

3.38e-07 5.46e-07 7.56e-07 9.64e-07 1.17e-06 1.38e-06 1.59e-06 1.80e-06 2.01e-06

The Adaptable Radiative Transfer Innovations for Submillimeter Telescopes (ARTIST) interface with the Common Astronomy Software Applications (CASA)

European ALMA Regional Center ALLEGRO

Leiden University Leiden, the Netherlands

October 2017

I General description

Radiation transfer tools are indispensable to plan or analyze observations with large facilities such as ALMA. Numerous advanced codes exist to calculate the structure of astronomical objects (density, temperature, velocity field, abundances of atomic or molecular species) and to determine the emerging emission of selected tracers (dust thermal continuum, emission or absorption lines of atoms or molecules). While many of these codes allow great realism in the treatment of object's astrophysics, they also require significant time investment to master.

The ARTIST project¹ (ARTIST) was conceived to lower the threshold in using popular star formation models and produce reliable quantitative information from the expected observables. The ARTIST package contains 9 models of protostars and planet-forming disks, with the associated parameters necessary to setup a full source model. Users no longer need to supply additional piece(s) of code in the construction of the source's astrophysics. Once a model is constructed, ARTIST uses the $LIME^2$ molecular excitation and radiation transfer code to calculate the resulting emission of selected molecular transitions and/or dust continuum emission, for a given source distance and orientation. This can be done in full statistical equilibrium of the molecular excitation, or by an assumption that the excitation follows Local Thermal Equilibrium (LTE) with the gas temperature.

In its original setup, *ARTIST* used a GUI to build the object's astrophysical model, and produce FITS image cubes. To further process these cubes and produce observables with, e.g., ALMA, the user needed to switch to CASA (the ALMA software) and carry out the desired processing steps.

To further lower the threshold for non-expert users, we have developed a CASA interface to *ARTIST*. The *ARTIST* models can now be set up through a keyword-driven interface within CASA, according to the principles that CASA users are fully familiar with. Once the astrophysical model is selected, the parameters defined, and the imaging keywords are set, the *LIME* radiation transfer calculation can be launched from the CASA prompt, and the requested FITS cubes are produced.

This document gives a succinct description of a typical CASA interface to *ARTIST* usage. For details of the astrophysical models included in *ARTIST*, users can refer to the original documentation of the *ARTIST* package (see below). For details on the inner workings of LIME and a full description of the image generation options, users may refer to the documentation of the LIME package. This document only gives top level descriptions on how to install the CASA ARTIST package including LIME, and illustrates a few typical use cases. This should allow the user to start in fairly short time and further explores *ARTIST-to-CASA* independently.

II Useful links

The links to the various documentations of the packages used in the interface is listed below :

¹http://youngstars.nbi.dk/artist/Welcome.html

²http://www.nbi.dk/ brinch/index.php?page=lime

- CASA (https://casa.nrao.edu/): the main package for data reduction and imaging of interferometric data.
- ARTIST (http://youngstars.nbi.dk/artist/Welcome.html): a radiative transfer package for modelling submillimeter observations (see also ARTIST).
- LIME (http://www.nbi.dk/~brinch/index.php?page=lime): the versatile molecular line excitation and radiative transfer tool (see also LIME).
- Model Library (see § VI): a list of the analytical/semi-analytical models provided within the *ARTIST* framework.
- Molecular file (http://home.strw.leidenuniv.nl/~moldata/): the molecular data file that can be read by the ARTIST package.
- \bullet Dust opacity file: see ARTIST or LIME documentations for the appropriate format.

III Tasks within the interface

ARTIST solves the astrophysical problem in two steps. In the first step (through the task **limesolver**) the user selects the model of choice, provides the necessary parameters, selects the molecule of interest, and provides the information that the LIME excitation solver needs to determine the excitation of the molecule across the source.

In the second step (through the task raytrace), the user provides a distance, orientation of the source and selects the molecular transition to image. The user further provides the necessary imaging input parameters such as angular and spectral resolution. Subsequently, the *LIME* raytracing tool produces the FITS cube containing the specified observable. This cube can be further processed (e.g., convolved with a Gaussian beam or used as an input for the full ALMA visibility modelling). The FITS cube is fully compatible with CASA.

