Infrared spectra of complex organic molecules in astronomically relevant ice mixtures

II. Acetone

M. G. Rachid¹, J. Terwisscha van Scheltinga^{1,2}, D. Koletzki^{1,*}, and H. Linnartz¹

¹ Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: marina.g.rachid@gmail.com

² Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands

Received 14 January 2020 / Accepted 28 February 2020

ABSTRACT

Context. Complex organic molecules (COMs) have been largely identified through their characteristic rotational transitions in the gas of interstellar and circumstellar regions. Although these species are formed in the icy mantles that cover dust grains, the most complex species that has been unambiguously identified in the solid-phase to date is methanol (CH₃OH). With the upcoming launch of the *James Webb* Space Telescope (JWST), this situation may change. The higher sensitivity, spectral and spatial resolution of the JWST will allow for the probing of the chemical inventory of ices in star-forming regions. In order to identify features of solid-state molecules in astronomical spectra, laboratory infrared spectra of COMs within astronomically relevant conditions are required. This paper is part of a series of laboratory studies focusing on the infrared spectra of frozen COMs embedded in ice matrices. These reflect the environmental conditions in which COMs are thought to be found.

Aims. This work is aimed at characterizing the infrared features of acetone mixed in ice matrices containing H_2O , CO_2 , CO, CH_4 , and CH_3OH for temperatures ranging between 15 K and 160 K. Changes in the band positions and shapes due to variations in the temperature, ice composition, and morphology are reported. This work also points out the IR features that are considered the best promising tracers when searching for interstellar acetone-containing ices.

Methods. Acetone-containing ices were grown at 15 K under high-vacuum conditions and infrared (IR) spectra (500–4000 cm⁻¹/20– 2.5 μ m, 0.5 cm⁻¹ resolution) in transmission mode were recorded using a Fourier transform infrared spectrometer. Spectra of the ices at higher temperatures are acquired during the heating of the sample (at a rate of 25 K h⁻¹) up to 160 K. The changes in the infrared features for varying conditions were analyzed.

Results. A large set of IR spectra of acetone-containing ices is presented and made available as a basis for interpreting current and future infrared astronomical spectra. The peak position and full width at half maximum of selected acetone bands have been measured for different ice mixtures and temperatures. The bands that are best suitable for acetone identification in astronomical spectra are: the C=O stretch mode, around 1710.3 cm^{-1} (5.847 µm), that lies in the $1715-1695 \text{ cm}^{-1}$ (5.83–5.90 µm) range in the mixed ices; the CH₃ symmetric deformation, around 1363.4 cm^{-1} (7.335 µm) that lies in the $1353-1373 \text{ cm}^{-1}$ (7.28–7.39 µm) range in the mixed ices; and the CCC asymmetric stretch, around 1228.4 cm^{-1} (8.141 µm), that lies in the $1224-1245 \text{ cm}^{-1}$ (8.16–8.03 µm) range in the mixed ices. The CCC asymmetric stretch band also exhibits potential as a remote probe of the ice temperature and composition; this feature is the superposition of two components that respond differently to temperature and the presence of CH₃OH. All the spectra are available through the Leiden Ice Database.

Key words. astrochemistry – molecular data – methods: laboratory: molecular – ISM: molecules – methods: laboratory: solid state

1. Introduction

The increasing number of molecules detected outside our Solar System directly correlates to the many chemical processes taking place in space. Up through today, more than 225 different molecules have been identified in the interstellar medium (McGuire 2018). The majority of these species have typical sizes ranging up to 13 atoms, and a few much larger molecules have also been identified in space: such as the fullerenes C_{60} , C_{60}^+ , and C_{70} , (Cami et al. 2010; Sellgren et al. 2010; Berné et al. 2013; Campbell et al. 2015; Cordiner et al. 2019). These molecules have been detected across a diversity of environments (diffuse and cold molecular clouds, circumstel-

lar disks and gas shells expelled by stars at the end of their lives) (Ehrenfreund & Charnley 2000). Most of these species have been identified exclusively through their gas-phase signatures; only some 12 species have been found in the solid-state and among these, the only complex organic molecule (COM) that has been definitively detected is methanol (CH₃OH). As it is generally thought that COMs form through surface induced reactions (Herbst & Van Dishoeck 2009; Linnartz et al. 2015; Öberg 2016), the lack of astronomical solid-state COMs identifications calls for further attention.

Infrared observational data have shown that the icy material in cold regions of dark clouds and protoplanetary disks can harbour simple molecules, such as H_2O , CO, CO_2 , NH_3 , CH_4 , and CH_3OH (Gibb et al. 2004; Öberg et al. 2011; Boogert et al. 2015). Laboratory work has shown that many COMs can be formed starting from these simple precursor molecules,

^{*} Current address: Technische Universiteit Delft, Mekelweg 5, 2628 CD Delft, The Netherlands.

either through non-energetic processing, such as atom or radical addition and recombination reactions (Watanabe & Kouchi 2002; Ioppolo et al. 2011; Fedoseev et al. 2015; Linnartz et al. 2015), or energetic processing, for example, via irradiation by UV photons, cosmic-rays, and electrons (Gerakines et al. 1996; Hudson & Moore 1999, 2001; Öberg et al. 2009; Duarte et al. 2010). With the upcoming launch of the James Webb Space Telescope (JWST), spatially, and spectroscopically well-resolved infrared spectra of ices in star-forming regions will become available. Within ICE AGE¹, an early release JWST science program, efforts have been underway to search for the solid-state signatures of larger and more complex species, COMs in particular, that may play a role in the formation of the building blocks of life. In order to identify the infrared features of COMs in the astronomical data, reference spectra in simulated space environments are required. Currently, worldwide efforts are made to have these data available in time. This paper deals with ices containing acetone (CH₃COCH₃).

Acetone was detected in the interstellar medium (ISM) for the first time in the hot molecular core Sgr B2 (Combes et al. 1987; Snyder et al. 2002). Since then, it has also been detected in other high mass star forming regions (Friedel et al. 2005; Zou & Weaver 2017), towards an intermediate-mass protostar (Fuente et al. 2014), the low mass protostar IRAS 16293–2422B (Lykke et al. 2017) and in the disk around the outbursting star V883 Ori (Lee et al. 2019). Acetone is a key molecule to understand the O–N differentiation in the Orion-KL region. There, large N-bearing molecules and large O-bearing molecules are spatially separated. The presence of acetone in both these chemically different environments, indicates that this species may have a unique formation mechanism, that is expected to follow solidstate routes (Friedel & Snyder 2008; Zou & Weaver 2017).

Initially, the formation of acetone in the ISM was proposed to occur by the radiative association of a methyl ion and acetaldehyde in the gas-phase resulting in the formation of protonated acetone ($CH_3COCH_3^+$) that sequentially recombines with electrons to form neutral acetone (Combes et al. 1987):

 $CH_3^+ + CH_3CHO \rightarrow CH_3COCH_3^+ + h\nu$

 $CH_3COCH_3^+ + e^- \rightarrow CH_3COCH_3.$

Herbst et al. (1990) carried out a theoretical study of acetone formation through ion-molecule reactions and demonstrated that the reaction between the methyl ion and acetaldehyde proposed by Combes et al. (1987) is not efficient enough to account for the observed CH_3COCH_3 abundances in Sgr B2. Instead, the authors proposed that acetone synthesis could involve surface chemistry pathways, a proposition that is observationally supported by the recent work by Lee et al. (2019).

Garrod et al. (2008) proposed that the solid state formation of some COMs, including acetone, in hot cores could happen through the reaction between aldehyde-group radicals and primary or secondary radicals in ice grain mantles:

 $CH_3CHO + CH_3 \rightarrow CH_3CO + CH_4$,

 $CH_3CO + CH_3 \rightarrow CH_3COCH_3$.

Later, the formation of acetone and acetaldehyde in $CO:CH_4$ ices irradiated by 5 keV electrons was confirmed by Kaiser et al. (2014). An unambiguous identification of acetone in the

solid-state would, therefore, shed further light on its chemical origin in ISM.

Hudson et al. (2018) reported IR spectra of amorphous and crystalline acetone ice, at 10K and 125K, respectively. The authors compared their reported data with spectra available in the literature, characterized the changes in shape and band position in the acetone spectra at different temperatures, deposition conditions and thicknesses, and reported refractive index, density and band strength values for the vibrational modes for both amorphous and crystalline acetone ices. In order to further support the interpretation of infrared astronomical data, it is important to extend studies of pure acetone ice to acetonecontaining ice mixtures comprising abundant interstellar ice species or species that are considered likely precursors of solidstate acetone. Moreover, such spectra need to be recorded for different temperatures and ice growth conditions as vibrational modes are affected by the chemical composition, temperature, and physical structure of the ice (Palumbo 2005; Dawes et al. 2007; Öberg et al. 2007; Bossa et al. 2012; Isokoski et al. 2014), causing peak positions, peak shapes (e.g., the full width at half maximum, FWHM), and intensity ratios to vary for different experimental settings. Adding to this, vibrational modes may absorb at wavelengths overlapping with those of similar functional groups from other molecules in the ice, which will further complicate unambiguous infrared identifications.

This work presents a study of the infrared spectral features of acetone in its pure form and mixed in relevant interstellar ice matrices: H₂O, CO, CH₃OH, CO₂, H₂O:CO₂, H₂O:CH₄, and CO:CH₃OH. The strongest bands of acetone ($A > 10^{-18}$ cm molecule⁻¹ from Hudson et al. 2018) have been selected and are characterized in terms of peak position, FWHM, and band intensity ratios. The decision to focus on the strongest bands is based on the fact that those are most suited to act as acetone tracers in astronomical infrared spectra.

The present paper is structured as follows: Sect. 2 describes the apparatus and the measurement protocols. In Sect. 3, the results of selected spectral features of acetone in different mixtures are presented and the astronomical importance of the present measurements is discussed. The conclusions are outlined in Sect. 4. Selected wavelength domains of the infrared spectra of all the samples studied in this work, along with graphs showing the peak position versus FWHM and the calculated apparent band strengths, are summarized in Appendix A. The tables listing peak positions and FWHM values for all the studied bands are listed in Appendix B. The integrated absorbance of the different acetone bands is summarized in Appendix C.

2. Methodology

All the measurements are performed in a high-vacuum (HV) setup with a central stainless steel chamber with a base pressure of $\sim 3 \times 10^{-7}$ mbar and which houses a cryogenically cooled IR transparent window (ZnSe) onto which ices are grown. The pressure in the main chamber is measured using a full range pressure gauge. The liquids and gases used in the preparation of the gas mixtures are acetone (Roth, purity $\geq 99.9\%$), water (Milli-Q, Type I), carbon monoxide (Linde Gas, 99.997%), methane (Linde Gas 99.999%), and methanol (Honeywell, purity $\geq 99.9\%$). The gas samples, pure and mixed, are prepared in a separate mixing line using a 2L glass bulb

http://jwst-iceage.org/

Mixture	1:5	1:20	Temperature range (K)
CH ₃ COCH ₃ :H ₂ O	1:5	1:20	15-160
CH ₃ COCH ₃ :CO ₂	1:5	1:20	15-100
CH ₃ COCH ₃ :H ₂ O:CO ₂	1:2.5:2.5	1:10:10	15-160
CH ₃ COCH ₃ :H ₂ O:CH ₄	1:2.5:2.5	1:10:10	15-160
CH ₃ COCH ₃ :CH ₃ OH	1:5	1:20	15-140
CH ₃ COCH ₃ :CO	1:5	1:20	15-35
CH ₃ COCH ₃ :CH ₃ OH:CO	1:2.5:2.5	1:10:10	15-140

 Table 1. Composition, mixing ratios and temperature range of the analyzed ice samples.

Notes. Uncertainty in the mixing ratios due to preparation of the sample is lower than 10%.

typically filled up to a total pressure of 20 mbar. The mixtures are prepared through the sequential freezing of gases in the glass bulb immersed in a liquid N_2 bath. The base pressure in the mixing line is around 1×10^{-4} mbar and measured using two mass-independent pressure gauges that cover ranges between 0-10 mbar and 0-1000 mbar. The estimated error in the mixing ratios obtained by this method is $\leq 10\%$. The gas sample is admitted into the main chamber through an inlet valve and the flow is controlled by a calibrated needle valve that is maintained at the same fixed position for all the experiments. The gases are background deposited onto the cryogenically cooled (15 K) ZnSe window using a closed cycle He cryostat. The sample temperature is monitored using a silicon diode DT-670-CU, PID controlled by a Lake Shore 330 temperature controller, with an absolute accuracy of 2 K and a relative accuracy of 1 K. In this work, the needle valve has already been calibrated for different pure gases, enabling the calculation of their deposition rate (the band strengths for the quantification were taken from Bouilloud et al. 2015; Hudson et al. 2018). Taking into account the deposition rate of pure gases weighted by their respective fraction in the desired gas mixtures, it becomes possible to determine the deposition rate of the gas mixtures. Consequently, the column density of each component in the ice can be calculated. Once the column density of acetone and the integrated IR absorption of a given vibrational mode are known, it is possible to calculate the apparent band strength of an acetone band for a specific ice mixture and temperature.

The ice samples are typically grown over a period of 30 min, resulting in an ice thickness between 2800 ML and 3500 ML $(1 \text{ ML} \sim 1 \times 10^{15} \text{ molecules cm}^{-2})$, depending on the composition of the gas mixture. These thick ices are used to minimize the influence of contamination from the background gases, which is mainly water at a measured rate of 30 ML h⁻¹. As a control, it is checked that the C=O stretching band signal does not saturate during mixture deposition. The infrared beam of a Varian 670-IR infrared spectrometer is guided perpendicularly through the substrate to obtain the IR spectra of the ice samples in transmission mode. The spectrometer covers a range between 4000 cm^{-1} and 500 cm^{-1} (2.5–20 μ m) at spectral resolutions as high as 0.1 cm⁻¹. In this work, the spectra are collected using a resolution of 0.5 cm^{-1} . All the recorded spectra are averaged over 128 scans (around 3.5 min). After the spectra at 15 K are taken, the sample is heated at a rate of 25 K h⁻¹ until it is completely desorbed from the substrate. During the heating of the sample, spectra are continuously recorded to obtain spectra for different temperature settings. Consequently, an ice spectrum recorded for a specific temperature, actually covers a temperature range of ± 0.8 K from the central value. This is also the reason why spectra are recorded at 0.5 cm^{-1} resolution, as this is an optimum between spectral resolution and time needed to perform a full scan; with increasing scan time the uncertainty of the ice temperature would increase. Apart from temperatures close to a phase transition or desorption temperature, this does not cause any inaccuracies. More experimental details can be found in (Terwisscha van Scheltinga et al. 2018).

2.1. Ice samples

Astronomical observations supported by laboratory studies have shown that the molecular constituents of interstellar ices are partially structured in layers rather than homogeneously mixed. Dust grains are initially covered by layers of water, due to surface reactions of H atoms and O atoms and direct freeze-out of gas-phase H₂O (Cuppen et al. 2010; Linnartz et al. 2015). During this stage CO_2 and CH_4 are also formed (Öberg et al. 2008; Ioppolo et al. 2011; Qasim et al. 2020). As the density increases and temperatures further drop, CO starts to accrete rapidly. Subsequent hydrogenation of CO ultimately results in methanol formation within a CO rich ice (Boogert et al. 2015; Linnartz et al. 2015). In an attempt to simulate the infrared spectra of acetone in these different ice layers, the mixtures prepared in this work contain acetone mixed with some of the more abundant interstellar ice components: H₂O, CO₂, CO, CH₄, and CH₃OH. Additionally, acetone is mixed in H₂O:CO₂, H₂O:CH₄, and CO:CH₃OH mixtures. The mixtures are prepared with acetone ratios of 1:5 (i.e., 1 molecule of acetone for 5 matrix molecules) and 1:20. These ratios are relatively high compared to COMs (likely to have been) identified in astronomical data but are expected to provide representative spectra. Table 1 shows the composition and mixing ratios of all ice samples studied in this work. For all the investigated ice samples, spectra are collected between 15 K and 200 K. In this work, the spectra are analyzed until thermal desorption of the major matrix components ($T \sim 30$ K for CO, $T \sim 100$ K for CO₂, $T \sim 140$ K for the CH₃OH-containing ices and $T \sim 160$ K for the H₂O-containing ices) or until the acetone bands are no longer detectable.

