Starting from a nearly isothermal sphere
in pressure balance, a perturbation triggers the center of the
cloud to collapse. This sends out a rarefaction wave at the local
speed of sound, which causes the outer parts of the cloud to
collapse as well. The model is similar to the analytical inside-
out collapse model by Shu (1977), but includes more realistic
physics. No rotation is assumed, which makes it ideal for a 1-D
spherical comparison.

Figure 2 shows the structure of the cloud at a particular
time during the collapse phase. This is the input model for our
test cases. The collapse can clearly be seen in the radial veloc-
ity, which is 0 for radii greater than 1017 cm, and directed to-
wards the source for smaller radii. The density profile is given
by a power-law of the form n(r) = n0(r/r0)m, where m = −1.5
inside the collapsing sphere (r < 1017 cm) and m = −2.0 out-
side. The model parameters are specified at 50 radii logarith-
mically spaced between 1016 and 4.6 × 1017 cm.

The infall of a cloud has a significant influence on the
molecular line emission. The lines will be skewed to the blue,
or double peaked with a stronger blue-shifted component, de-
pending on the velocity field and optical depth of the line (e.g.
Myers et al. 2000). This feature can be intuitively understood
because the foreground gas has a lower excitation temperature
than the background gas. This only holds when the foreground
gas is optically thick enough in the line. Otherwise a single-
peaked lineshape, centered on the source velocity, results.

For the comparison presented here, the ion HCO+ is used,
where an abundance compared to H2 is adopted of 1× 10−9 for
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Fig. 2. Physical structure of the test model 2. Upper left: density,
lower left: velocity, upper right: temperature, lower right: turbulent
line width b [km s−1]. Changes in the density and velocity distribu-
tions are seen at the point where infall starts. The temperature of the
gas at the inside rises due to the infall while the outside is heated by
the interstellar radiation.

problem 2a, and 1 × 10−8 for problem 2b. This causes the opti-
cal depths τ for the lowest 4 transitions to range from 0.1 to 10
for problem 2a, and from 1 to 100 for problem 2b. A com-
mon file of Einstein-A coefficients and collisional rate coeffi-
cients of HCO+ with H2 in J = 0 (Monteiro 1985; Green 1975)
has been used in all models. These can be downloaded from
http://www.strw.leidenuniv.nl/∼radtrans. 21 levels
of the HCO+ ion are included in the model. Since the
rate coefficients are temperature dependent, all downward
(upper→lower) rate coefficients are given for a number of tem-
peratures (10, 20, 30, 40 K). At each temperature, a linear
interpolation is performed to calculate the local downward col-
lisional rate coefficients. Performing this interpolation accu-
rately is extremely important because the exponential relation
between the excitation and de-excitation coefficients can intro-
duce large deviations. The upward (lower→upper) collisional
rate coefficient is subsequently calculated using the detailed
balance relation,

Clu

Cul
=
gl

gu
eEul/kT . (21)

The fact that the molecular data, in particular the colli-
sional rate coefficients, are not known with infinite preci-
sion introduces an additional uncertainty in the solution of
the radiative transfer equations. The use of different colli-
sional rate coefficients has an impact on the level popula-
tions and thereby on the strength of the predicted emission
lines. However, the spread in available rate coefficients in
the literature has no effect on the comparison presented here,
as all the codes use the same molecular data as input. On
a webpage http://www.strw.leidenuniv.nl/∼moldata

molecular files for a large number of molecular species will
be made available in the future (Schöier et al., in preparation),
including a comparison of different rates from the literature and
their effect on the model results.

With these sets of problems the different codes are tested
on the following features:

– Convergence of the code;
– Radiative transfer in optically thin lines;
– Radiative transfer in optically thick lines;
– Sampling of the radiation transfer in the presence of a ve-

locity field;
– Incorporation of the cosmic microwave background radia-

tion (TCMB = 2.728 K), which influences the lower levels
near the outside of the cloud.

5. Results

5.1. Results of problems 1a/1b

Test problems 1a and 1b are relatively simple in the sense that
no velocity gradients and temperature variations are present.
Also, since the problem setup is specified analytically, the grid
resolution can be chosen to be as high as required for the partic-
ular code the participant is using. By virtue of the zero system-
atic velocity, the treatment of the inner boundary is not much of
an issue, because the line is perfectly thermalized at that radius.
These test problems therefore purely test the radiative transfer
as such.

The results for the problems 1a and 1b are shown in Fig. 3.
The interior of the cloud is completely thermalized (Tex =

Tkin). The decline of n2 at larger radii is due to the departure
from LTE. At the outer radii the population again saturates to
a constant value, which is due to the microwave background
radiation (Tex = TCMB). All codes agree reasonably well, al-
though small differences remain distinguishable. The relative
differences between the codes are shown in Fig. 4 in compari-
son to the mean.