IV Installation

The interface is distributed with the entire ARTIST package. The user must make sure that both ARTIST and CASA are correctly installed. A complete installation of ARTIST and CASA requires the following steps:

- CASA (version > 4.6) as obtained from https://casa.nrao.edu/.
- The following libraries and programs are needed:
 - gcc-c++
 - cfitsio and ciftsio-devel
 - GSL and GSL-devel
 - ncurses-devel
 - qhull and qhull-dev

- python2 and python-devel

- swig

See the README file in the folder $ARTISTROOT^3$ for more information about necessary programs and libraries.

- ARTIST installation instructions can be found file in the file ARTIST-ROOT/README. The installation consists of the execution of the configuration step and the compilation step. A successful installation of artist will give the users access to lime and modellib packages.
- The python script ARTISTROOT/test/testModels.py performs test runs on all models implemented in the modellib package. The successful execution of this script ensures that both *ARTIST* and *LIME* are installed correctly.
- The CASA interface is located in ARTISTROOT/casa. The file ARTIST-ROOT/doc/README_CASA.txt informs the users on the available tasks and details on the compilation. The interface needs to be compiled within the interface directory with buildmytasks that is distributed with CASA. Finally, the incorporation of the generated files have to be included in the CASA initialization file.

V Example sessions

In the following, we provide two typical example models with ARTIST-for-CASA. Through these two cases, we give the user a global overview of the different options to setup ARTIST models, define LIME excitation calculations, and LIME image generation parameters. This is not an exhaustive description of all options (please refer to the separate documentation of the ARTIST models and the LIME code), but does allow the user for a quick start and independent exploration of the interface's functionality. Please note that the interfaces consider only a single molecular data file with a single collisional partner.

V.I Spherical envelope

The first example adopts the Bonnor Ebert (http://adsabs.harvard.edu/ abs/1955ZA.....37..217E and http://adsabs.harvard.edu/abs/1956MNRAS. 116..351B) sphere is used to generate an image cube of the HCO⁺ 1–0 line from an infalling sphere. The first step is to use the task *limesover* generate the physical model. The input parameters are shown below. The task performs the following

- Passes the parameters to the *BonnorEbert56* function within the *modellib* package of *ARTIST*.
- \bullet The model is passed to LIME where the grids are generated and the molecular excitation is calculated.

 $^{^{3}}$ The location of the unpacked folder

• A model grid is produced at the end of the task where it contains the *LIME* grid points, density, temperature, and level populations for the specified molecule.

The Bonnor Ebert sphere model has a self-consistent temperature and velocity structures. There is no need to insert temperature and velocity functions unless the user wants to modify them. The task will overwrite the self-consistent values with the given parameters. The figures below show the execution of the limesolver within CASA.

limesolver:	This task runs the LIne Modelling Engine	
radius	= 3.0857e16	
minScale	= 1.496e13	Minimum
sinkPoints	= 2000	scale re-
pIntensity	= 5000	solve a by
nSolveIters	= 12	the grid
moldatfile	= ['hco+.dat']	Points for
dust	= 'jena_thin_e6.tab'	excitation
gridOutFile	= "BE56_test.fits"	and intensity
modelID	= 'BonnorEbert56'	calculations
Т	= 50	Molecular
rhoc	= 5e6	data file in
bmag	= "vectorConstR"	Atomic and
bmag_args	= [0.0]	Molecular
abundance	= "scalarConst"	DAtabase
abundance_ar;	gs = [1e-9]	format see
doppler	= "scalarConst"	above
doppler_args	= [300.]	IMPORTANT:
		This meeds
		to be defined

and set as 0

CASA Version 4.7.2-REL (r39762) Compiled on: Wed 2017/03/08 12:39:14 UTC

Figure 1: CASA version used. (CASA version must be greater than 4.6)