2.2. Analysis protocol

All the spectra are baseline-corrected using *Origin* and the acetone bands are identified by comparison with the results presented by Hudson et al. (2018). From the acetone infrared features visible in the pure ice spectra, the strongest ones ($A > 10^{-18}$, see Hudson et al. 2018) are selected. From these, only

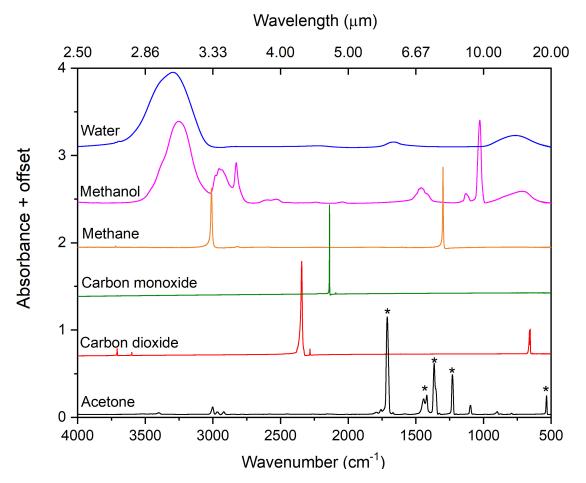
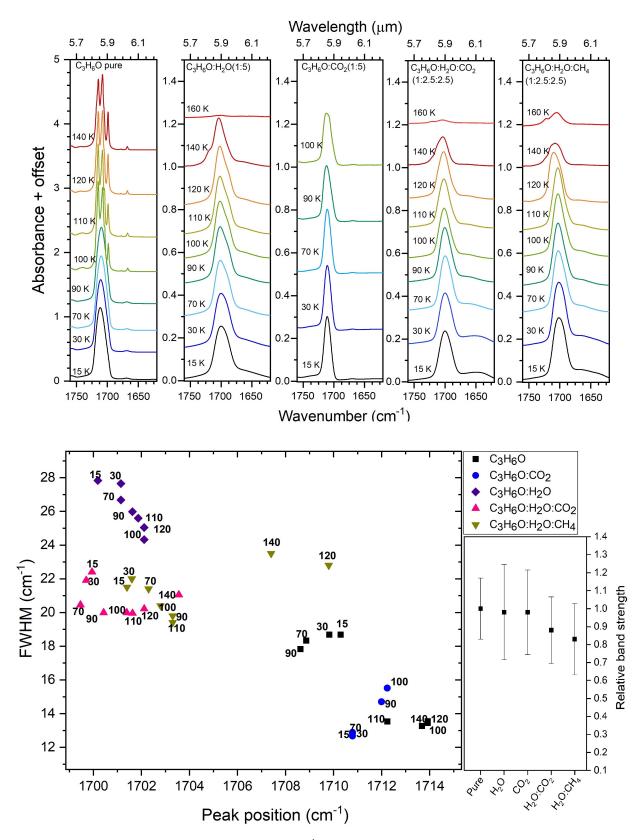


Fig. 1. Infrared ice spectra of pure CH_3COCH_3 (black), CO_2 (red), CO (green), CH_4 (orange), CH_3OH (magenta) and H_2O (blue). The acetone absorption bands marked with an asterisk have been selected for an in-depth study as most suited acetone tracers for future JWST surveys.

the transitions that have no obvious spectral overlap with bands originating from other abundant ice species are characterized (i.e., peak position and FWHM) using a personal *Matlab* script. Figure 1 shows the infrared spectrum of pure CH₃COCH₃ ice (bottom) and the spectra of the other ice components that are used in the analyzed samples: H₂O, CH₃OH, CH₄, CO₂, and CO. The five selected acetone bands analyzed in this work are marked in Fig. 1 with an asterisk. These bands are: the CO in-plane deformation band around 533 cm⁻¹ (18.8 μ m); the CCC asymmetric stretch band around 1228 cm⁻¹ (8.14 μ m); the CH₃ symmetric deformation band around 1363 cm⁻¹ (7.34 μ m); the CH₃ asymmetric deformation band around 1418 cm⁻¹ (7.05 μ m); and the C=O stretch band around 1710 cm⁻¹ (5.85 μ m), see Table 2.

The band strength (A) of a vibrational mode can be used to calculate the number of absorbing species that count for an absorption feature. Once known, it can be used to derive the column density for a specific molecule from an infrared spectrum. Physically, the integrated absorbance of a vibrational mode is related to the changes in the electron charge distribution upon excitation. Since the electronic configuration of a molecule changes due to the interaction with the surrounding species, the band strength depends on the composition and morphology of the ice. In order to better derive abundances or upper limits of molecules in astronomical data, it is advantageous to know the band strength of COMs when embedded in ices with compositions similar to those in which such molecules are expected to be found in. In this work, we derive the apparent band strength (A') of the acetone vibrational modes, when acetone is embedded in different ice matrices. These values of the apparent band strength relative to the values reported by Hudson et al. (2018) are displayed in Appendix A. The estimated errors in this procedure are around 20%.


3. Results and discussion

This section presents a series of representative spectra. All other spectra are shown in Figs. A.1 to A.16 in the Appendix. These spectra not only allow to search for acetone ice features, but the differences that become clear when comparing the data for different settings, also offer a diagnostic tool for further ice characterization.

Figures 2 through 5 show the C=O stretching and the CCC asymmetric stretching of acetone for temperatures ranging from 15 K to 160 K, in pure ice and in mixtures with an acetone ratio of 1:5. For improved visualization, the spectra at different temperatures are offset and it should be noted that the panel showing acetone in pure form (left panel in all figures) is displayed at a different scale compared to the panels presenting the ice mixture spectra. These and all other spectra shown in Appendix A are available in full from the Leiden Ice Database². A compilation of all acetone features at different temperatures can be found in Appendix B. The integrated absorbance of the selected acetone bands is available from Appendix C. Spectra recorded at intermediate temperatures and not listed here are available upon request.

² https://icedb.strw.leidenuniv.nl/

M. G. Rachid et al.: Infrared spectra of complex organic molecules in astronomically relevant ice mixtures

Fig. 2. *Upper panel*: infrared spectra in the range of $1760-1630 \text{ cm}^{-1}$ (5.68–6.13 µm) showing the C=O stretch band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:H₂O(1:5), CH₃COCH₃:CO₂(1:5), CH₃COCH₃:H₂O:CO₂(1:2.5:2.5), and CH₃COCH₃:H₂O:CH₄(1:2.5:2.5). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the C=O stretch band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone C=O stretch band at 15 K in the various matrices divided by the band strength for pure acetone from Hudson et al. (2018).

Vibrational mode	Peak position (cm ⁻¹)		A' ^(b)
	15 K ^(a)	$10 \mathrm{K}^{(b)}$	$(10^{-18} \mathrm{cm}\mathrm{mol}^{-1})$
CO in plane deformation	532.7	533.6	2.13
CCC asymmetric stretch	1228.4	1228.9	7.35
CH ₃ symmetric deformation	1363.4	1364.4	13.9
CH ₃ asymmetric deformation	1417.9	1418.9	9.19
C=O stretching	1710.3	1711.4	26.7

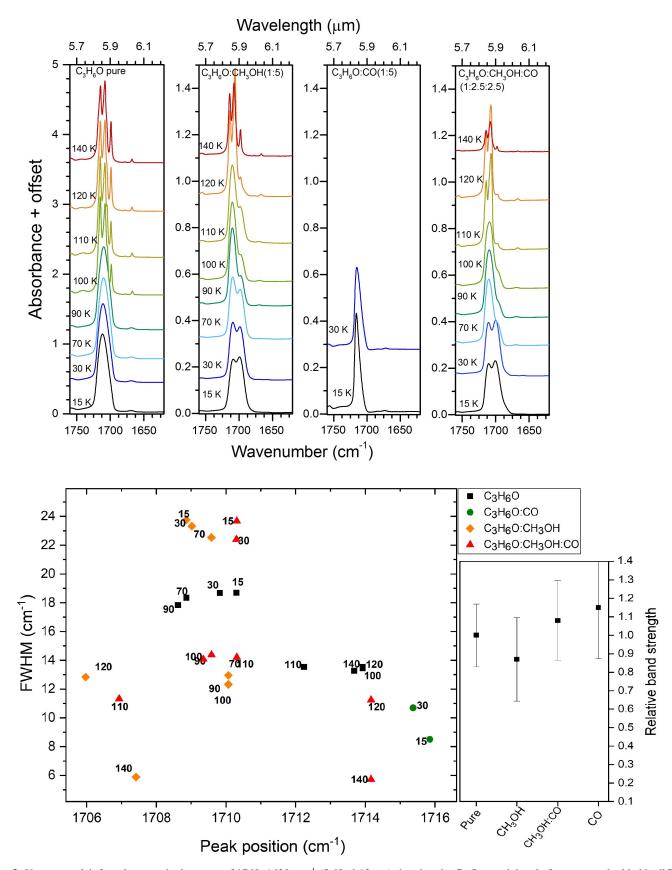
Table 2. Peak positions and band strengths of the pure acetone ice bands studied in this work.

Notes. The acetone band position and strengths for the amorphous ice at 10 K (Hudson et al. 2018) are shown for comparison. **References.** ^(a)This work. ^(b)Hudson et al. (2018).

3.1. Pure acetone ice

Table 2 lists the infrared bands of acetone that have been selected as the best-suited tracers of acetone ice in space. As expected, the peak position values for pure acetone ice are close to those reported by Hudson et al. (2018) for amorphous acetone ice at 10 K. The pure acetone ice remains amorphous between 15 K and 90 K and there are no significant changes seen in the peak positions and band shapes. At 93 K, there is an abrupt sharpening of all the investigated bands, characteristic for the transition to crystalline acetone. The peak positions of the acetone bands also change after crystallization. From 100 K up to 140 K, the bandwidths show no appreciable changes. When the pure acetone ice is heated to temperatures above 140 K, the intensity of the acetone bands starts decreasing and drops below the detection sensitivity of our IR technique when the sample reaches 148 K. This temperature is close to the value presented by Hudson et al. (2018), who reported that acetone thermally desorbs around 150 K.

3.2. Peak positions of acetone features in ice mixtures


The C=O stretch vibrational mode, around 1710 cm^{-1} (5.85 μ m), is the strongest acetone band ($A = 2.67 \times 10^{-17}$ cm molecule⁻¹). The resulting bands in different matrix environments and as function of temperature are shown in Figs. 2 and 3 for the low dilution mixtures (1:5) and in Figs. A.7 and A.8 for the high dilution mixtures (1:20). This mode is partially superimposed on the OH bending mode of water as well as other molecules detected in astrophysical ices, such as the N-H bending mode of ammonia (Bouilloud et al. 2015; Boogert et al. 2015). However, since this mode is strong, it is easily identified even in the diluted mixtures (see Figs. A.7 and A.8). In H₂O, CO₂, and CO matrices, at low temperatures, this vibrational mode is present as a single feature while in CH₃OH-containing ices, it appears as a two-component feature, which is likely due to the formation of binary complexes with methanol (Han & Kim 1996).

A point worth stressing is that multi-component peaks, such as the ones showing up with an increase in temperature or when acetone is embedded in certain ice matrices, are usually associated with the vibrational modes of interacting molecules within the ice structure. In methanol-acetone ices, the formation of acetone dimers, trimers, and tetramers induces the appearance of specific absorption bands (Kollipost et al. 2015). When the sample is warmed, molecules are reoriented inside the ice structure, adopting the most energetically favourable configurations, that is, some arrangement of molecules are more likely than others. The intensity of the peaks associated with these dominant configurations at a specific temperature appears enhanced in the spectra. Unfortunately, contrary to the gas phase, little is known about the exact orientations of molecules in amorphous ices, an issue that is even more significant in the case of mixed ices. The data presented here reflect these processes and will prove helpful in identifying COMs in interstellar ices, however, the specific explanation of the spectroscopic behaviour is outside the scope of this work. We refer to Zhang et al. (1993), Han & Kim (1996), Kollipost et al. (2015), where the assignment of some of the multi-component infrared bands of acetone in different solid and liquid matrices has been investigated.

The shape and FWHM of the acetone bands in the H₂Ocontaining mixtures are very similar. In the CH₃COCH₃: H₂O:CO₂ and CH₃COCH₃:H₂O:CH₄ ices, the analyzed bands exhibit similar shifts, broadening, and splitting patterns. For example, the peak positions for the acetone bands in these mixtures usually vary less than 2 cm⁻¹ at 15 K for ices with the same acetone ratio (see Appendix B). In these H₂O-rich ices, the C=O stretch appears as a broad feature, shifted towards lower frequencies with respect to the pure acetone ice. The largest shifts towards lower frequencies are observed for the CH₃COCH₃:H₂O:CO₂ ices: 1699.9 cm^{-1} (5.88 μ m) and 1695.6 cm^{-1} (5.90 μ m) for the samples at 1:5 and 1:20 dilution ratios, respectively, and for the $CH_3COCH_3:H_2O:CH_4(1:10:10)$ ice, where this mode appears at 1697.5 cm^{-1} . In the CO matrix, this band exhibits the largest shifts towards higher wavenumbers, and is found at 1715.9 cm^{-1} (5.83 μ m) and 1717.3 cm^{-1} $(5.82 \,\mu\text{m})$ for the 1:5 and 1:20 ratios, respectively. By warming the ices to temperatures higher than 120 K, the carbonyl band mode sharpens and appears as a three-component feature in the CH₃OH-containing ices, similar to the pure acetone ice. In all these H₂O-containing ices, the peak sharpening and splitting are not observed, while in the CH₃COCH₃:CO and CH₃COCH₃:CO₂ ices, the matrix is mostly desorbed before 120 K is reached (see Fig. 3).

The data collected in this work show that the C=O stretch peak position of acetone varies significantly, depending on the ice matrix and temperature. In the studied 15 K ices, the acetone carbonyl stretching mode is between 1695 and 1717 cm⁻¹ (5.90–5.82 μ m). These peak shifts occur due to matrix effects, which add further diagnostic value, and should be taken into account when trying to assign peaks in astronomical spectra.

The CH₃ asymmetric deformation mode of acetone, around 1418 cm^{-1} (7.05 μ m), overlaps with the CH₃ bending modes of methanol (Bouilloud et al. 2015). All resulting spectra are shown in Figs. A.1 and A.2 (low dilution) and Figs. A.9 and A.10

Fig. 3. *Upper panel*: infrared spectra in the range of 1760–1630 cm⁻¹ (5.68–6.13 μ m) showing the C=O stretch band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:CH₃OH(1:5), CH₃COCH₃:CO(1:5), and CH₃COCH₃:CH₃OH(2:2.5:2.5). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the C=O stretch band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone C=O stretch band at 15 K in the various matrices divided by the band strength for pure acetone from Hudson et al. (2018).

(high dilution). At temperatures higher than 100 K, this band narrows, but still overlaps with the CH_3OH bands (Figs. A.2 and A.10). This makes the detection of this feature in astronomical data very unlikely when CH_3OH is present, especially at low temperatures when the bands are broader.

The CH₃ symmetric deformation mode of acetone, between 1380 and 1335 cm⁻¹ (7.25–7.49 μ m), however, can be relatively easily identified. The corresponding spectra are shown in Figs. A.3 and A.4 (1:5 mixtures) and Figs. A.11 and A.12 (1:20 mixtures). This vibrational mode appears as a two-component feature or as a feature with a shoulder in all spectra. For pure acetone ice and the CH₃OH-containing ices, the shoulder at lower wavenumbers (around 1352 cm⁻¹) narrows when the crystallization of acetone-methanol matrix takes place, revealing that it is in fact composed of two other components, which are around 1349.2 cm⁻¹ and 1361.3 cm⁻¹ (Figs. A.4 and A.12). For the pure ice, these features appear at 100 K, and for the CH₃OH-bearing ices (ratio 1:5) these features appear at temperatures higher than 120 K. For the CH₃COCH₃:CO:CH₃OH(1:10:10) ice, the splitting of the CH3 asymmetric deformation mode is also observed at high temperatures. In the CH₃COCH₃:CO₂ mixtures a weak feature, close to 1380 cm^{-1} (7.24 μ m), is observed. This feature disappears at temperatures higher than 90 K.