If we consider the “mean” solution to be the correct one,
then the typical errors are of the order of a few percent or less.
The errors are clearly greater for problem 1b than for prob-
lem 1a. This is to be expected, since problem 1b has higher
optical depth and is therefore numerically more challenging.
For problem 1a, the codes show a small spread with a stan-
dard deviation of 0.2%. i.e. they agree with each other to within
2×10−3 relative difference, comparable to the accuracy criteria
of the codes, clearly visible in the noise for the Monte Carlo re-
sults. For problem 1b the best agreement reached between the
codes shows a standard deviation with a local maximum of 2%
(∆n2/n2 ∼ 2× 10−2). To achieve maximum accuracy, the codes
used a spatial resolution of (Ri+1 − Ri)/Ri � 0.05 for this prob-
lem, but this high spatial resolution did not reduce the spread
between the codes to the 10−3 level.

For problem 1b (the most difficult of the two) an ALI code
with Ng acceleration with spatial resolution (Ri+1 − Ri)/Ri �
0.04 typically takes about 160 iterations to meet the converge
criterion of ∆n2/n2 < 10−7. The same problem, but for a less
stringent convergence criterion (∆n2/n2 < 10−4) and for a
lower spatial resolution ((Ri+1 − Ri)/Ri � 0.2) typically takes
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Fig. 3. Results of the two-level molecule problems. Shown here are
the populations of the upper level of the 2-level molecule. Top panel:
problem 1a. Bottom panel: problem 1b. Plotted are the (A)MC codes,
denoted by solid lines and the ALI/SMULTI codes using dashed lines.

about 40 iterations. The relative error introduced by the lower
spatial resolution and lower convergence criterion for this prob-
lem is at most 1%, provided that second-order (or higher) inte-
gration of the transfer equation is used. The use of first-order
integration introduces errors of the order of 12%, even for the
high-resolution runs. For test problem 1a, at low resolution and
with a weak convergence criterion (∆n2/n2 < 10−4), an ALI
code typically uses 18 iterations.

For the AMC-type codes with Ng acceleration (Juvela
1997), problem 1b typically requires about 75 iterations, with
about 120 photon packages (rays) per iteration. It was found
that the application of Ng acceleration at the very start of
the iteration had a negative influence on the convergence rate.
Good convergence was achieved by applying Ng only after
about 25 iterations. As in the case of the ALI type codes,
problem 1a was much more benign: 15 iterations with about
120 photon packages (rays) per iteration.

It should be said that the AMC-type codes allow consider-
able freedom in how to disentangle the number of iterations and
the number of photon packages per cell per iteration. Therefore
the numbers given here may vary from code to code, i.e., in
most codes the number of photon packages per iteration per
cell is used. For the accelerated Monte Carlo codes, accelera-
tion of the convergence only operates when some of the cells
are optically thick. If all cells are optically thin but the entire
source optically thick, the local radiation field becomes neg-
ligible compared to the overall radiation field and separating
local and global contributions no longer effectively speeds up
convergences.

The SMULTI code converged to below 10−4 in 30 iterations
and to below 10−5 in 50 iterations for the second model. For the
first model the code converged in 10 iterations.

5.2. Results of problems 2a/2b

5.2.1. Level populations

The results for the test problems 2a and 2b are shown in Fig. 5.
The direct comparison is shown for two different levels of
HCO+, J = 1 and J = 4. These levels were chosen because
they represent the emitting levels of two easily and often ob-
served lines of the molecule probing different density regimes.
The J = 1−0 line lies at millimeter wavelengths at 89 GHz and
the critical density of the J = 1 level is 3.4 × 104 cm−3. The
J = 4–3 line occurs in the sub-millimeter at 356 GHz, with a
critical density for exciting the J = 4 level of 1.8 × 106 cm−3.
The different model results are plotted on top of each other,
together with one additional calculation where the CMB radia-
tion field was deliberately ignored. In the level populations, the
effect of the CMB is visible as a lack of excitation of the J = 1
level in the outer regions. The figure immediately shows that
in the outer region, the excitation at line center of the J = 1−0
line is controlled by the CMB field and not by the local temper-
ature and density. The J = 1 level lies only 4.3 K above ground,
close to the TCMB (2.728 K) temperature, so that the 1–0 tran-
sition can be effectively excited by the peak of the CMB radia-
tion. The density in the outer regions of the collapsing cloud is
too low for the molecule to be excited to LTE. The J = 4 level
population is less affected by the CMB radiation field.