# 1.5 T T			
# limesolver :: I	his	task runs the LIne	e Modelling Engine (LIME).
radius	=	3.0857e+16	<pre># Radius of the model sphere (m)</pre>
minScale	=	1.496e+13	<pre># Minimum spatial model scale (m) # Temperature of CMP (K)</pre>
sinkPoints	-	2.720	# (Nominal) number of points to go
STIRLOTICS	_	2000	# on the model boundary
pIntensity	=	5000	# (Nominal) number of points to go
			<pre># in the model interior</pre>
samplingAlgorithm	=	0	<pre># Algorithm for grid point random</pre>
sampling	=	2	<pre># sampling # Random sampling distribution</pre>
lte_only	=	False	<pre># Whether to use only the LTE #</pre>
init_lte	=	False	# Whether use LTE populations as
nThreads	=	1	# Number of threads for parallel
nSolveIters	=	12	# Total number of solution # iterations desired
moldatfile	=	['hco+.dat']	<pre># Input files with transition rates # for radiating molecules</pre>
dust	=	'jena_thin_e6.tab	<pre># Input file with dust opacity # data</pre>
gridInFile	=		<pre># Input file with previously # calculated model grid</pre>
gridOutFile	=	'BE56_test.fits'	<pre># Output file to contain the model # orid information</pre>
resetRNG	=	False	# Whether to use the same random
			<pre># number seeds for each solution</pre>
model TD		Denner Ebert F C I	<pre># iteration # Identifier for the model to use</pre>
T	-	50 0	# Temperature of the core (K)
		2010	
rhoc	=	5000000.0	<pre># Central volume density of the</pre>
rhoc	=	5000000.0	<pre># Central volume density of the # core</pre>
rhoc userModelPath	=	5000000.0	<pre># Central volume density of the # core # Path of a bespoke model file (not</pre>
rhoc userModelPath abundance	=	5000000.0	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use</pre>
rhoc userModelPath abundance abundance_args	-	5000000.0 '' 'scalarConst' [1e-09]	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that</pre>
rhoc userModelPath abundance abundance_args bmag	-	5000000.0 '' 'scalarConst' [le-09] 'vectorConstR'	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args	-	5000000.0 '' 'scalarConst' [le-09] 'vectorConstR' [0.0]	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args density		5000000.0 '' 'scalarConst' [1e-09] 'vectorConstR' [0.0]	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args density density_args		5000000.0 '' 'scalarConst' [1e-09] 'vectorConstR' [0.0] '' []	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function.</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args density density_args doppler		5000000.0 '' 'scalarConst' [1e-09] 'vectorConstR' [0.0] '' [] 'scalarConst'	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # function. # Name of special function to use # function. # Name of special function to use # function.</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args density_ density_args doppler_args		5000000.0 '' 'scalarConst' [1e-09] 'vectorConstR' [0.0] '' [] 'scalarConst' [300.0]	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function.</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args density density_args doppler doppler_args tdust		5000000.0 'scalarConst' [1e-09] 'vectorConstR' [0.0] [] 'scalarConst' [300.0] 	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result.</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args density_ density_args doppler doppler_args tdust tdust_args		5000000.0 '' 'scalarConst' [le-09] 'vectorConstR' [0.0] '' [] 'scalarConst' [300.0] '' []	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function.</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args density density_args doppler doppler_args tdust tdust_args temperature		5000000.0 'scalarConst' [1e-09] 'vectorConstR' [0.0] [] 'scalarConst' [300.0] [] 	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result.</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args density_ density_args doppler_args tdust_args tdust_args temperature_args		5000000.0 '' 'scalarConst' [1e-09] 'vectorConstR' [0.0] '' [] 'scalarConst' [300.0] '' [] '' []	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function.</pre>
rhoc userModelPath abundance abundance_args bmag bmag_args density density_args doppler doppler_args tdust tdust_args temperature temperature_args velocity		5000000.0 'scalarConst' [1e-09] 'vectorConstR' [0.0] [] 'scalarConst' [300.0] [] [] 	<pre># Central volume density of the # core # Path of a bespoke model file (not # yet available). # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result. # Arguments to supply to that # function. # Name of special function to use # for this result.</pre>