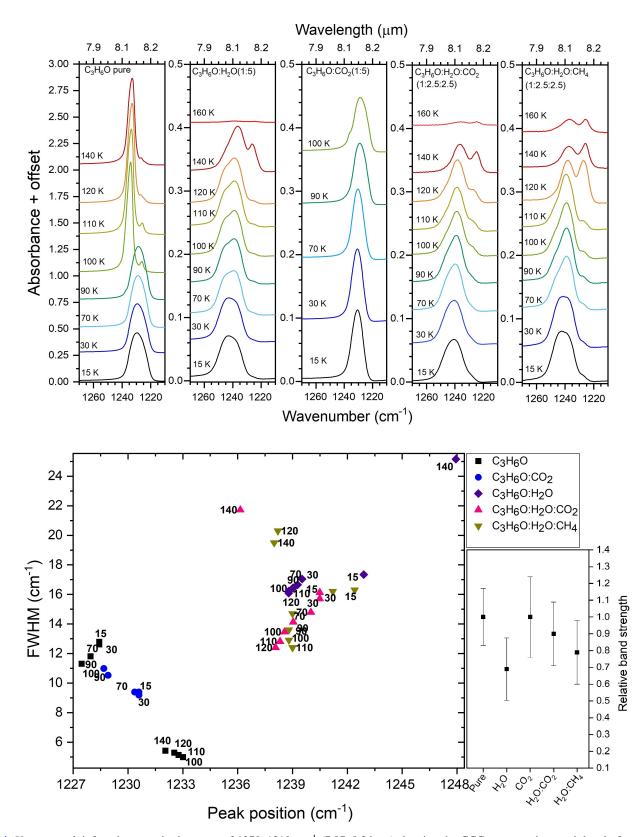
The CCC asymmetric stretch band of acetone, around 1230 cm^{-1} (8.1 μ m) holds much potential as a tracer of acetone in interstellar ices (see Figs. 4 and 5 for the spectra of 1:5 mixtures and Figs. A.13 and A.14 for the spectra of 1:20 mixtures). The 1230 cm⁻¹ band does not overlap with bands of the matrix components studied in this work. This feature is also one of the few bands of acetone that does not overlap with the infrared bands of acetaldehyde (CH₃CHO) (Terwisscha van Scheltinga et al. 2018), a possible precursor of solid acetone in interstellar ices (Garrod et al. 2008). In CO and CO₂ matrices this band appears at wavenumbers closer to the value of pure acetone (1228.4 cm⁻¹). In H₂O-containing ices, this feature is shifted to higher wavenumbers: between 1240 and 1245 cm⁻¹. In the CH₃OH-containing ices, this band appears as a two-component feature at 15 K, at 1226.0 cm⁻¹ and 1238.1 cm⁻¹ for the 1:5 mixture, and 1225.5 cm⁻¹ and 1238.1 cm⁻¹ for the 1:20 mixture.

The CCC asymmetric stretch band is composed of two components that become visible upon narrowing, when the ice is heated to temperatures higher than 100 K. In the pure acetone ice and in the methanol-containing mixtures, the component at higher wavenumber increases in strength with respect to the component at lower wavenumber, when warming the ices at temperatures higher than 100 K and 110 K, for the pure ice and the methanolcontaining mixtures, respectively. In water-rich matrices the CCC asymmetric stretch band of acetone appears as a broad feature. As the sample is heated, the peak at low wavenumbers increases in intensity compared to the peak at high wavenumbers, the opposite of what is observed for the methanol-containing mixtures. In this way, the difference in the intensity between the two peaks that compose the CCC asymmetric stretch band may add further insights about the composition of the ice. In ices where CH₃OH is an abundant component, the different intensities of the peaks composing the CCC asymmetric stretch band can be related to the ice temperature.

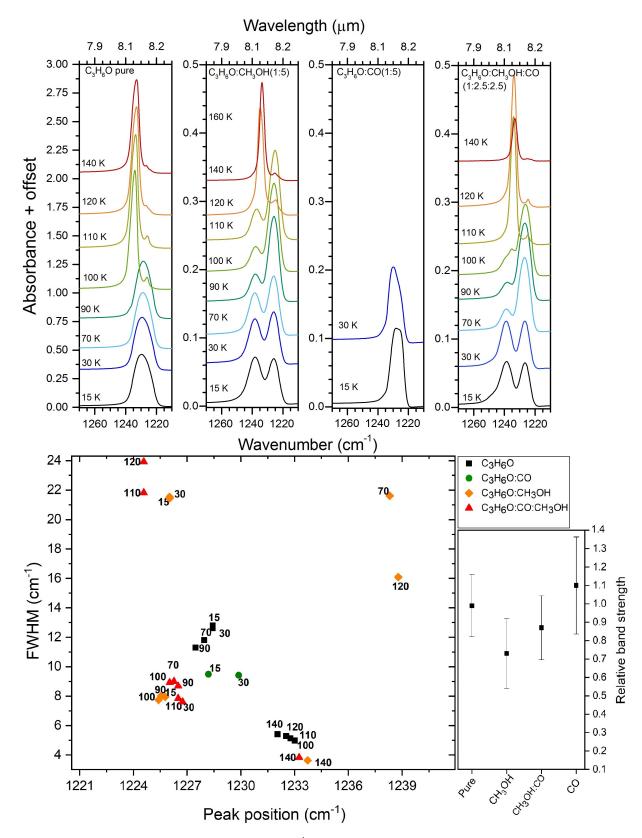
In pure acetone ices, the CO in-plane deformation mode gives rise to a band at 532.7 cm^{-1} (18.77 μ m). Figures A.5 and A.6 (1:5 mixtures) and Figs. A.15 and A.16 (1:20 mixtures) show the CO in-plane deformation band in the spectra recorded for different matrix environments. The position of this band is

highly affected by the presence of CO₂ and H₂O, and shifts to higher wavenumbers: 535.6 cm^{-1} (18.67 µm) and 547.0 cm^{-1} (18.28 µm) for CO₂ and H₂O, respectively. This effect is more pronounced in the 1:20 mixtures, where this mode is located at 536.1 cm^{-1} . This trend is probably related to the fact that acetone can interact as an electron donor in the presence of a Lewis acid, as observed by Cha et al. (1999). The profile of the CO deformation mode makes this band a good acetone tracer candidate when acetone is in a water-poor environment, since in the CH₃COCH₃:H₂O(1:20) ice, this band is hard to detect.

3.3. FWHM of acetone bands in ice mixtures


In all the H_2O -containing ice samples, the acetone peaks remain broad until 140 K, because the water matrix prohibits the acetone to crystallize. From this temperature onwards, a decrease in the intensity of the acetone peaks is observed, indicating that acetone starts to desorb. In the CH₃OH containing ices, the sharpening and splitting of the acetone bands are observed when reaching temperatures between 110 K and 120 K. The band sharpening and splitting may be due to a delayed crystallization of acetone. It is also possible that a thermal induced re-orientation of molecules creates a more organized environment for the acetone molecules and breaks some hydrogen bonds between methanol and acetone, making the peaks become sharper. The acetone desorption in these samples happens gradually in the range between 140 K and 150 K.

The CO and CO₂-containing ice mixtures were analyzed until their desorption temperature. When this temperature is reached, a decrease in the acetone peak intensity is observed along with matrix desorption. This decrease may be associated with co-desorption, making the quantitative analysis of the intensity of acetone peaks not ideal. However, other findings can be reported about the shape of the acetone peaks in the remaining ice that may be useful. In the CH₃COCH₃:CO ices, all the acetone features are sharper than in the pure acetone ice at 15 K (see Appendix B). From 20 K, the FWHM of the peaks starts to increase. The C=O stretch mode, for example, broadens from 8.5 cm^{-1} at 15K to 10.7 cm^{-1} at 30K in the CH₃COCH₃:CO(1:5) mixture and from 6.8 cm^{-1} at 15K to 9.7 cm^{-1} at 30 K in the CH₃COCH₃:CO(1:20) mixture. When heating the remaining ice to temperatures above 88K, the acetone bands become sharper, indicating the onset of acetone crystallization. The (1:5) mixture is the only sample for which characteristic crystalline acetone peaks are observed at temperatures lower than 90 K. In the (1:20) mixture, the crystallization of the remaining acetone ice is found around 97 K. In the $CH_3COCH_3:CO_2$ samples, the CO_2 desorption occurs between 90 K and 100 K. The presence of abundant CO₂ in the sample at temperatures between 90 K and 100 K makes that the crystalline features of acetone appear at temperatures between 101 K and 105 K.


4. Conclusions

The knowledge of the composition of ices outside of the Solar System may drastically change with the upcoming JWST observations. In order to identify features of frozen COMs in the astronomical data, laboratory infrared spectra are necessary for comparison. This work provides an extensive collection of infrared spectra of acetone (CH_3COCH_3) in astronomically relevant ice mixtures, at temperatures ranging from 10 K up to 160 K. The strongest acetone bands are characterized in terms of peak position, FWHM, and band intensity ratios. The

Fig. 4. *Upper panel:* infrared spectra in the range of $1270-1210 \text{ cm}^{-1}$ (7.87–8.26 µm) showing the CCC asymmetric stretch band of acetone in different ice mixtures, *from left to right:* pure CH₃COCH₃, CH₃COCH₃:H₂O(1:5), CH₃COCH₃:CO₂(1:5), CH₃COCH₃:H₂O:CO₂(1:2.5:2.5), and CH₃COCH₃:H₂O:CH₄(1:2.5:2.5). The spectra at different temperatures are offset for improved visualization. *Bottom left:* peak position vs. FWHM plot for the CCC asymmetric stretch band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right:* apparent band strength for the acetone CCC asymmetric stretch band at 15 K in the various matrices divided by the band strength for pure acetone from Hudson et al. (2018).

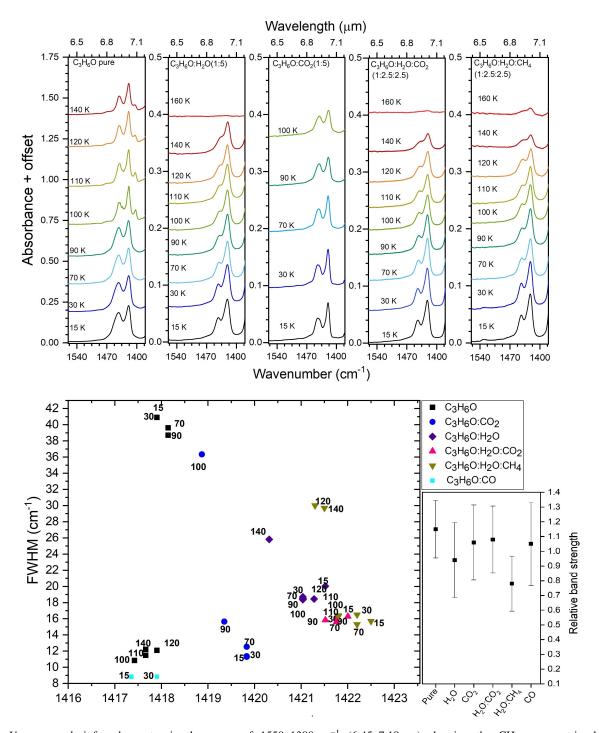
Fig. 5. *Upper panel*: infrared spectra in the range of $1270-1210 \text{ cm}^{-1}$ (7.87–8.26 µm) showing the CCC asymmetric stretch band of acetone in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:CH₃OH(1:5), CH₃COCH₃:CO(1:5), and CH₃COCH₃:CH₃OH:CO(1:2.5:2.5). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CCC asymmetric stretch band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CCC asymmetric stretch band at 15 K in the various matrices divided by the band strength for pure acetone from Hudson et al. (2018).

bands that are most promising for detection of solid acetone in astronomical data are the CCC asymmetric stretch band around 1228 cm^{-1} (8.14 μ m), the CH₃ symmetric deformation band around 1363 cm^{-1} (7.34 μ m) and the C=O stretch band, around 1710 cm^{-1} (5.85 μ m). Other conclusions are summarized below:

- 1. The acetone C=O stretch band is found in the range of $1715.9-1695.6 \text{ cm}^{-1}$ (5.83-5.90 μ m) for the analyzed acetone-containing ice mixtures. This mode shifts towards higher wavenumbers in the CO and CO₂ containing mixtures and to lower wavenumbers in the H₂O-rich mixtures.
- 2. The CH₃ symmetric stretch is found in the range of 1353-1373 cm⁻¹ (7.28-7.39 μ m). This band is present as a two component feature in H₂O, CO₂, CO, H₂O:CO₂ and $H_2O:CH_4$ ice matrices. The two components become less discernible in the CH₃OH containing ices.
- 3. The CCC asymmetric stretch is found in the range of 1224-1245 cm⁻¹ and shifts towards higher wavenumbers in the H₂O-containing samples. This band is composed of two components and the different intensities of the two components offer a tool for determining the temperature of interstellar ices and for further determining their composition.

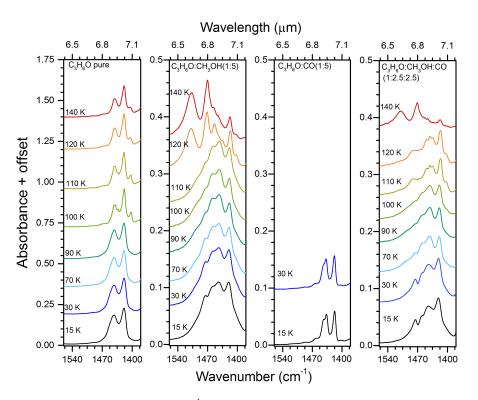
Acknowledgements. This work has been made possible through financial support by NOVA, the Netherlands Research School for Astronomy. We thank Dr. Melissa McClure and Dr. Adwin Boogert for many stimulating discussions.