To show a more quantitative measure of the accuracy of the
results, the level populations are plotted versus their difference
to the mean of all the results (Fig. 6). Only results including the
CMB radiation field are used to calculate the mean. At the in-
ner boundary, the solutions diverge into two main groups. This
is a result from the inner boundary condition adopted by the
different authors. The density and temperature of the test prob-
lem were not specified within the inner radius and were either
chosen as an empty sphere or a non-rotating sphere of constant
density. The different solutions near the inner boundary have a
relatively small error (Fig. 6) showing that in this case the inner
boundary has little influence on the overall solution and can be
ignored in the specification of the problem.

The calculated populations of the J = 1 level show a stan-
dard deviation ranging from 2% close to the star down to 1.5%
for problem 2b and below 1% in problem 2a. The J = 4 level
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Fig. 4. As Fig. 3, but now shown as the relative difference from the average of the results for problems 1a (left) and 1b (right). Plotted are the
(A)MC codes, denoted by solid lines and the ALI/SMULTI codes using dashed lines. The notation for each of the codes is given in Table 1.
Note that the differences between the codes is of the same order as the Monte Carlo noise for problem 1a, indicating that the codes have
converged to the correct level.
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Fig. 5. Populations of levels J = 1 and J = 4 in the optically thin
(model 2a) and optically thick (model 2b) cases. The dotted line is the
solution where no cosmic background radiation was added, the solid
lines represent the (A)MC-based codes and the dashed lines the ALI-
based codes. Due to the low temperatures and densities of the problem,
most molecules are in the lowest rotational states. Only codes A–G
participated in this comparison.

has a larger spread with a standard deviation of 8% close to the
inner boundary up to 12% at r = 2×1017 cm and down to 2% at
the outer boundary for the high τ (problem 2b) case. The HCO+

lines have high critical densities and the J = 4 level population
is far from LTE. In addition, the optical depth is high,making
the calculation for the 4–3 line particularly difficult. In prob-
lem 2a the J = 4 level rises from 3% close to the inner bound-
ary up to 4% in the transition region and down to 1% close
to the outer boundary. Lacking an analytical solution, we take
the average of the numerical results as the best estimate of the

exact solution. The deviations from the average therefore give
an estimate of the implicit and explicit approximations of the
codes. Fitting models to observational data with criteria better
than these deviations will not lead to more accurate estimates
of the physical parameters.

For all the problems, the level populations were also calcu-
lated using LI by Dullemond and Wiesemeyer. The populations
agreed within the errors as shown in Figs. 4 and 6 for the low
τ cases. However in both the 1b and 2b problems the solution
was not reached using similar convergence criteria as the ALI
calculations. Even though the LI method itself should in prin-
ciple find the same solution, the number of iterations and more
strict convergence criteria make it a numerically too costly task
to solve.

The problem is particularly sensitive to the gridding of the
physical parameters. A comparison of two runs, where one had
twice as many gridcells, showed a significant decrease of the
error compared to the mean value for one of the Monte Carlo
code (C). This shows the importance of a correct gridding of
the problem.

5.2.2. Excitation temperature

As a second comparison, the excitation temperature (Fig. 7) is
plotted for all solutions, which may be a more intuitive man-
ner to show the results. When level populations are in LTE,
the excitation temperature equals the local kinetic temperature.
Comparing the results with Fig. 2b, the excitation temperature
of the 1–0 line is close to LTE near the inner boundary but
becomes subthermal at larger radii. The J = 4–3 excitation
temperature is always well below its LTE value, which is due
to its much higher critical density. As Fig. 7 shows, the exci-
tation temperature never drops below 2.728 K, except in the
case where the CMB radiation was ignored. In the inner region
(r < 5×1016 cm), the excitation of the J = 1 level is dominated
by collisions, while in the outer parts, it is dominated by radi-
ation. The transition region between these two extremes shows
the largest differences in the results (Fig. 6a).
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Fig. 6. Differences of the populations in the J = 1 and J = 4 levels to the mean for both model 2a and 2b. The solid lines represents the (A)MC
based codes and the dashed lines the ALI based codes. The notation of each of the lines is given in Table 1. Only codes A–G participated in
this comparison.