Figure 2: The limesolver task within CASA with the given parameters.

```
##### Begin Task: limesolver
                                     #####
limesolver(radius=3.0857e+16,minScale=1.496e+1
        samplingAlgorithm=0, sampling=2, lte_onl
       nSolveIters=12, moldatfile=['hco+.dat']
        resetRNG=False, modelID="BonnorEbert56"
       Rstar=2.0, Tstar=4000.0, bgdens=0.0001, h
        rin=1.0, rout=100.0, sig0=0.01, mdisk=0.0
       h0=2, ab0=0.0004, mdot=1e-05, tin=1100.0,
       mdota=1e-06, mu=0.0, nu=0.0, rc=200.0, Tc1
       age=100000.0, Rn=1.0, userModelPath="", a
       bmag="vectorConstR", bmag_args=[0.0], de
        doppler_args=[300.0],tdust="",tdust_ar
        velocity="", velocity_args=[])
Loading function scalarConst for result abunda
  [val]
Loading function vectorConstR for result bmag.
  [val]
Loading function scalarConst for result dopple
  [val]
Starting limesolver LIME run.
Grid is complete. Starting solution.
Iteration 1/12
Min SNR 0.000000e+00 median 0.000000e+00
Iteration 2/12
Min SNR 0.000000e+00
                     median 0.000000e+00
Iteration 3/12
Min SNR 0.000000e+00
                     median 0.000000e+00
Iteration 4/12
Min SNR 2.875772e+00 median 5.715622e+00
```


The FITS image cube is produced by the task *raytrace*. The following parameters generate the first transition (J = 1-0) line with the given population levels calculated in the previous step (BE56_test.fits). The output file generated by limesolver is in FITS format.

raytrace: Makes FITS images/cubes from models created by LIME gridInFile = 'BE56_test.fits'

0	
moldatfile	= ['hco+.dat']
dust	<pre>= 'jena_thin_e6.tab'</pre>
filename	= "BE56_hcop_1.fits"
imgres	= 0.05
pxls	= 128
distance	= 3.08572e20
doLine	= True
nchan	= 50
velres	= 500.0
trans	= 0
source_vel	= 3500.0

<pre># ravtrace :: Make</pre>	s FITS	images/cubes	fro	m models created by LIME.
aridInFile	= 'BE5	6 test.fits'	#	Input FITS file
moldatfile	$= \Gamma'hc$	o+.dat'1	#	Input files with transition rates
			#	for radiating molecules
dust	= 'ien	a thin e6.tab	' #	Input file containing paired
	1	77 (77 - 77 - 77 - 77 - 77 - 77 - 77 -	#	wavelength/opacity values.
filename	= 'BE5	6 hcop 1.fits	' #	Output FITS file
imgres	=	0.05	#	Image resolution in arc seconds
-			#	(same for X and Y).
pxls	=	128	#	Pixels per dimension (same for X
			#	and Y).
unit	=	0	#	0:Kelvin 1:Jansky/pixel 2:SI
			#	3:Lsun/pixel 4:tau
rotationStyle	=	0	#	Style of input of model
			#	rotations.
theta	=	0.0	#	Rotation angle (deg).
phi	=	0.0	#	Rotation angle (deg).
freq	=	0.0	#	Nominal image frequency in Hz.
distance	= 3.08	57e+20	#	Distance of source in m.
nThreads	=	1	#	Number of threads when running in
			#	parallel.
traceRayAlgorithm	=	1	#	Choice of raytrace algorithm.
doLine	=	True	#	Whether to image line emission or
			#	not.
nchan	=	101	#	Number of velocity channels in
			#	the output cube.
velres	=	100	#	Channel resolution in m/s.
trans	=	0	#	Zero-indexed J quantum number.
molI	=	0	#	Index of the molecule to image
			#	(supposing more than 1 radiating
			#	molecule contributes in the
			#	model).
bandwidth	=	0.0	#	Cube bandwidth in m/s.
source_vel	=	0.0	#	Source velocity in m/s (receding
			#	+ve).
doInterpolate\	/els =	True	#	Velocity function needed if not.

Figure 4: The **raytrace** task within CASA with the given parameters.