References


- Berné, O., Mulas, G., & Joblin, C. 2013, A&A, 550, L4
- Boogert, A. A., Gerakines, P. A., & Whittet, D. C. 2015, ARA&A, 53, 541
- Bossa, J.-B., Isokoski, K., de Valois, M., & Linnartz, H. 2012, A&A, 545, A82
- Bouilloud, M., Fray, N., Bénilan, Y., et al. 2015, MNRAS, 451, 2145
- Cami, J., Bernard-Salas, J., Peeters, E., & Malek, S. E. 2010, Science, 329, 1180
- Campbell, E. K., Holz, M., Gerlich, D., & Maier, J. P. 2015, Nature, 523, 322 Cha, D. K., Kloss, A. A., Tikanen, A. C., & Fawcett, W. R. 1999, Phys. Chem. Chem. Phys., 1, 4785
- Combes, F., Gerin, M., Wootten, A., et al. 1987, A&A, 180, L13
- Cordiner, M., Linnartz, H., Cox, N., et al. 2019, ApJ, 875, L28
- Cuppen, H., Ioppolo, S., Romanzin, C., & Linnartz, H. 2010, Phys. Chem. Chem. Phys., 12, 12077

- Dawes, A., Mukerji, R. J., Davis, M. P., et al. 2007, J. Chem. Phys., 126, 244711
- Duarte, E. S., Domaracka, A., Boduch, P., et al. 2010, A&A, 512, A71
- Ehrenfreund, P., & Charnley, S. B. 2000, ARA&A, 38, 427
- Fedoseev, G., Cuppen, H. M., Ioppolo, S., Lamberts, T., & Linnartz, H. 2015, MNRAS, 448, 1288
- Friedel, D., & Snyder, L. 2008, ApJ, 672, 962
- Friedel, D. N., Snyder, L., Remijan, A. J., & Turner, B. 2005, ApJ, 632, L95
- Fuente, A., Cernicharo, J., Caselli, P., et al. 2014, A&A, 568, A65
- Garrod, R. T., Weaver, S. L. W., & Herbst, E. 2008, ApJ, 682, 283
- Gerakines, P., Schutte, W., & Ehrenfreund, P. 1996, A&A, 312, 289
- Gibb, E., Whittet, D., Boogert, A., & Tielens, A. 2004, ApJS, 151, 35 Han, S. W., & Kim, K. 1996, J. Phys. Chem., 100, 17124
- Herbst, E., & Van Dishoeck, E. F. 2009, ARA&A, 47, 427
- Herbst, E., Giles, K., & Smith, D. 1990, ApJ, 358, 468
- Hudson, R., & Moore, M. 1999, Icarus, 140, 451
- Hudson, R., & Moore, M. 2001, J. Geophys. Res.: Planets, 106, 33275 Hudson, R. L., Gerakines, P. A., & Ferrante, R. F. 2018, Spectrochim. Acta
- Part A: Mol. Biomol. Spectrosc., 193, 33
- Ioppolo, S., Van Boheemen, Y., Cuppen, H., van Dishoeck, E. F., & Linnartz, H. 2011, MNRAS, 413, 2281
- Isokoski, K., Bossa, J.-B., Triemstra, T., & Linnartz, H. 2014, Phys. Chem. Chem. Phys., 16, 3456
- Kaiser, R. I., Maity, S., & Jones, B. M. 2014, Phys. Chem. Chem. Phys., 16, 3399 Kollipost, F., Domanskaya, A. V., & Suhm, M. A. 2015, J. Phys. Chem. A, 119,
- 2225 Lee, J.-E., Lee, S., Baek, G., et al. 2019, Nat. Astron., 3, 314
- Linnartz, H., Ioppolo, S., & Fedoseev, G. 2015, Int. Rev. Phys. Chem., 34, 205
- Lykke, J. M., Coutens, A., Jørgensen, J. K., et al. 2017, A&A, 597, A53
- McGuire, B. A. 2018, ApJS, 239, 17
- Öberg, K. I. 2016, Chem. Rev., 116, 9631
- Öberg, K. I., Fraser, H. J., Boogert, A. A., et al. 2007, A&A, 462, 1187
- Öberg, K. I., Boogert, A. A., Pontoppidan, K. M., et al. 2008, ApJ, 678, 1032
- Öberg, K. I., Garrod, R. T., van Dishoeck, E. F., & Linnartz, H. 2009, A&A, 504, 891
- Öberg, K. I., Boogert, A. A., Pontoppidan, K. M., et al. 2011, ApJ, 740, 109
- Palumbo, M. E. 2005, Journal of Physics: Conference Series (IOP Publishing), 6,211
- Qasim, D., Fedoseev, G., Chuang, K.-J., et al. 2020, Nat. Astron., https:// doi.org/10.1038/s41550-020-1054-y
- Sellgren, K., Werner, M. W., Ingalls, J. G., et al. 2010, ApJ, 722, L54
- Snyder, L. E., Lovas, F. J., Mehringer, D. M., et al. 2002, ApJ, 578, 245
- Terwisscha van Scheltinga, J., Ligterink, N., Boogert, A., van Dishoeck, E., & Linnartz, H. 2018, A&A, 611, A35
- Watanabe, N., & Kouchi, A. 2002, ApJ, 571, L173
- Zhang, X. K., Lewars, E. G., March, R. E., & Parnis, J. M. 1993, J. Phys. Chem., 97, 4320
- Zou, L., & Weaver, S. L. W. 2017, ApJ, 849, 139

Appendix A: IR spectra and apparent band strengths


In this section, the infrared spectra of the selected vibrational modes of acetone (see Table 2) are given, for pure acetone and for acetone in different ice mixtures (upper panels). The peak position versus FWHM for the investigated bands for the differ-

ent ices is displayed in the bottom left panel of each figure. The corresponding values are listed in the tables in Appendix B. The relative apparent band strengths of these bands (in relation to the values for pure acetone ice at 10 K reported by Hudson et al. 2018) are displayed in the bottom right panel for the different mixtures studied here (Figs. A.1–A.16).

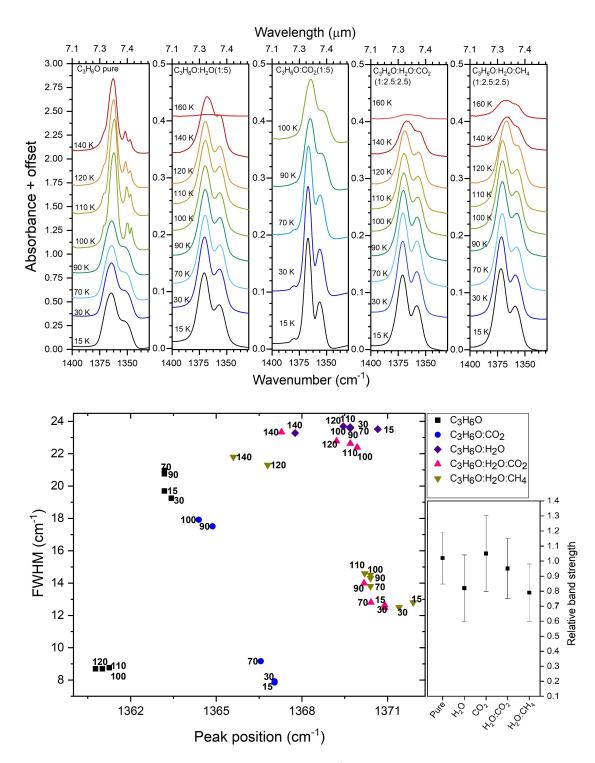
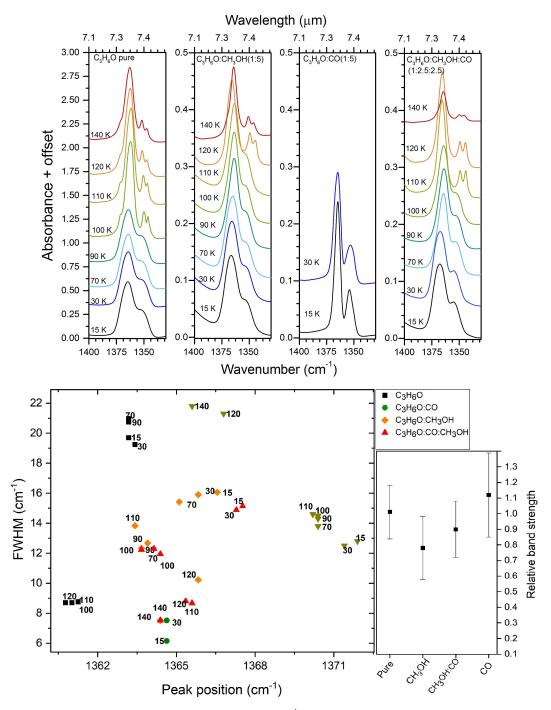
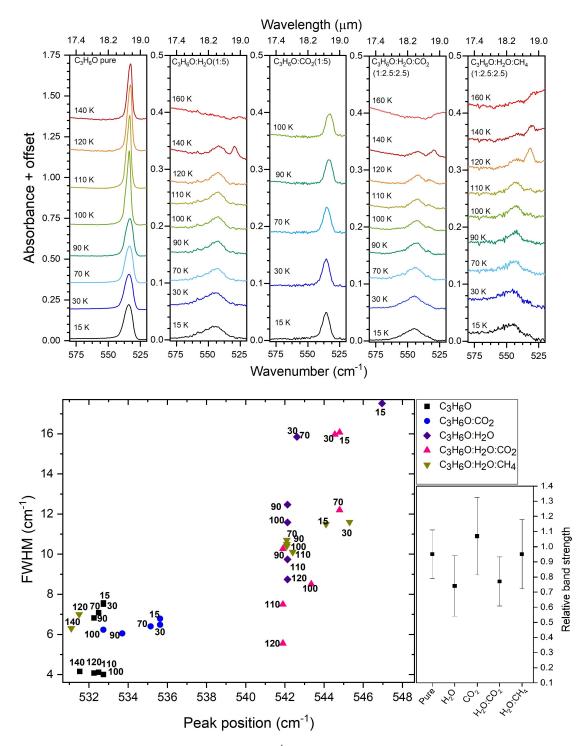
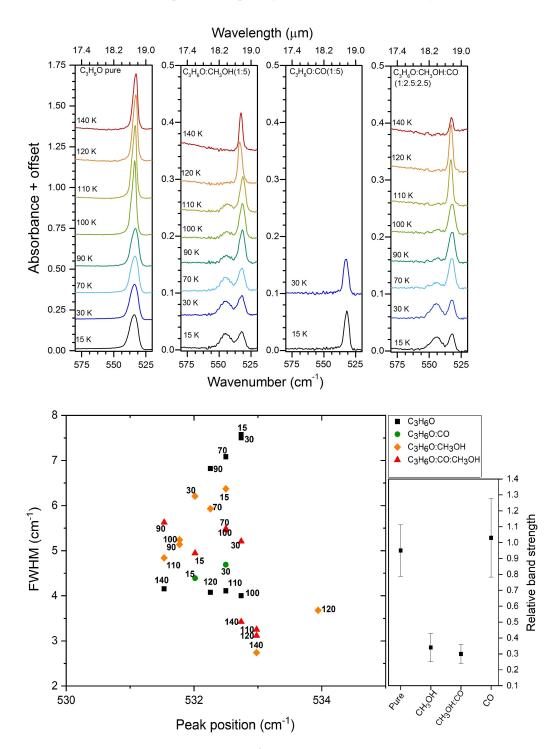


Fig. A.1. Upper panel: infrared spectra in the range of $1550-1390 \text{ cm}^{-1}$ (6.45–7.19 µm) showing the CH₃ asymmetric deformation band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:H₂O(1:5), CH₃COCH₃:CO₂(1:5), CH₃COCH₃:H₂O:CO₂(1:2.5:2.5), and CH₃COCH₃:H₂O:CH₄(1:2.5:2.5). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CH₃ asymmetric deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CH₃ asymmetric deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).


M. G. Rachid et al.: Infrared spectra of complex organic molecules in astronomically relevant ice mixtures


Fig. A.2. Infrared spectra in the range of $1550-1390 \text{ cm}^{-1}$ (6.45–7.19 µm) showing the CH₃ asymmetric deformation band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:CH₃OH(1:5), CH₃COCH₃:CO(1:5), and CH₃COCH₃:CH₃OH:CO(1:2.5:2.5). The spectra at different temperatures are offset for improved visualization. Since the FWHM of the CH₃ asymmetric deformation band was not measured in the methanol-containing mixtures (due to the overlap with the methanol CH₃ bending mode), the peak position vs. FWHM plot for this acetone feature in CO matrix is displayed with the data in Fig. A.1.


Fig. A.3. Upper panel: infrared spectra in the range of $1400-1300 \text{ cm}^{-1}$ (7.10–7.69 µm) showing the CH₃ symmetric deformation band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:H₂O(1:5), CH₃COCH₃:CO₂(1:5), CH₃COCH₃:H₂O:CO₂(1:2.5:2.5), and CH₃COCH₃:H₂O:CH₄(1:2.5:2.5). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CH₃ symmetric deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CH₃ symmetric deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

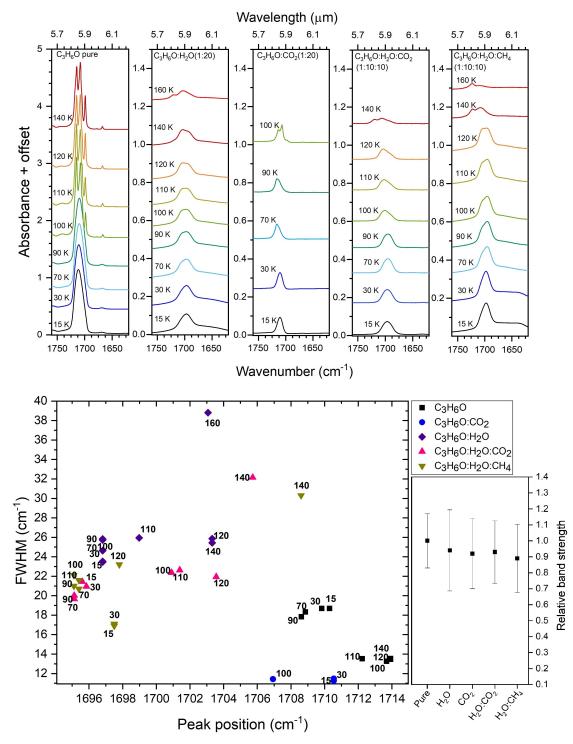

Fig. A.4. Upper panel: infrared spectra in the range of $1400-1300 \text{ cm}^{-1}$ (7.10–7.69 µm) showing the CH₃ symmetric deformation band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:CH₃OH(1:5), CH₃COCH₃:CO(1:5), and CH₃COCH₃:CH₃OH:CO(1:2.5:2.5). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CH₃ symmetric deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CH₃ symmetric deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

Fig. A.5. *Upper panel:* infrared spectra in the range of 520–580 cm⁻¹ (19.2–17.2 μ m) showing the CO in-plane deformation band of acetone in different ice mixtures, *from left to right:* pure CH₃COCH₃, CH₃COCH₃:H₂O(1:5), CH₃COCH₃:CO₂(1:5), CH₃COCH₃:H₂O:CO₂(1:2.5:2.5), and CH₃COCH₃:H₂O:CH₄(1:2.5:2.5). The spectra at different temperatures are offset for improved visualization. *Bottom left:* peak position vs. FWHM plot for the CO in-plane deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right:* apparent band strength for the acetone CO in-plane deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

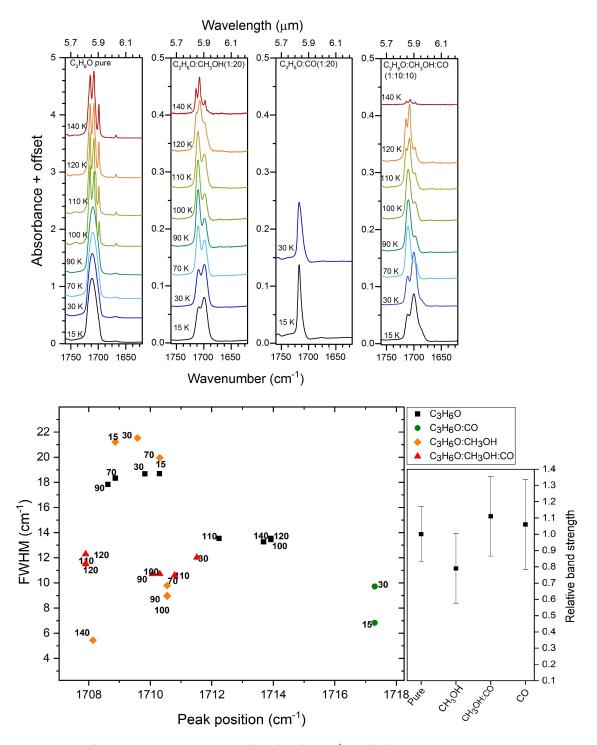


Fig. A.6. Upper panel: infrared spectra in the range of $520-580 \text{ cm}^{-1}$ (19.2–17.2 μ m) showing the CO in-plane deformation band of acetone in different ice mixtures, from left to right: pure CH₃COCH₃, CH₃COCH₃:CH₃OH(1:5), CH₃COCH₃:CO(1:5), and CH₃COCH₃:CH₃OH:CO(1:2.5:2.5). The spectra at different temperatures are offset for improved visualization. Bottom left: peak position vs. FWHM plot for the CO in-plane deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. Bottom right: apparent band strength for the acetone CO in-plane deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