5.2.3. Line profiles

Figure 8 compares the results in terms of the line profiles. The
calculated level populations at each position in the cloud are
used to compute the velocity profiles of the selected lines using
a program which calculates the sky brightness distribution. To
ensure an equivalent emitting mass, the inner sphere is assumed
to be empty for all models. The profiles are calculated by con-
structing a plane through the origin of the cloud perpendicular
to the line of sight, with a spatial resolution small enough to
sample the physical distributions. A ray-tracing calculation is
performed through this plane from −∞ to +∞, keeping track
of the intensity in the different velocity bins. For this calcula-
tion the program SKY was used, part of the RATRAN code
(http://talisker.as.arizona.edu/∼michiel/). By ap-
plying a single common code for these calculations, no sec-
ondary uncertainties are introduced. The resulting sky bright-
ness distribution is convolved with a beam of 14′′ for the
J = 4–3 transition, appropriate for the James Clerk Maxwell
Telescope (JCMT) at this frequency. For the J = 1−0 tran-
sition, the beam size is taken to be 29′′ representative of the
IRAM 30 m telescope. The distance is assumed to be 250 pc.

Comparison of Figs. 8a and 8c shows that increasing the
abundance of HCO+ by a factor of 10 changes the J = 1−0
peak intensity by only a factor of 2.5. The J = 1−0 line

becomes more self-absorbed, indicating that the line has in-
deed become more optically thick. The J = 4–3 emission line
is optically thin for the low abundance, as seen from its single-
peaked profile in Fig. 8b. The more optically thick model shows
the characteristic asymmetric line structure, skewed to the blue.
The differences in the level populations are visible in the line
profiles. In the J = 1−0 line profiles (Fig. 8c) all solutions lie
on top of each other in the line wings and only a slight dif-
ference can be seen at line center. The error is largest in the
region with low velocities represented by the larger errors in
the center of the line profile. The integrated intensity profiles
differ by a few % for low τ and 6–7% for the high τ case. The
error is in general larger for the J = 4 level, which shows up as
a larger error in the integrated lines for the J = 4–3 transition.
For low τ the error is ≈2%, but for high optical depths devia-
tions up to 12% are found for the most outlying case. Although
substantial, these differences are generally less than the current
calibration uncertainties of the observational data, which are
typically 20% to 30%.

The differences in the profiles shown here give a rough
indication of the quality of fitting necessary to interpret ob-
servational data. It should be noted that some differences are
likely due to different implementations of the cloud model. One
can fit a model precisely to an observational data set using a
particular radiative transfer code; however the results will not
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Fig. 7. Excitation temperatures [K], as defined in Eq. (9), for the lev-
els J = 1/J = 0 and J = 4/J = 3. Top panels: low optical depth case
(problem 2a); bottom panels: high optical depth case (problem 2b).
The dotted line indicates the model result with the CMB radiation
neglected, the solid lines represent the (A)MC-based codes and the
dashed lines the ALI-based codes. When the lines are in LTE, the ex-
citation temperature is equal to the kinetic temperature (Fig. 2).

necessarily be the same if a different code is used. The deriva-
tion of physical parameters is therefore always limited in accu-
racy to the error bars given by the code itself in comparison to
other codes.

6. Discussion and conclusion

In spite of the fact that the spread in our solutions lies within the
accuracy limits of current-day (sub-)millimeter instruments, it
is important to understand how this spread comes about. The
first two test cases were defined analytically, and avoided dif-
ficulties of gridding as much as possible. The small spread of
these results, even at high optical depths, seems to show that in
principle the radiative transfer is done correctly by all codes.
The larger spread in the HCO+ collapsing cloud problem can
therefore be attributed to the problem of gridding, both in space
and in frequency. The coarse spatial gridding in the setup of the
problem, and the presence of strong velocity gradients makes it
very likely that different interpretations of the sub-grid behav-
ior of temperature, density and velocity lead to slightly differ-
ent results.

The main results of the comparison of radiative transfer
codes for molecular lines can be summarized as follows.

– All relevant methods currently used in molecular astro-
physics agree to a few % for optical depths up to τ ∼4800.
At high optical depth and in transition layers between
collision-dominated and radiation-dominated excitation,
relative differences up to 2% can arise for well defined
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J=4 − 3
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Fig. 8. Calculated intensity [K] of the J = 1−0 and J = 4–3 lines
for the problems 2a and 2b. In the high optical depth case (lower
two panels), the blue-shift or “infall asymmetry” is visible. The low
resolution of the spatial grid becomes apparent in the line emission
at ±0.75 km s−1.

“simple” problems. In practice, for more complex models,
the relative differences are higher due to gridding and ge-
ometry problems, reaching relative differences up to 12%
locally for the high optical depth model described in this
paper (problem 2b) . However, in most practical applica-
tions in molecular astrophysics the optical depths are lower
than in our test problems, and therefore this 12% error can
be regarded as an upper limit.

– The error bars on the line profiles are generally much less
than 10%, and therefore lie within the calibration errors of
typical (sub-)mm observations. Only in the worst case these
errors may be comparable to the observational uncertainty.