#######################################	*##########
##### Begin Task: raytrace	####
raytrace(gridInFile="BE56_test.	<pre>fits",moldatfile=['hco+.dat']</pre>
<pre>pxls=128, unit=0, rotatic</pre>	onStyle=0, freq=0.0, theta=0.0,
phi=0.0, incl=0.0, posang	=0.0, azimuth=0.0, distance=3.0
nThreads=1,traceRayAlgo	prithm=1,doLine=True,nchan=101
trans=0,molI=0,bandwidt	h=0.0, source_vel=0.0, doInterp
polarization=False)	
Starting raytrace LIME run.	
Raytracing is complete	
LIME run is complete	
##### End Task: raytrace	####
#######################################	*###########

Figure 5: Similarly, the execution of the task can be monitored through the CASA log.

Figure 6: The FITS file generated by **raytrace** can be viewed with the user's favorite viewer.

V.II Chiang and Goldreich disk

A generic semi-analytical disk model is the Chiang & Goldreich type disk (http://adsabs.harvard.edu/abs/1997ApJ...490..368C). It is a self-consistent analytical model. This time, we will generate the CO 3-2 line from a protoplanetary disk.

```
limesolver: This task runs the LIne Modelling Engine
                 = 1.496e13
Radius
minScale
                 = 1.496e11
sinkPoints
                 = 3000
                 = 3000
pIntensity
samplingAlgorithm = 0
     sampling
                 = 2
init_lte
                 = True
nSolveIters
                 = 5
                 = ['co.dat']
moldatfile
dust
                 = 'jena_thin_e6.tab'
gridOutFile
                 = "CG97_test.fits"
                 = 'CG97'
modelID
               = 0.5
     Mstar
     Rstar
               = 2.
     Tstar
               = 3e3
     bgdens
               = 1e-2
     hph
               = 3.3
               = -1.0
     plsig1
               = 1.0
     rin
     rout
               = 1e2
     sig0
               = bgdens
                  = "scalarConst"
abundance
abundance_args
                  = [1e-4]
                  = "scalarConst"
dopper
doppler_args
                  = [0.8e3]
```

<pre># limesolve</pre>	r :: This	task runs the LI	ne l	Wodelling Engine (LIME).
radius	=	1.496e+13	#	Radius of the model sphere (m)
minScale		1.496e+11	#	Minimum spatial model scale (m)
tcmb	-	2.728	#	Temperature of CMB (K)
sinkPoints	-	3000	#	(Nominal) number of points to go on the model boundary
pIntensity		3000	#	(Nominal) number of points to go in the model interior
samplingAlgo	rithm =	θ	#	Algorithm for grid point random sampling
sampling	g =	2	#	Random sampling distribution
lte_only	-	True	#	Whether to use only the LTE approximation
init lte		True	#	Whether use LTE populations as starting values
nThreads		1	#	Number of threads for parallel processing
nSolveIters	-	0	#	Total number of solution iterations desired
moldatfile		['co.dat']	#	Input files with transition rates for radiating molecules
dust	-	'jena thin e6.ta	b' #	Input file with dust opacity data
gridInFile	-		#	Input file with previously calculated model grid
gridOutFile		'CG97 test.fits'	#	Output file to contain the model grid information
resetRNG	-	False	#	Whether to use the same random number seeds for each solution iteration
modelID		'CG97'	#	Identifier for the model to use.
Mstar		0.5	#	Mass of the central (proto-)star (Msun)
Rstar		2.0	#	Radius of the central star (Rsun)
Tstar		3000.0	#	Effective temperature of the star (K)
bgdens		0.01	#	Background number density (floor value for the disk density)(1/cm^3)
hph		4.0	#	Ratio of the height of the disk atmosphere above the midplane and the pressure scale
			#	height (at all radii)
plsigl		-1.0	#	Power exponent of the radial surface density distribution
rin		1.0	#	Inner Radius of the disk (AU)
rout		100.0	#	Outer radius of the disk (AU)
sig0		0.01	#	Surface density at rout (g/cm^2)
userModelPath	h =		#	Path of a bespoke model file (not yet available).
abundance	-	'scalarConst'	#	Name of special function to use for this result.
abundance_arg	gs =	[0.0001]	#	Arguments to supply to that function.
bmag	-	'vectorConstR'	#	Name of special function to use for this result.
bmag args		[0.0]	#	Arguments to supply to that function.
density			#	Name of special function to use for this result.
density_args	=		#	Arguments to supply to that function.
doppler	-	'scalarConst'	#	Name of special function to use for this result.
doppler_args	-	[800.0]	#	Arguments to supply to that function.
tdust	-	1	#	Name of special function to use for this result.
tdust_args			#	Arguments to supply to that function.
temperature			#	Name of special function to use for this result.
temperature_a	args =		#	Arguments to supply to that function.
velocity			#	Name of special function to use for this result.
velocity_args	s =	- []	#	Arguments to supply to that function.