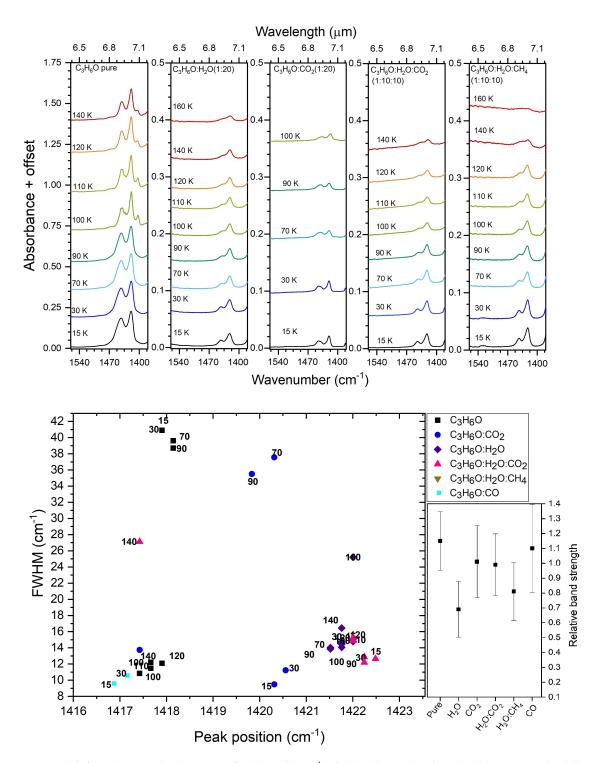


Fig. A.7. *Upper panel*: infrared spectra in the range of $1760-1630 \text{ cm}^{-1}$ (5.68–6.13 µm) showing the C=O stretch band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:H₂O(1:20), CH₃COCH₃:CO₂(1:20), CH₃COCH₃:H₂O:CO₂(1:10:10), and CH₃COCH₃:H₂O:CH₄(1:10:10). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the C=O stretch band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone C=O stretch band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

M. G. Rachid et al.: Infrared spectra of complex organic molecules in astronomically relevant ice mixtures

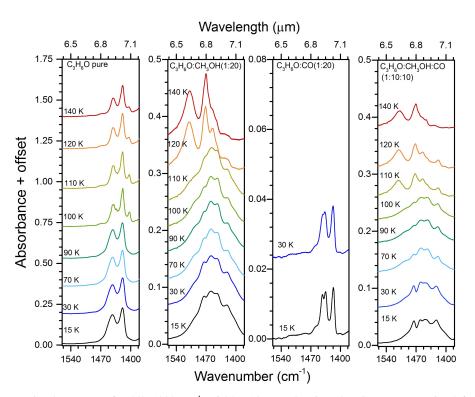


Fig. A.8. Upper panel: infrared spectra in the range of $1760-1630 \text{ cm}^{-1}$ (5.68–6.13 µm) showing the C=O stretch band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:CH₃OH(1:20), CH₃COCH₃:CO(1:20), and CH₃COCH₃:CH₃OH:CO(1:10:10). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the C=O stretch band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone C=O stretch band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

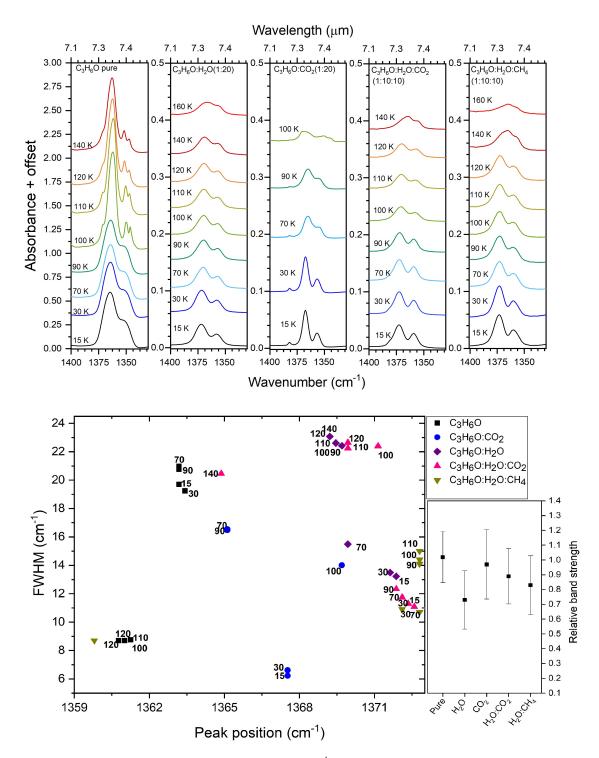
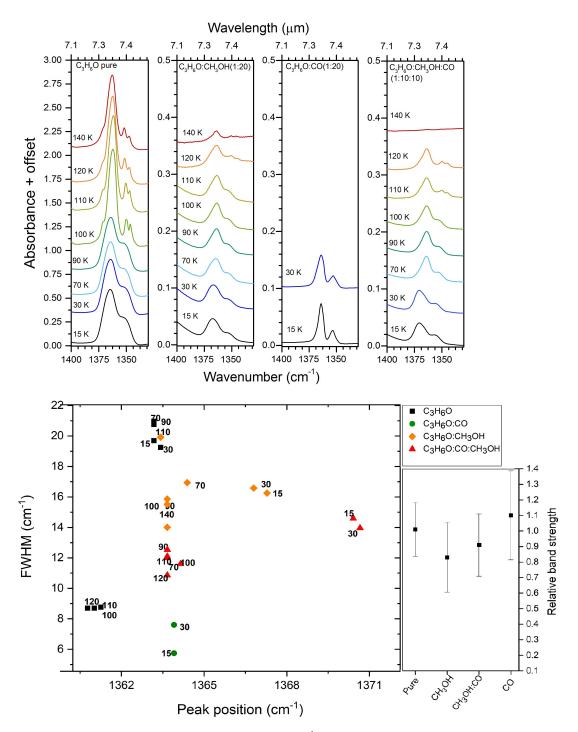


Fig. A.9. Upper panel: infrared spectra in the range of $1550-1390 \text{ cm}^{-1}$ (6.45–7.19 µm) showing the CH₃ asymmetric deformation band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:H₂O(1:20), CH₃COCH₃:CO₂(1:20), CH₃COCH₃:H₂O(C)(1:10:10), and CH₃COCH₃:H₂O(C)(1:10:10). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CH₃ asymmetric deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CH₃ asymmetric deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).


M. G. Rachid et al.: Infrared spectra of complex organic molecules in astronomically relevant ice mixtures

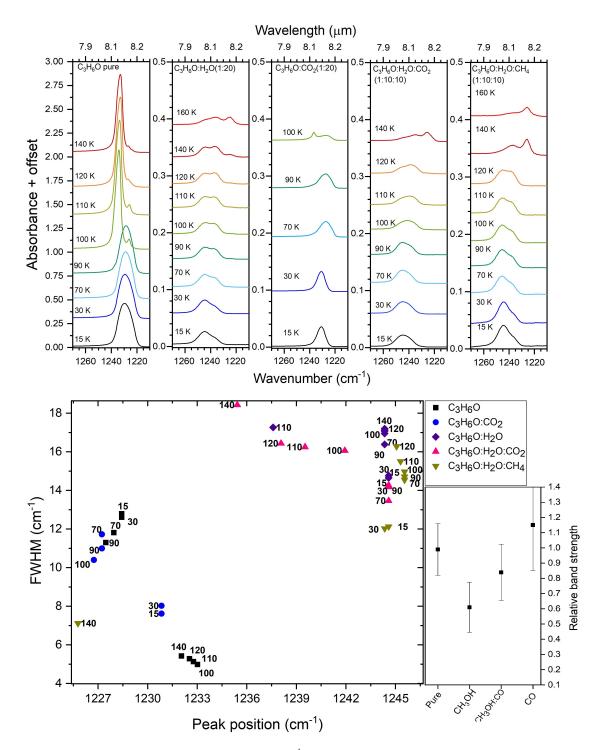

Fig. A.10. infrared spectra in the range of $1550-1390 \text{ cm}^{-1}$ (6.45–7.19 µm) showing the CH₃ asymmetric deformation band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:CH₃OH(1:20), CH₃COCH₃:CO(1:20), and CH₃COCH₃:CH₃OH:CO(1:10:10). The spectra at different temperatures are offset for improved visualization. Since the FWHM of the CH₃ asymmetric deformation band was not measured in the methanol-containing mixtures (due to the overlap with the methanol CH₃ bending mode), the peak position vs. FWHM plot for this acetone feature in CO matrix is displayed with the data in Fig. A.9.

Fig. A.11. Upper panel: infrared spectra in the range of $1400-1300 \text{ cm}^{-1}$ (7.10–7.69 µm) showing the CH₃ symmetric deformation band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:H₂O(1:20), CH₃COCH₃:CO₂(1:20), CH₃COCH₃:H₂O:CO₂(1:10:10), and CH₃COCH₃:H₂O:CH₄(1:10:10). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CH₃ symmetric deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CH₃ symmetric deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

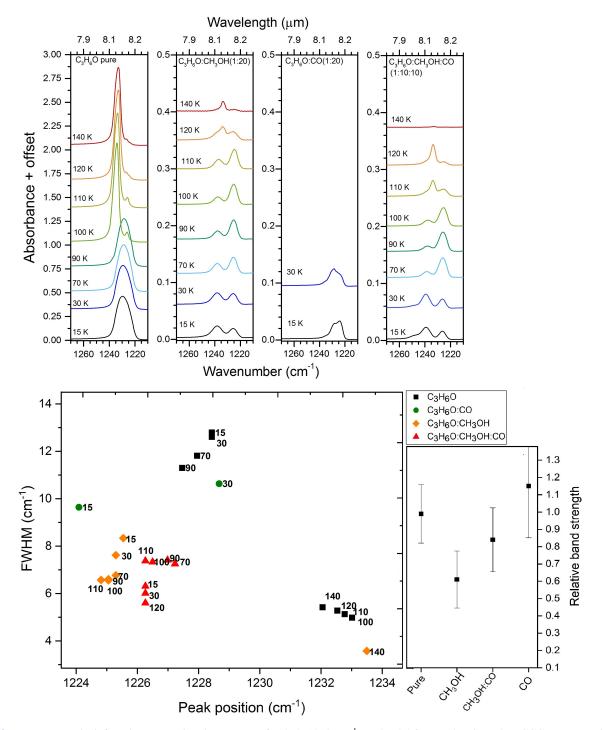


Fig. A.12. Upper panel: infrared spectra in the range of $1400-1300 \text{ cm}^{-1}$ (7.10–7.69 µm) showing the CH₃ symmetric deformation band of acetone embedded in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃; CH₃OH(1:20), CH₃COCH₃; CO(1:20), and CH₃COCH₃:CH₃OH:CO(1:10:10). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CH₃ symmetric deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CH₃ symmetric deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

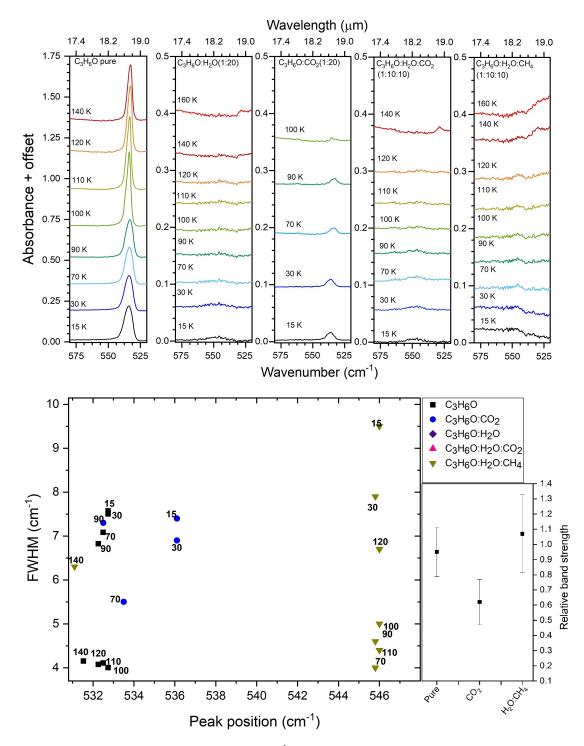


Fig. A.13. *Upper panel*: infrared spectra in the range of $1270-1210 \text{ cm}^{-1}$ (7.87–8.26 μ m) showing the CCC asymmetric stretch band of acetone in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:H₂O(1:20), CH₃COCH₃:CO₂(1:20), CH₃COCH₃:H₂O:CO₂(1:10:10), and CH₃COCH₃:H₂O:CH₄(1:10:10). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CCC asymmetric stretch band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CCC asymmetric stretch band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

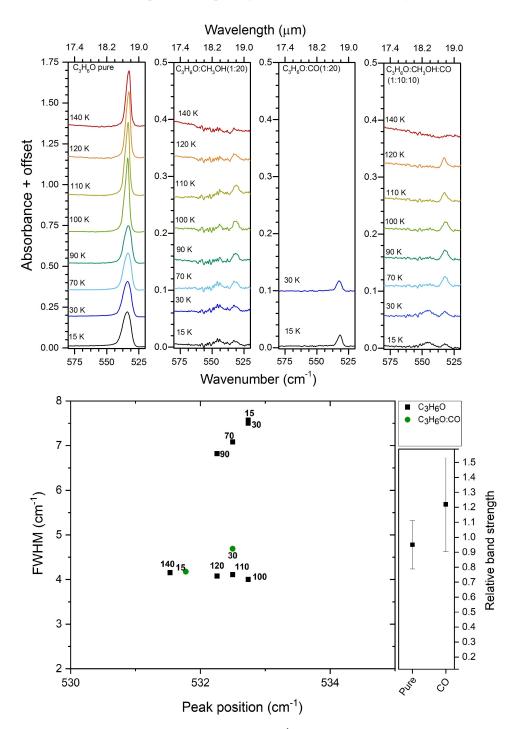

M. G. Rachid et al.: Infrared spectra of complex organic molecules in astronomically relevant ice mixtures

Fig. A.14. Upper panel: infrared spectra in the range of $1270-1210 \text{ cm}^{-1}$ (7.87–8.26 µm) showing the CCC asymmetric stretch band of acetone in different ice mixtures, from left to right: pure CH₃COCH₃, CH₃COCH₃:CH₃OH(1:20), CH₃COCH₃:CO(1:20), and CH₃COCH₃:CH₃OH:CO(1:10:10). The spectra at different temperatures are offset for improved visualization. Bottom left: peak position vs. FWHM plot for the CCC asymmetric stretch band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. Bottom right: apparent band strength for the acetone CCC asymmetric stretch band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

Fig. A.15. *Upper panel*: infrared spectra in the range of 520–580 cm⁻¹ (19.2–17.2 μ m) showing the CO in-plane deformation band of acetone in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:H₂O(1:20), CH₃COCH₃:CO₂(1:20), CH₃COCH₃:H₂O:CO₂(1:10:10), and CH₃COCH₃:H₂O:CH₄(1:10:10). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CO in-plane deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CO in-plane deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

Fig. A.16. *Upper panel*: infrared spectra in the range of $520-580 \text{ cm}^{-1}$ (19.2–17.2 µm) showing the CO in-plane deformation band of acetone in different ice mixtures, *from left to right*: pure CH₃COCH₃, CH₃COCH₃:CH₃OH(1:20), CH₃COCH₃:CO(1:20), and CH₃COCH₃:CH₃OH:CO(1:10:10). The spectra at different temperatures are offset for improved visualization. *Bottom left*: peak position vs. FWHM plot for the CO in-plane deformation band in different ice matrices, represented by the different colors, and for different temperatures, indicated by the numbers in the graph. *Bottom right*: apparent band strength for the acetone CO in-plane deformation band at 15 K in the various matrices with respect to the band strength for pure acetone from Hudson et al. (2018).

Appendix B: Ice band parameters

work and at different temperatures, ranging from 15 K up to the matrix desorption temperature (Tables B.1–B.10).