– The choice of gridding is of extreme importance, and is
one of the major causes of the deviations in the problems
presented. Special care should be taken when constructing
models for specific problems.

– Abundances and excitation temperatures derived from lines
which are formed in the transition layer should be inter-
preted with caution.

– The direct comparison of results of different programs
speeds up significantly the debugging process of new
programs.

The work presented here is one step in the direction of stan-
dardization of radiative transfer computations in molecular ro-
tational lines. Suggestions for future work in this area include:
(1) establishment of a database for collisional rate coefficients,
accessible to the community through the WWW; (2) a cam-
paign to have inelastic rate coefficients measured or calcu-
lated for those molecules for which these data are unavail-
able, and (3) comparison of 2D radiative transfer codes, with
a test problem based on, e.g., the rotating flattened collapse
described by Terebey et al. (1984) or the “sheet” models of
protostellar collapse by Hartmann et al. (1996). These develop-
ments will be vital to interpreting the high-quality data which
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e.g. HIFI (the heterodyne instrument onboard the Herschel
Space Observatory) and ALMA will provide.

Acknowledgements. We are grateful to the anonymous referee for
suggestions and comments that improved the paper considerably. We
thank Ewine van Dishoeck for useful advice and discussions dur-
ing this work. The comparison of line radiative transfer codes was
started during a workshop in Leiden in May 1999 in the Lorentz
Center. Financial support for the workshop from the Lorentz Center,
The Netherlands Research School for Astronomy (NOVA), the
Leidsch Kerkhoven Bosscha Fund (LKBF), The Netherlands
Organization for Scientific Research (NWO) and the UK Particle
Physics and Astronomy Research Council (PPARC) is gratefully
acknowledged. SDD acknowledges support from the Research
Corporation.

References

Auer, L. H. 1987, Numerical Radiative Transfer, ed. W. Kalhofen
(Cambridge University Press), 101

Bernes, C. 1979, A&A, 73, 67
Black, J. H. 2000, Astrochemistry: From Molecular Clouds to

Planetary Systems, ed. Y. C. Minh, & E. F. van Dishoeck
(San Francisco: ASP), IAU Symp., 197, 81

Choi, M., Evans, N. J., Gregersen, E. M., & Wang, Y. 1995, ApJ, 448,
742

Dullemond, C. P., & Turolla, R. 2000, A&A, 360, 1187
Dullemond, C. P. 1999, Ph.D. Thesis, University of Leiden
Green, S. 1975, ApJ, 201, 366
Harper, G. M. 1994, MNRAS, 268, 894
Hartmann, L., Calvet, N., & Boss, A. 1996, ApJ, 464, 387
Hartstein, D., & Liseau, R. 1998, A&A, 332, 703
Hauschildt, P. H., Störzer, H., & Baron, E. 1994, JQSRT, 51, 875

Hogerheijde, M. R., & van der Tak, F. F. S. 2000, A&A, 362, 697
Juvela, M. 1997, A&A, 322, 943
Martin, H. M., Hills, R. E., & Sanders, D. B. 1984, MNRAS, 208, 35
Mihalas, D. 1978, Stellar Atmospheres, 2nd ed. (San Francisco:

Freeman)
Monteiro, T. S. 1985, MNRAS, 214, 419
Myers, P. C., Evans, N. J., & Ohashi, N. 2000, Protostars and

Planets IV, 217
Ng, K. 1974, J. Chem. Phys., 61, 2680
Olson, G. L., Auer, L. H., & Buchler, J. R. 1986, J. of Quant.

Spectrosc. and Rad. Transf., 35, 431
Olson, G. L., & Kunasz, P. B. 1987, J. of Quant. Spectrosc. and Rad.

Transf., 38, 325
Ossenkopf, V., Trojan, C., & Stutzki, J. 2001, A&A, 378, 608
Park, Y.-.S., & Hong, S. S. 1998, ApJ, 494, 605
Rawlings, J. M. C., Taylor, S. D., & Williams, D. A. 2000, MNRAS,

313, 461
Rawlings, J. M. C., & Yates, J. A. 2001, MNRAS, 326, 1423
Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in

Astrophysics (New York: Wiley)
Rybicki, G. B., & Hummer, D. G. 1991, A&A, 245, 171
Rybicki, G. B., & Hummer, D. G. 1992, A&A, 262, 209
Scharmer, G. B., & Carlsson, M. 1985, in Progress in Stellar

Spectral Line Formation Theory, NATO ASIC Proc. 152, ed. J. E.
Beckman, & L. Crivellari (Dordrecht: Reidel), 189
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