Figure 7: The limesolver task within CASA with the given parameters.

Figure 8: The execution of the task for the LTE only run.

raytrace:	Makes	FITS	images/cubes	from	models	created	by
LIME							
gridInFile		=	'CG97_test.vtk	c'			
moldatfile		=	['co.dat']				
dust		=	'jena_thin_e6.	tab'			
filename		=	"CG97_co_3.fit	s'			
imgres		=	128				
theta		= ;	30.				
phi		=	15.				
distance		= ;	3.08572e18				
doLine		= '	True				
nchan		= 101					
velres	5	= 250	.0				
trans		= 2					
source	e_vel	= 3	500.0				

<pre># raytrace :: M</pre>	akes FJ	TS images/cubes	s from	n models created by LIME.
gridInFile	= 1	CG97_test.fits	'#	Input FITS file
moldatfile	= ['co.dat']	#	Input files with transition rates for radiating molecules
dust		jena thin e6.ta	ab'#	Input file containing paired wavelength/opacity values.
filename	= 1	CG97 co 3.fits	#	Output FITS file
imgres	-	0.01	#	Image resolution in arc seconds (same for X and Y).
pxls	=	128	#	Pixels per dimension (same for X and Y).
unit	=	0	#	0:Kelvin 1:Jansky/pixel 2:SI 3:Lsun/pixel 4:tau
rotationStyle		0	#	Style of input of model rotations.
theta	=	30.0	#	Rotation angle (deg).
phi	=	15.0	#	Rotation angle (deg).
freq	=	0.0	#	Nominal image frequency in Hz.
distance	= 3	3.0857e+18	#	Distance of source in m.
nTh reads	-	1	#	Number of threads when running in parallel.
traceRayAlgorith	m =	1	#	Choice of raytrace algorithm.
doLine	-	True	#	Whether to image line emission or not.
nchan	-	101	#	Number of velocity channels in the output cube.
velres	=	250.0	#	Channel resolution in m/s.
trans	-	2	#	Zero-indexed J quantum number.
molI	=	0	#	Index of the molecule to image (supposing more than 1 radiating molecule contributes
			#	in the model).
bandwidth		0.0	#	Cube bandwidth in m/s.
source_vel	=	3500.0	#	Source velocity in m/s (receding +ve).
doInterpola	teVels	= True	#	Velocity function needed if not.

Figure 9: The **raytrace** task within CASA with the given parameters.

******	##########
##### Begin Task: raytrace	####
raytrace(gridInFile="CG97_test.;	fits",moldatfile=['co.dat'],dust="jena_thin_e6.#
pxls=128, unit=0, rotation	nStyle=0, freq=0.0, theta=30.0,
phi=15.0, incl=0.0, posan	g=0.0,azimuth=0.0,distance=3.0857e+18,
nThreads=1,traceRayAlgo	rithm=1,doLine=True,nchan=101,velres=250.0,
<pre>trans=2,molI=0,bandwidtl</pre>	h=0.0, source_vel=3500.0, doInterpolateVels=True,
polarization=False)	
Starting raytrace LIME run.	
LIME run is complete	
##### End Task: raytrace	####
#######################################	##########

Figure 10: Similarly, the execution of the task can be monitored through the CASA log.

Figure 11: The FITS file generated by **raytrace** can be viewed with the user's favorite viewer.

VI Models library

Table 1: 7	The mo	del li	brary	contains	s 9 anal	ytical	l and	semi-analytical	models.
The table	below	lists	the a	available	models	and	their	self-consistent	physical
parameter	s. It als	so list	s the	paramet	ers that	user	s mus	t provide.	