In this section, the peak position and the FWHM of the acetone bands discussed in the text and shown in Appendix A are presented in tables. The tables display the peak position for a given vibrational mode in the different ice matrices used in this An asterisk (*) denotes that the FWHM is the value derived for a blending of two or more peaks. The general uncertainty of the peak position is about 0.5 cm^{-1} for all the measurements and the typical error of the FWHM values amounts to 0.8 cm^{-1} .

Table B.1. Peak position and FWHM of the acetone CO-stretch mode for pure acetone and mixtures with acetone ratio 1:5 and for temperatures ranging from 15 K to 140 K. See also Figs. 2 and 3.

Mixture	Temperature	Peak p	osition	FW	VHM
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		1710.3	5.847	18.7	0.0640
CH ₃ COCH ₃ :CO		1715.9	5.828	8.5	0.0289
CH ₃ COCH ₃ :CO ₂		1710.8	5.845	12.9	0.0209
CH ₃ COCH ₃ :H ₂ O		1710.0	5.882	27.8	0.0965*
CH ₃ COCH ₃ :CH ₃ OH	15	1699.5	5.884	-	0.0905
CH3COCH3.CH3OH	15	1708.9	5.851	23.8	0.0819
CH ₃ COCH ₃ :H ₂ O:CO ₂		1699.9	5.882	23.8	0.0819
CH ₃ COCH ₃ :H ₂ O:CH ₄		1701.6	5.877	22.4	
CH ₃ COCH ₃ :CH ₃ OH:CO		1701.0	5.881		-
Сп3СОСп3.Сп3ОП.СО		1700.4	5.847	23.7	0.0815*
CH ₃ COCH ₃		1709.8	5.848	18.7	0.064
CH ₃ COCH ₃ :CO		1715.4	5.829	10.7	0.0364
CH ₃ COCH ₃ :CO ₂		1710.8	5.845	12.7	0.0433
CH ₃ COCH ₃ :H ₂ O		1701.1	5.878	27.7	0.0959
CH ₃ COCH ₃ :CH ₃ OH	30	1698.7	5.887		0.0757
engeoeng.engon	50	1709.0	5.851	23.3	0.080*
CH ₃ COCH ₃ :H ₂ O:CO ₂		1699.7	5.883	23.5	
					0.0759
CH ₃ COCH ₃ :H ₂ O:CH ₄		1701.4 1699.9	5.877	21.5	_
CH ₃ COCH ₃ :CH ₃ OH:CO		1710.6	5.882 5.846	23.1	_ 0.0794*
CH ₃ COCH ₃		1708.9	5.852	18.3	0.0628
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1710.8	5.845	12.8	0.0439
CH ₃ COCH ₃ :H ₂ O		1701.1	5.878	26.7	0.0439
CH ₃ COCH ₃ :CH ₃ OH	70	1698.5	5.887	_	0.072
engeoeng.engon	70	1709.6	5.849	22.5	0.0776*
CH ₃ COCH ₃ :H ₂ O:CO ₂		1699.5	5.884	20.5	0.0709*
$CH_3COCH_3:H_2O:CH_4$		1702.3	5.874	20.5	0.0707
CH ₃ COCH ₃ :CH ₃ OH:CO		1710.3	5.847	14.2	0.0486
CH ₃ COCH ₃		1708.6	5.853	17.8	0.0611
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1712.0	5.841	14.7	0.0503
CH ₃ COCH ₃ :H ₂ O		1701.6	5.877	26.0	0.0901
CH ₃ COCH ₃ :CH ₃ OH	90	1710.1	5.848	12.3	0.0422*
CH ₃ COCH ₃ :H ₂ O:CO ₂		1700.4	5.881	20.0	0.0692
CH ₃ COCH ₃ :H ₂ O:CH ₄		1702.8	5.873	20.4	-
CH ₃ COCH ₃ :CH ₃ OH:CO		1709.6	5.849	14.4	0.0493
CH ₃ COCH ₃		1697.5	5.891	_	_
		1706.7	5.859	_	_
		1713.9	5.835	13.5	0.0463*
CH ₃ COCH ₃ :CO		_	_	_	_
CH ₃ COCH ₃ :CO ₂		1712.2	5.840	15.5	0.0532
CH ₃ COCH ₃ :H ₂ O	100	1701.9	5.876	25.6	0.0888
CH ₃ COCH ₃ :CH ₃ OH	100	1710.1	5.848	12.3	0.0422
CH ₃ COCH ₃ :H ₂ O:CO ₂		1701.4	5.877	20.0	0.0691
CH ₃ COCH ₃ :H ₂ O:CH ₄		1703.3	5.871	19.8	
CH ₃ COCH ₃ :CH ₃ OH:CO		1709.3	5.850	14.1	0.0482
CH ₃ COCH ₃		1697.8	5.890		-
		1706.9	5.858	_	_
		1713.9	5.835	13.5	0.0463*
CH ₃ COCH ₃ :CO		_	-	_	-
CH ₃ COCH ₃ :CO ₂		_	_	_	_
CH ₃ COCH ₃ :H ₂ O	110	1702.1	5.875	25.0	0.0868
CH ₃ COCH ₃ :CH ₃ OH		1710.1	5.847	13.0	0.0442
CH ₃ COCH ₃ :H ₂ O:CO ₂		1701.6	5.877	20.0	0.0689

Table B.1. continued.

Mixture	Temperature	Peak p	osition	FV	FWHM	
	(K)	(cm ⁻¹)	(µm)	(cm ⁻¹)	(µm)	
CH ₃ COCH ₃ :H ₂ O:CH ₄		1703.3	5.871	19.4	_	
CH ₃ COCH ₃ :CH ₃ OH:CO		1706.9	5.858	11.3	0.0387	
		1714.2	5.834	_	-	
CH ₃ COCH ₃		1698.0	5.889	_	_	
		1706.9	5.858	_	_	
		1713.9	5.835	13.5	0.0460*	
CH ₃ COCH ₃ :CO		_	_	-	_	
CH ₃ COCH ₃ :CO ₂		_	_	_	_	
CH ₃ COCH ₃ :H ₂ O	120	1702.1	5.875	24.3	0.0843*	
CH ₃ COCH ₃ :CH ₃ OH		1706.0	5.862	12.8	0.0439*	
		1713.7	5.835	5.7	0.0196	
CH ₃ COCH ₃ :H ₂ O:CO ₂		1702.1	5.875	20.2	0.0698	
CH ₃ COCH ₃ :H ₂ O:CH ₄		1709.8	5.849	22.8	_	
CH ₃ COCH ₃ :CH ₃ OH:CO		1706.9	5.859	_	_	
		1714.2	5.834	11.2	0.0384	
CH ₃ COCH ₃		1698.0	5.889	_	_	
		1706.9	5.858	-	_	
		1713.7	5.835	13.3	0.0453*	
CH ₃ COCH ₃ :CO		_	_	_	_	
CH ₃ COCH ₃ :CO ₂		_	_	-	_	
CH ₃ COCH ₃ :H ₂ O		1703.8	5.869	21.7	0.0749*	
CH ₃ COCH ₃ :CH ₃ OH	140	1698.0	5.889	-	_	
		1707.4	5.857	5.9	0.0202*	
		1714.2	5.834	11.8	0.0402*	
CH ₃ COCH ₃ :H ₂ O:CO ₂		1703.6	5.870	21.1	0.0724	
CH ₃ COCH ₃ :H ₂ O:CH ₄		1707.4	5.857	23.5	_	
CH ₃ COCH ₃ :CH ₃ OH:CO		1707.9	5.855	-	_	
		1714.2	5.834	5.7	0.0196	

Table B.2. Peak position and FWHM of the acetone CH_3 asymmetric deformation mode for pure acetone and mixtures with acetone ratio 1:5 and for temperatures ranging from 15 K to 140 K. See also Figs. A.1 and A.2.

Mixture	Temperature	Peak p	osition	FV	VHM
	(K)	(cm ⁻¹)	(µm)	(cm ⁻¹)	(µm)
CH ₃ COCH ₃		1417.9	7.0527	40.9	0.199*
5 5		1441.0	6.9394	_	_
CH ₃ COCH ₃ :CO		1417.4	7.0551	8.7	0.0434
		1436.7	6.9604	15.1	0.0776*
CH ₃ COCH ₃ :CO ₂	15	1419.8	7.0431	11.4	0.0563
		1444.2	6.9243	_	_
CH ₃ COCH ₃ :H ₂ O		1421.5	7.0347	20.0	0.100*
		1442.7	6.9313	_	_
CH ₃ COCH ₃ :H ₂ O:CO ₂		1422.0	7.0323	16.3	0.0804
		1444.4	6.9232	_	_
CH ₃ COCH ₃ :H ₂ O:CH ₄		1422.5	7.0299	15.7	
		1443.0	6.930	14.2	
CH ₃ COCH ₃		1417.9	7.0527	40.9	0.199*
		1441.3	6.9382	_	_
CH ₃ COCH ₃ :CO		1417.9	7.0527	8.7	0.0433
		1437.7	6.9557	14.2	0.0740
CH ₃ COCH ₃ :CO ₂	30	1419.8	7.0431	11.3	0.0559
		1443.9	6.9255	-	-
CH ₃ COCH ₃ :H ₂ O		1421.0	7.0371	18.7	0.0923
		1441.3	6.9382	-	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		1421.8	7.0335	16.1	0.0792*
		1444.2	6.9243	_	_
CH ₃ COCH ₃ :H ₂ O:CH ₄		1422.2	7.0314	15.3	
		1442.7	6.9315	14.3	
CH ₃ COCH ₃		1418.1	7.0515	39.6	0.193*
		1441.0	6.9394	-	_
CH ₃ COCH ₃ :CO		-	-	-	_

Table B.2. continued.

Mixture	Temperature	Peak p	osition	FV	VHM
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃ :CO ₂		1419.8	7.0431	12.5	0.0621
	70	1441.8	6.9359	-	-
CH ₃ COCH ₃ :H ₂ O	70	1421.0 1441.3	7.0371 6.9382	18.7	0.0923
CH ₃ COCH ₃ :H ₂ O:CO ₂		1421.8	7.0335	15.6	0.0770*
- 55-22		1442.3	6.9336	_	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		1422.2	7.0314	16.5	
		1442.5	6.9324	14.3	0.100*
CH ₃ COCH ₃		1418.1 1440.8	7.0515 6.9406	38.7	0.189*
CH ₃ COCH ₃ :CO		-	-	_	_
CH ₃ COCH ₃ :CO ₂		1419.4	7.0455	15.6	0.0774
	00	1440.6	6.9417	-	-
CH ₃ COCH ₃ :H ₂ O	90	1421.0 1439.5	7.0371 6.9469	18.5	0.0911
CH ₃ COCH ₃ :H ₂ O:CO ₂		1421.5	7.0347	15.8	0.0781*
- 55-22		1442.0	6.9348	_	_
CH ₃ COCH ₃ :H ₂ O:CH ₄		1421.8	7.0333	16.3	
		1441.3	6.9381	14.4	
CH ₃ COCH ₃		1401.8 1417.4	7.1339 7.0551	- 10.8	0.0538
		1438.4	6.9522	-	- 0.0558
CH ₃ COCH ₃ :CO		_	_	_	-
CH ₃ COCH ₃ :CO ₂	100	1418.9	7.0479	36.3	0.177*
		$1440.1 \\ 1421.0$	6.9440 7.0371	- 18.4	0.0906
CH ₃ COCH ₃ :H ₂ O		1421.0	6.9486	-	0.0900
CH ₃ COCH ₃ :H ₂ O:CO ₂		1420.8	7.0383	_	_
		1440.1	6.9440	17.2	0.0849*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1421.8 1441.3	7.0333 6.9382	16.4 14.2	
		1441.3	7.1315	-	
CH ₃ COCH ₃		1402.2	7.0539	11.5	0.0569
		1439.0	6.9495	_	-
CH ₃ COCH ₃ :CO		-	-	-	—
CH ₃ COCH ₃ :CO ₂ CH ₃ COCH ₃ :H ₂ O	110	- 1421.3	7.0359	- 18.5	0.0910
CH3COCH3.H2O	110	1421.5	6.9445	-	0.0910
CH ₃ COCH ₃ :H ₂ O:CO ₂		1420.8	7.0383	_	-
au ao au 11 o au		1440.1	6.9440	18.8	0.0925*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1421.8 1441.3	7.0333 6.9382	16.4 14.4	
CH ₃ COCH ₃		1402.5	7.1302		
CH3COCH3		1402.5	7.0527	- 12.1	0.0599
		1438.6	6.9510	_	-
CH ₃ COCH ₃ :CO	100	-	-	-	-
CH ₃ COCH ₃ :CO ₂ CH ₃ COCH ₃ :H ₂ O	120	1421.0	7.0371	18.5	0.0913
CH3COCH3.1120		1439.5	6.9466	-	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		1420.6	7.0395	_	-
au ao au 11 o au		1439.8	6.9452	19.7	0.0971*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1421.3	7.0358	30.0	
CH ₃ COCH ₃		1439.6	6.9463 7.1180	18.0	
		1404.9	7.0539	12.2	0.0607
		1439.8	6.9452	-	-
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂	140	-	-	-	-
CH ₃ COCH ₃ :H ₂ O CH ₃ COCH ₃ :H ₂ O:CO ₂		1420.3 1420.3	7.0407 7.0407	25.8	0.127
		1431.2	6.9873	29.4	0.144*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1421.5	7.0348	29.7	

Table B.3. Peak position and FWHM of the acetone CH ₃ symmetric deformation mode for pure acetone and mixtures with acetone ratio 1:5 and
for temperatures ranging from 15 K to 140 K. See also Figs. A.3 and A.4

Mixture	Temperature	Peak p	osition	<i>FW</i>	VHM
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		1363.4	7.3345	19.2	0.0640
CH ₃ COCH ₃ :CO		1354.0	7.3854	7.7	0.0420
		1364.6	7.3280	6.2	0.0330
CH ₃ COCH ₃ :CO ₂		1356.4	7.3723	-	-
		1367.0	7.3151	7.8	0.0420
CH ₃ COCH ₃ :H ₂ O	15	1356.9	7.3696		-
		1370.7	7.2958	23.5	0.127*
CH ₃ COCH ₃ :CH ₃ OH		1366.6 1358.1	7.3176 7.3631	16.1	0.0861
CH ₃ COCH ₃ :H ₂ O:CO ₂		1338.1	7.3031 7.2945	12.6	0.0640
CH ₃ COCH ₃ :H ₂ O:CH ₄		1358.8	7.3594	10.6	0.0040
en3coen3.1120.en4		1371.9	7.2892	12.8	
CH ₃ COCH ₃ :CH ₃ OH:CO		1355.2	7.3788	-	_
engeoengeengeenee		1367.5	7.3125	15.1	0.0810
CH ₃ COCH ₃		1363.2	7.3358	19.7	0.106
CH ₃ COCH ₃ :CO		1353.1	7.3907	_	-
		1364.6	7.3280	7.5	0.0404
CH ₃ COCH ₃ :CO ₂		1356.2	7.3736	_	-
		1367.0	7.3151	7.9	0.0424
CH ₃ COCH ₃ :H ₂ O	30	1356.4	7.3723	_	-
		1369.7	7.3009	23.6	0.127*
CH ₃ COCH ₃ :CH ₃ OH		1365.8	7.3215	15.9	0.0853
CH ₃ COCH ₃ :H ₂ O:CO ₂		1358.1	7.3631	-	-
		1370.9	7.2945	12.5	0.0664
CH ₃ COCH ₃ :H ₂ O:CH ₄		1358.8	7.3594	10.6	
		1371.4	7.2918	12.5	
CH ₃ COCH ₃ :CH ₃ OH:CO		1355.0	7.3801	-	-
		1367.3	7.3138	14.9	0.0796
CH ₃ COCH ₃		1363.2	7.3358	20.8	0.112
CH ₃ COCH ₃ :CO		-	-	-	_
CH ₃ COCH ₃ :CO ₂		1356.0	7.3749	-	-
	70	1366.6 1356.4	7.3176 7.3723	9.2	0.0491
CH ₃ COCH ₃ :H ₂ O	70	1350.4	7.3009	23.6	0.127*
CH3COCH3:CH3OH		1365.1	7.3254	15.4	0.0827
$CH_3COCH_3:H_2O:CO_2$		1357.9	7.3644	-	0.0027
0113000113.1120.002		1370.4	7.2970	12.8	0.0682
CH ₃ COCH ₃ :H ₂ O:CH ₄		1357.4	7.367	10.4	0.0002
		1370.4	7.2971	13.8	
CH ₃ COCH ₃ :CH ₃ OH:CO		1353.8	7.3867	_	_
5 5 5		1364.4	7.3293	12.0	0.0642
CH ₃ COCH ₃		1363.2	7.3358	21.0	0.113
CH ₃ COCH ₃ :CO		_	_	_	_
CH ₃ COCH ₃ :CO ₂		1364.9	7.3267	17.5	0.0944*
CH ₃ COCH ₃ :H ₂ O		1356.4	7.3723	-	_
		1369.7	7.3009	23.6	0.127*
CH ₃ COCH ₃ :CH ₃ OH	90	1363.9	7.3319	12.7	0.0681
CH ₃ COCH ₃ :H ₂ O:CO ₂		1357.6	7.3657	-	-
		1370.2	7.2983	14.0	0.0746
CH ₃ COCH ₃ :H ₂ O:CH ₄		1357.4	7.367	10.4	
		1370.4	7.2971	14.3	
CH ₃ COCH ₃ :CH ₃ OH:CO		1353.7	7.3869	-	-
		1363.7	7.3332	12.2	0.0657
CH ₃ COCH ₃		1345.3	7.4330	7.7	0.0424*
		1349.2	7.4118	-	-
		1361.3	7.3462	8.8	0.0472
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1364.4	7.3293	17.9	0.0966*
CH ₃ COCH ₃ :H ₂ O		1356.4	7.3723	-	-
	100	1369.7	7.3009	23.6	0.127*
CH ₃ COCH ₃ :CH ₃ OH	100	1363.7	7.3332	12.3	0.0662
CH ₃ COCH ₃ :H ₂ O:CO ₂		1356.9	7.3696	-	-
		1369.9	7.2996	22.4	0.120*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1357.4	7.367	10.3	
СП.СОСП.СП.ОН.СО		1370.4 1364.1	7.2971 7.3306	14.5 12.3	0.0441
CH ₃ COCH ₃ :CH ₃ OH:CO		1304.1	1.3300	12.3	0.0661

Table B.3. continued.