	-	-					
ModelID	Model Name						
	Provided parameters	Required input parameters					
Mamon88	circumstellar envelope model of evolved stars						
	density, temperature, abundance,	magnetic field, doppler					
	velocity						
BonnorEbert56	Bonnor Ebert	sphere					
	density, velocity	abundance, magnetic field,					
	temperature	doppler					
Shu77	Shu 1977 spherical isothe	ermal sphere model					
	density, velocity,	abundance, magnetic field,					
	temperature	doppler					
Ulrich76	infall model wit	h rotation					
	density, velocity	abundance, magnetic field,					
		temperature, doppler					
Mondoza00	analytical model of collapsin	a rotating finite aloud					
Menu02a09	density velocity	abundanca, dopplar					
	density, velocity	magnetic field temperature					
		magnetic neid, temperature					
LiShu96	magnetized isotherm	al toroid model					
Lionado	density, velocity	abundance, doppler					
	magnetic field, temperature	abandance, aoppier					
Allen03a	Collapse model of magnetiz	ed isothermal toroids					
	density, velocity	abundance, doppler					
	magnetic field, temperature	, <u> </u>					
CG97	Chiang Goldreich 19	997 disk model					
	density, velocity,	abundance, doppler,					
	temperature	magnetic field					
DDN01	Dullemond, Dominik, and N	latta 2001 disk model					
	density, velocity	abundance, doppler,					
	temperature	magnetic field					

Built-in functions are used to d bmag, and similar physical paramet	efine keyword parameters such as abundance, ers. Specifically, the physical parameters that
scalarConst:	Insert a constant a [a]
scalarPowerR:	Power-law function in r direction val = $ar^p + b$ if $r > r_{\min}$ else $ar_{\min}^p + b$ $[p, a, R_{\min}, b]$
scalarPowerRExpZ	Power-law function in r with exponential function in z $valr = ar^p + b$ if $r > r_{min}$ else $ar^p_{min} + b$ $valz = c \exp \frac{- z }{d} + e$ $val = valr \times valz$ $[p, a, c, R_{min}, b, e, d]$
scalarPowerRTheta	Power-law function in r and $\theta = \cos^{-1}(z /r)$ $valr = ar^p + b$ if $r > r_{\min}$ else $ar^p_{\min} + b$ $val\theta = c\theta^q + d$ if $r > r_{\min}$ else $c\theta^q_{\min} + d$ $val = valr \times val\theta$ $[p, q, a, c, R_{\min}, \theta_{\min}, b, d]$
scalarPowerRz	Power-law function in r and z see scalarPowerRTheta for explanation and input format
vectorConstR	Constant value of a in the r direction see scalarConstR for explanation and input format
vectorConstXYZ	Constant values in the x, y, z directions valX = a , valY = b , valZ = c [a, b, c]
vectorDipole	Dipole vector function for a given dipole moment μ the vector values are $\propto r^{-3}$ if $r > r_{\min}$ else $\propto r_{\min}^{-3}$ $[r_{\min}, \mu]$
vectorRadialPowerR	Power-law function in radial r see scalarRadialPowerR for explanation and input format
vectorRadialPowerRTheta	Power-law function in radial r and θ see scalarRadialPowerRTheta for explanation and input format
vectorToroidalPowerR	Power-law function in radial r and θ valPhi = $aR^p + b$ if $R > R_{\min}$ else $aR_{\min}^p + b$ see scalarPowerR for input format

 $^{{}^4}r$ is used to define spherical radius while R defines the cylindrical radius

VII Commonly encountered Errors

The following lists the possible causes of errors that user may encounter.

- LIME and CASA exit when limesolver is executed. This occurs if one or more data file is not in the correct format.
- Not all results have been linked to models or functions. This occurs when one of the parameters is not set correctly. Typically, most models require the magnetic field bmag to be set to a VectorScalarR with zero value.
- raytrace exits and crashes CASA. This occurs when the limesolver output is not correct usually driven by invalid values in the population levels. Execute the limesolver task with higher iteration value.