Mixture	Temperature	Peak p	osition	FW	VHM
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		1345.6	7.4317	7.5	0.0413*
- 5 5		1349.2	7.4118	_	_
		1361.0	7.3475	8.7	0.0471
CH ₃ COCH ₃ :CO		_	_	_	_
CH ₃ COCH ₃ :CO ₂		_	_	_	_
CH ₃ COCH ₃ :H ₂ O	110	1356.4	7.3723	_	_
011300011311120	110	1369.7	7.3009	23.6	0.127*
CH3COCH3:CH3OH		1363.4	7.3345	13.8	0.0745
CH ₃ COCH ₃ :H ₂ O:CO ₂		1356.7	7.3710	-	-
0113000113.1120.002		1369.7	7.3009	22.6	0.1215*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1357.4	7.367	10.2	0.1215
CH3COCH3.H2O.CH4		1370.2	7.2982	14.6	
CH3COCH3:CH3OH:CO		1370.2	7.4397	-	
CH3COCH3.CH3OH.CO		1349.0	7.4131	_	—
					- 0.047
		1365.6	7.3228	8.7	0.047
CH ₃ COCH ₃		1346.1	7.4290	7.3	0.0404*
		1349.4	7.4105	-	-
		1360.8	7.3488	8.7	0.0470
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		-	-	-	_
CH ₃ COCH ₃ :H ₂ O		1356.4	7.3723		_
		1369.5	7.3022	23.7	0.127*
CH ₃ COCH ₃ :CH ₃ OH	120	1344.4	7.4384	_	_
5 5 5		1349.2	7.4118	_	_
		1365.8	7.3215	10.2	0.0548
CH ₃ COCH ₃ :H ₂ O:CO ₂		1356.7	7.3710	_	_
- 5 5- 22		1369.2	7.3035	22.8	0.122*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1366.8	7.3163	21.3	
CH ₃ COCH ₃ :CH ₃ OH:CO		1344.1	7.4397	_	_
engeoengeengeengeen		1349.2	7.4118	_	_
		1365.4	7.3241	8.8	0.0472
					0.0472
CH ₃ COCH ₃		1346.6	7.4264	-	—
		1350.9	7.4025	-	-
		1361.7	7.3436	9.3	0.0499
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		_	_	-	-
CH ₃ COCH ₃ :H ₂ O		1356.4	7.3723	-	—
		1367.8	7.3112	23.3	0.125*
CH ₃ COCH ₃ :CH ₃ OH	140	1346.1	7.4290	-	-
		1350.9	7.4025	-	-
		1364.4	7.3293	7.5	0.0404
CH ₃ COCH ₃ :H ₂ O:CO ₂		1356.7	7.3710	_	_
		1367.3	7.3138	23.3	0.125*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1365.6	7.3228	21.8	
CH ₃ COCH ₃ :CH ₃ OH:CO		1345.6	7.4317	_	_
		1349.9	7.4078	_	_
		1364.4	7.3293	7.5	0.0404

Table B.4. Peak position and FWHM of the acetone CCC asymmetric deformation mode for pure acetone and mixtures with acetone ratio 1:5 and for temperatures ranging from 15 K to 140 K. See also Figs. 4. and 5.

Mixture	Temperature	Peak p	osition	FW	ΉM
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		1228.4	8.1404	12.8	0.0640
CH ₃ COCH ₃ :CO		1228.2	8.1420	9.5	0.0630
CH ₃ COCH ₃ :CO ₂		1230.6	8.1261	9.4	0.0620
CH ₃ COCH ₃ :H ₂ O		1242.9	8.0457	17.3	0.112
CH ₃ COCH ₃ :CH ₃ OH	15	1226.0	8.1565	21.5	0.142*
		1238.1	8.0770	-	_
CH ₃ COCH ₃ :H ₂ O:CO ₂		1240.5	8.0614	16.1	0.105
CH ₃ COCH ₃ :H ₂ O:CH ₄		1242.4	8.0489	16.3	
CH ₃ COCH ₃ :CH ₃ OH:CO		1226.5	8.1532	7.8	0.052
		1238.6	8.0739	10.2	0.0662

Table B.4. continued.

Mixture	Temperature	Peak po	sition	FW	'HM
	(K)	(cm ⁻¹)	(µm)	(cm^{-1})	(µm)
3COCH ₃		1228.4	8.1404	12.6	0.0836
CH ₃ COCH ₃ :CO		33 1229.9	8.1309	9.4	0.0624
CH ₃ COCH ₃ :CO ₂		1230.6	8.1261	9.2	0.0606
CH ₃ COCH ₃ :H ₂ O		1239.5	8.0676	17.0	0.110
CH ₃ COCH ₃ :CH ₃ OH	30	1226.0	8.1565	21.4	0.141*
		1238.3	8.0755	_	_
CH ₃ COCH ₃ :H ₂ O:CO ₂		1240.5	8.0614	15.7	0.102
CH ₃ COCH ₃ :H ₂ O:CH ₄		1241.2	8.0567	16.2	0.0506
CH ₃ COCH ₃ :CH ₃ OH:CO		1226.7	8.1516	7.6	0.0506
		1238.8	8.0723	9.1	0.0594
CH ₃ COCH ₃ CH ₃ COCH ₃ :CO		1228.0	8.1436	11.8	0.0784
CH ₃ COCH ₃ :CO ₂		1230.4	8.1277	9.4	0.0620
CH ₃ COCH ₃ :H ₂ O		1239.5	8.0676	17.0	0.110*
CH ₃ COCH ₃ :CH ₃ OH	70	1226.0	8.1565	-	-
		1238.3	8.0755	21.6	0.142
CH ₃ COCH ₃ :H ₂ O:CO ₂		1240.0	8.0645	14.8	0.0960
CH ₃ COCH ₃ :H ₂ O:CH ₄		1239.0	8.071	14.7	
CH ₃ COCH ₃ :CH ₃ OH:CO		1226.5	8.1532	8.7	0.0577
5 5 5		1238.6	8.0739		-
CH ₃ COCH ₃		1227.5	8.1468	11.3	0.0750
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1228.9	8.1373	10.5	0.0697
CH ₃ COCH ₃ :H ₂ O	00	1239.3	8.0692	16.7	0.108
CH ₃ COCH ₃ :CH ₃ OH	90	1225.8	8.1581	7.9	0.0528
		1237.8	8.0786	-	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		1239.0	8.0708	14.1	0.0918
CH ₃ COCH ₃ :H ₂ O:CH ₄		1238.8	8.0723	13.6	0.0509
CH ₃ COCH ₃ :CH ₃ OH:CO		1226.3 1237.8	8.1548 8.0786	9.0 -	0.0598
CH ₃ COCH ₃		1233.0	8.1102	5.0	0.0327
CH ₃ COCH ₃ :CO		_	-	_	_
CH ₃ COCH ₃ :CO ₂		1228.7	8.1389	11.0	0.0728
CH ₃ COCH ₃ :H ₂ O	100	1239.0	8.0708	16.5	0.107
CH ₃ COCH ₃ :CH ₃ OH	100	1225.5	8.1597	8.0	0.0532
		1237.6	8.0802	-	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		1238.6	8.0739	13.5	0.0876
CH ₃ COCH ₃ :H ₂ O:CH ₄ CH ₃ COCH ₃ :CH ₃ OH:CO		1238.8 1226.0	8.0723 8.1565	12.9 8.9	0.0593
CH3COCH3.CH3OH.CO		1235.2	8.0960	-	0.0393
					-
CH ₃ COCH ₃		1232.8	8.1118	5.1	0.0337
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂ CH ₃ COCH ₃ :H ₂ O		1238.8	8.0723	16.2	0.105
CH ₃ COCH ₃ :CH ₃ OH	110	1225.4	8.0725	16.2 7.7	0.0516
CH3COCH3.CH3OH	110	1225.4	8.0833	_	0.0510
CH ₃ COCH ₃ :H ₂ O:CO ₂		1238.3	8.0755	12.8	0.0835
CH ₃ COCH ₃ :H ₂ O:CH ₄		1239.0	8.071	12.0	0.0055
CH ₃ COCH ₃ :CH ₃ OH:CO		1224.6	8.1661	21.8	0.143
CH ₃ COCH ₃		1232.5	8.1134	5.3	0.0347
CH ₃ COCH ₃ :CO		_	_	_	_
CH ₃ COCH ₃ :CO ₂		_	_	_	-
CH ₃ COCH ₃ :H ₂ O		1238.8	8.0723	16.1	0.104
CH ₃ COCH ₃ :CH ₃ OH	120	1224.6	8.1661	_	_
		1234.9	8.0975	4.5	0.0294
CH ₃ COCH ₃ :H ₂ O:CO ₂		1238.1	8.0770	12.4	0.0808
CH ₃ COCH ₃ :H ₂ O:CH ₄		1238.2	8.0762	20.35	
CH ₃ COCH ₃ :CH ₃ OH:CO		1224.6	8.1661	23.9	0.157
CH ₃ COCH ₃		1232.0	8.1166	5.4	0.0357
CH ₃ COCH ₃ :CO CH ₃ COCH ₃ :CO ₂		_	_	_	_
$CH_3COCH_3:CO_2$ $CH_3COCH_3:H_2O$		1226.3		_	-
0113000113.1120		1220.3	8.0132	25.2	0.165*
CH3COCH3:CH3OH	140	1233.7	8.1055	3.6	0.103*
CH ₃ COCH ₃ :H ₂ O:CO ₂	170	1224.8	8.1645	-	- 0.0230
CH3COCH3.1120.CO2		1236.1	8.0896	21.7	0.143*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1230.1	8.077	19.5	0.175
CH ₃ COCH ₃ :CH ₃ OH:CO		1233.3	8.1086	3.8	0.0252

Table B.5. Peak position and FWHM of the acetone CO in-plane deformation	n mode for pure acetone and mixtures with acetone ratio 1:5 and for
temperatures ranging from 15 K to 140 K. See also Figs. A.5 and A.6.	

Mixture	Temperature	Peak p	osition	FW	 HM
Minture	(K)	$\frac{1 \operatorname{cur} p}{(\operatorname{cm}^{-1})}$	(µm)	$\frac{1}{(cm^{-1})}$	(µm)
	(14)		• •		<u> </u>
CH ₃ COCH ₃ CH ₃ COCH ₃ :CO		532.7 532.0	18.771 18.796	7.6 4.4	0.266 0.155
CH ₃ COCH ₃ :CO ₂		535.6	18.669	6.8	0.135
CH ₃ COCH ₃ :H ₂ O	15	547.0	18.283	17.5	0.588
CH ₃ COCH ₃ :CH ₃ OH	15	532.5	18.779	6.4	0.224
CH ₃ COCH ₃ :H ₂ O:CO ₂		544.8	18.356	16.1	0.539
CH ₃ COCH ₃ :H ₂ O:CH ₄		544.1	18.38	11.5	
CH ₃ COCH ₃ :CH ₃ OH:CO		532.0	18.796	4.9	0.174
CH ₃ COCH ₃		532.7	18.771	7.5	0.264
CH ₃ COCH ₃ :CO		532.5	18.779	4.7	0.165
CH ₃ COCH ₃ :CO ₂		535.6	18.669	6.5	0.226
CH ₃ COCH ₃ :H ₂ O		542.6	18.429	15.8	0.533
CH ₃ COCH ₃ :CH ₃ OH	30	532.0	18.796	6.2	0.219
CH ₃ COCH ₃ :H ₂ O:CO ₂		544.6	18.364	16.0	0.536
CH ₃ COCH ₃ :H ₂ O:CH ₄		545.3	18.78	11.6	
CH ₃ COCH ₃ :CH ₃ OH:CO		532.7	18.771	5.2	0.184
CH ₃ COCH ₃		532.5	18.779	7.1	0.249
CH ₃ COCH ₃ :CO		_	_	_	-
CH ₃ COCH ₃ :CO ₂		535.1	18.686	6.4	0.228
$CH_3COCH_3:H_2O$	70	542.6	18.429	15.8	0.533
CH ₃ COCH ₃ :CH ₃ OH CH ₃ COCH ₃ :H ₂ O:CO ₂	70	532.3 544.8	18.788 18.356	5.9 12.2	0.209 0.411
CH ₃ COCH ₃ :H ₂ O:CH ₄		542.1	18.350	12.2	0.411
CH ₃ COCH ₃ :CH ₃ OH:CO		532.5	18.779	5.5	0.192
CH ₃ COCH ₃		532.3	18.788	6.8	0.240
CH ₃ COCH ₃ :CO		-	10.700	-	0.240
CH ₃ COCH ₃ :CO ₂		533.7	18.737	6.0	0.213
CH ₃ COCH ₃ :H ₂ O		542.1	18.445	12.5	0.422
CH ₃ COCH ₃ :CH ₃ OH	90	531.8	18.805	5.2	0.185
CH ₃ COCH ₃ :H ₂ O:CO ₂		541.9	18.454	10.3	0.347
CH ₃ COCH ₃ :H ₂ O:CH ₄		542.1	18.45	10.4	
CH ₃ COCH ₃ :CH ₃ OH:CO		531.5	18.813	5.6	0.198
CH ₃ COCH ₃		532.7	18.771	4.0	0.141
CH ₃ COCH ₃ :CO		_	_	_	_
CH ₃ COCH ₃ :CO ₂		532.7	18.771	6.2	0.219
CH ₃ COCH ₃ :H ₂ O	100	542.1	18.445	11.6	0.392
CH ₃ COCH ₃ :CH ₃ OH	100	531.8	18.805	5.1	0.181
$CH_3COCH_3:H_2O:CO_2$ $CH_3COCH_3:H_2O:CH_4$		543.3 542.1	18.404 18.45	8.5 10.5	0.289
CH ₃ COCH ₃ :CH ₃ OH:CO		532.5	18.779	5.5	0.194
		532.5		4.1	0.141
CH ₃ COCH ₃ CH ₃ COCH ₃ :CO			18.779		
CH ₃ COCH ₃ :CO ₂		_	_	_	_
CH ₃ COCH ₃ :H ₂ O	110	542.1	18.445	9.7	0.330
CH ₃ COCH ₃ :CH ₃ OH		531.5	18.813	4.8	0.171
CH ₃ COCH ₃ :H ₂ O:CO ₂		541.9	18.454	7.5	0.254
CH ₃ COCH ₃ :H ₂ O:CH ₄		542.4	18.44	10.1	
CH ₃ COCH ₃ :CH ₃ OH:CO		533.0	18.762	3.3	0.114
CH ₃ COCH ₃		532.3	18.788	4.1	0.143
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		_	_	_	-
CH ₃ COCH ₃ :H ₂ O	120	542.1	18.445	8.7	0.296
CH ₃ COCH ₃ :CH ₃ OH		533.9	18.728	3.7	0.129
CH ₃ COCH ₃ :H ₂ O:CO ₂ CH ₃ COCH ₃ :H ₂ O:CH ₄		541.9 531.5	18.454	5.6 7.0	0.189
CH ₃ COCH ₃ :CH ₃ OH:CO		533.0	18.81 18.762	3.1	0.110
CH ₃ COCH ₃ CH ₃ COCH ₃ :CO		531.5	18.813	4.2	0.147
CH ₃ COCH ₃ :CO CH ₃ COCH ₃ :CO ₂		_	_	_	-
CH ₃ COCH ₃ :H ₂ O			18.454	_	_
	140	529.6	18.882	_	_
CH ₃ COCH ₃ :CH ₃ OH		533.0	18.762	2.7	0.097
CH ₃ COCH ₃ :H ₂ O:CO ₂		-	_	-	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		531.1	18.83	6.3	
CH ₃ COCH ₃ :CH ₃ OH:CO		532.7	18.77	3.4	0.129

Table B.6. Peak position and FWHM of the acetone CO-stretch mode for pure acetone and mixtures with acetone ratio 1:20 and for temperatures	;
ranging from 15 K to 140 K. See also Figs. A.7 and A.8.	

Mixture	Temperature	Peak p	osition	FWHM	
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		1710.3	5.8469	18.7	0.0640
CH ₃ COCH ₃ :CO		1717.3	5.8231	6.8	0.0232
CH ₃ COCH ₃ :CO ₂		1710.6	5.8461	11.5	0.0392
CH ₃ COCH ₃ :H ₂ O		1696.8	5.8934	23.5	0.0813
CH ₃ COCH ₃ :CH ₃ OH	15	1699.5	5.8842	_	_
5 5 5		1708.9	5.8518	21.2	0.0731
CH ₃ COCH ₃ :H ₂ O:CO ₂		1695.6	5.8976	21.4	0.0745
CH ₃ COCH ₃ :H ₂ O:CH ₄		1697.5	5.9810	17.1	
CH ₃ COCH ₃ :CH ₃ OH:CO		1700.2	5.8817	20.4	0.0704°
5 5 5		1711.1	5.8444	-	_
CH ₃ COCH ₃		1709.8	5.8485	18.7	0.0640
CH ₃ COCH ₃ :CO		1717.3	5.8231	9.7	0.0330
CH ₃ COCH ₃ :CO ₂		1710.6	5.8461	11.3	0.0384
$CH_3COCH_3:H_2O$		1696.8	5.8934	23.5	0.0816
CH ₃ COCH ₃ :CH ₃ OH	30	1699.0	5.8859	-	_
		1709.6	5.8494	21.5	0.0742°
CH ₃ COCH ₃ :H ₂ O:CO ₂		1695.8	5.8968	21.0	0.0728
CH ₃ COCH ₃ :H ₂ O:CH ₄		1697.5	5.8910	16.9	
CH ₃ COCH ₃ :CH ₃ OH:CO		1699.9	5.8825	-	_
		1711.5	5.8428	12.0	0.0416
CH ₃ COCH ₃		1708.9	5.8518	18.3	0.0628
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1716.6	5.8255	11.3	0.0384
CH ₃ COCH ₃ :H ₂ O	-	1696.8	5.8934	24.6	0.0853*
CH ₃ COCH ₃ :CH ₃ OH	70	1698.5	5.8876		-
		1710.3	5.8469	20.0	0.0680
CH ₃ COCH ₃ :H ₂ O:CO ₂		1695.1	5.8993	19.7	0.0684
CH ₃ COCH ₃ :H ₂ O:CH ₄		1695.4	5.8983	20.7	
CH ₃ COCH ₃ :CH ₃ OH:CO		1698.3	5.8884	-	-
		1710.8	5.8452	10.6	0.0362
CH ₃ COCH ₃		1708.6	5.8527	17.8	0.0611
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1716.3	5.8264	12.4	0.0422
CH ₃ COCH ₃ :H ₂ O	00	1696.8	5.8934	25.7	0.0891
CH ₃ COCH ₃ :CH ₃ OH	90	1698.0	5.8892	-	-
		1710.6	5.8461	9.0	0.0308
CH ₃ COCH ₃ :H ₂ O:CO ₂		1695.1	5.8993	20.0	0.0697
CH ₃ COCH ₃ :H ₂ O:CH ₄		1695.1	5.8994	21.0	
CH ₃ COCH ₃ :CH ₃ OH:CO		1697.5	5.8909	-	-
		1710.1	5.8477	10.7	0.0367
CH ₃ COCH ₃		1697.5	5.8909	-	_
		1706.7	5.8593		_
		1713.9	5.8346	13.5	0.0463
CH ₃ COCH ₃ :CO	100	-	-	-	-
CH ₃ COCH ₃ :CO ₂	100	1706.9	5.8585	11.4	0.0391*
CH COCH JI O		1713.7	5.8354	25.9	-
CH ₃ COCH ₃ :H ₂ O		1696.8	5.8934	25.8	0.0895
CH ₃ COCH ₃ :CH ₃ OH		1698.0 1710.6	5.8892 5.8461	9.0	- 0.0206
			5.8461		0.0306*
CH ₃ COCH ₃ :H ₂ O:CO ₂		1700.9	5.8792	22.4	0.0775
CH ₃ COCH ₃ :H ₂ O:CH ₄		1695.4	5.8983	21.6	
CH ₃ COCH ₃ :CH ₃ OH:CO		1698.0	5.8892	-	-
		1710.3	5.8469	10.7	0.0367
CH ₃ COCH ₃		1697.8	5.8901	-	-
		1706.9	5.8585	_	_
		1713.9	5.8346	13.5	0.0463*
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂	110	-	-	25.0	-
CH ₃ COCH ₃ :H ₂ O	110	1699.0	5.8859	25.9	0.0898
CH ₃ COCH ₃ :CH ₃ OH		1699.2	5.8851	-	-
		1710.6	5.8461	9.8	0.0335
		1701.4	5.8775	22.6	0.0783
CH ₃ COCH ₃ :H ₂ O:CO ₂		1 < 0 7 -			
CH ₃ COCH ₃ :H ₂ O:CH ₄		1695.1	5.8994	22.1	
CH ₃ COCH ₃ :H ₂ O:CO ₂ CH ₃ COCH ₃ :H ₂ O:CH ₄ CH ₃ COCH ₃ :CH ₃ OH:CO		1698.3	5.8884	-	
CH ₃ COCH ₃ :H ₂ O:CH ₄					

Table B.6. continued.

Mixture	Temperature	Peak position		FWHM	
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		1698.0	5.8892	_	_
		1706.9	5.8585	_	_
		1713.9	5.8346	13.5	0.0460*
CH ₃ COCH ₃ :CO		_	_	_	_
CH ₃ COCH ₃ :CO ₂		_	_	_	_
CH ₃ COCH ₃ :H ₂ O		1703.3	5.8709	25.9	0.0895
CH ₃ COCH ₃ :CH ₃ OH	120	1707.4	5.8568	19.5	0.0669
CH ₃ COCH ₃ :H ₂ O:CO ₂		1703.6	5.8701	21.9	0.0759
CH ₃ COCH ₃ :H ₂ O:CH ₄		1697.8	5.8900	23.2	
CH ₃ COCH ₃ :CH ₃ OH:CO		1698.0	5.8892	_	_
		1707.9	5.8551	11.5	0.0393*
		1714.4	5.8329	_	-
CH ₃ COCH ₃		1698.0	5.8892	_	_
		1706.9	5.8585	-	_
		1713.7	5.8354	13.3	0.0453*
CH ₃ COCH ₃ :CO		-	-	-	_
CH ₃ COCH ₃ :CO ₂		-	-	-	-
CH ₃ COCH ₃ :H ₂ O	140	1703.3	5.8709	25.4	0.0880
CH ₃ COCH ₃ :CH ₃ OH		1697.8	5.8901	-	_
		1708.1	5.8543	5.4	0.0187
		1714.2	5.8337	-	_
CH ₃ COCH ₃ :H ₂ O:CO ₂		1705.7	5.8626	32.1	0.110
CH ₃ COCH ₃ :H ₂ O:CH ₄		1708.6	5.8527	30.3	
CH ₃ COCH ₃ :CH ₃ OH:CO		-	-	-	-
CH ₃ COCH ₃		_	_	_	-
CH ₃ COCH ₃ :CO		_	_	_	_
CH ₃ COCH ₃ :CO ₂		_	_	_	_
CH ₃ COCH ₃ :H ₂ O	160	1703.1	5.8717	38.8	0.134
CH ₃ COCH ₃ :CH ₃ OH		-	-	-	_
CH ₃ COCH ₃ :H ₂ O:CO ₂		-	-	-	_
CH ₃ COCH ₃ :H ₂ O:CH ₄		-	-	-	_
CH ₃ COCH ₃ :CH ₃ OH:CO		-	-	-	_

Table B.7. Peak position and FWHM of the acetone CH_3 asymmetric deformation mode for pure acetone and mixtures with acetone ratio 1:20 and for temperatures ranging from 15 K to 140 K. See also Figs. A.9 and A.10.

Mixture	Temperature	Peak p	osition	FWHM	
	(K)	(cm ⁻¹)	(µm)	(cm ⁻¹)	(µm)
CH ₃ COCH ₃		1417.9	7.0527	40.9	0.199*
		1441.0	6.9394	_	_
CH ₃ COCH ₃ :CO		1416.9	7.0575	9.5	0.0475
		1435.0	6.9685	17.3	0.0885*
		1443.7	6.9267	_	_
CH ₃ COCH ₃ :CO ₂	15	1420.3	7.0407	9.5	0.0469
		1445.4	6.9186	_	_
CH ₃ COCH ₃ :H ₂ O		1422.0	7.0323	14.8	0.0730
		1445.3	6.9192	_	_
CH ₃ COCH ₃ :H ₂ O :CO ₂		1422.5	7.0299	12.7	0.0624
		1444.4	6.9232	_	_
CH ₃ COCH ₃ :H ₂ O:CH ₄		1422.7		12.1	
		1443.0			
CH ₃ COCH ₃		1417.9	7.0527	40.9	0.199*
		1441.3	6.9382	_	_
CH ₃ COCH ₃ :CO		1417.4	7.0551	10.6	0.0527
		1436.7	6.9604	17.1	0.0912
CH ₃ COCH ₃ :CO ₂	30	1420.6	7.0395	11.2	0.0556
		1444.9	6.9209	_	_
CH ₃ COCH ₃ :H ₂ O		1421.8	7.0335	14.5	0.0716
		1442.0	6.9348	-	_
CH ₃ COCH ₃ :H ₂ O :CO ₂		1422.2	7.0311	12.9	0.0635
		1444.4	6.9232	_	_
CH ₃ COCH ₃ :H ₂ O:CH ₄		1422.7	7.0289	12.0	
		1443.2	6.929		

Table B.7. continued.

Mixture	Temperature	Peak p	osition	FW	'HM
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		1418.1	7.0515	39.6	0.193*
		1441.0	6.9394	-	-
CH ₃ COCH ₃ :CO CH ₃ COCH ₃ :CO ₂		1420.3	7.0407	37.5	0.183*
		1439.4	6.9475	-	-
CH ₃ COCH ₃ :H ₂ O	70	1421.5	7.0347	14.0	0.0693
CH ₃ COCH ₃ :H ₂ O :CO ₂		1439.9 1422.2	6.9450 7.0311		-
CH3COCH3.H20.CO2		1422.2	6.9336	12.2	0.0601
CH ₃ COCH ₃ :H ₂ O:CH ₄		1423.2	7.0264	13.8	
		1441.2	6.9387		
CH ₃ COCH ₃		1418.1	7.0515	38.7	0.189*
CH ₃ COCH ₃ :CO		1440.8	6.9406 -	_	_
CH ₃ COCH ₃ :CO ₂		1419.8	7.0431	35.5	0.173*
		1439.6	6.9464	-	-
CH ₃ COCH ₃ :H ₂ O	90	1421.5	7.0347	13.9	0.0685
CH ₃ COCH ₃ :H ₂ O :CO ₂		1439.5 1422.2	6.9467 7.0311	- 12.2	0.0602
$CH_3COCH_3.H_2O.CO_2$		1422.2	6.9359	12.2	0.0002
CH ₃ COCH ₃ :H ₂ O:CH ₄		1423.4	7.0254	13.9	
- 5 5. 2 4		1443.0	6.93		
CH ₃ COCH ₃		1401.8	7.1339	-	_
		1417.4	7.0551	10.8	0.0538
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1417.4 1437.2	7.0551 6.9580	13.7	0.0682
CH ₃ COCH ₃ :H ₂ O	100	1437.2	7.0335	_ 14.1	0.0695
CH ₃ COCH ₃ :H ₂ O :CO ₂	100	1422.0	7.0323	14.9	0.00735
		1439.6	6.9464	_	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		1423.4	7.0254	14.0	
		1441.0	6.9396		
CH ₃ COCH ₃		1402.2	7.1315	-	-
		1417.7	7.0539	11.5	0.0569
CH ₃ COCH ₃ :CO		1438.6	6.9510		-
CH ₃ COCH ₃ :CO ₂		_	_	_	_
CH ₃ COCH ₃ :H ₂ O	110	1421.8	7.0335	14.7	0.0727
CH ₃ COCH ₃ :H ₂ O :CO ₂		1422.0	7.0323	_	-
		1439.6	6.9464	14.8	0.0731
CH ₃ COCH ₃ :H ₂ O:CH ₄		1423.4	7.0254	14.5	
		1441.0	6.9396		
CH ₃ COCH ₃		1402.5 1417.9	7.1302 7.0527	- 12.1	_ 0.0599
CH ₃ COCH ₃ :CO		-	-	-	0.0399
CH ₃ COCH ₃ :CO ₂		_	_	_	_
CH ₃ COCH ₃ :H ₂ O	120	1421.8	7.0335	14.5	0.0715
CH ₃ COCH ₃ :H ₂ O :CO ₂		1422.0	7.0323	15.2	0.0752
		143.7	6.9557	-	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		1423.4 1438.9	7.0254 6.9498	14.1	
CH ₃ COCH ₃		1404.9 1417.7	7.1180 7.0539	12.2	0.0607
		1439.8	6.9452	-	-
CH ₃ COCH ₃ :CO		_	_	_	-
CH ₃ COCH ₃ :CO ₂		-	-	-	-
CH ₃ COCH ₃ :H ₂ O	140	1421.8	7.0335	16.4	0.0812
CH ₃ COCH ₃ :H ₂ O:CO ₂		1417.4 1437.5	7.0551 6.9566	27.1	0.133*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1437.3	7.0358	29.5	-
0113000113.1120.0114		1421.5	6.9512	27.5	
CH ₃ COCH ₃		_	_	_	
CH ₃ COCH ₃ :CO		_	_	_	_
CH ₃ COCH ₃ :CO ₂	160	-	_	_	-
CH ₃ COCH ₃ :H ₂ O		1422.0	7.0323	25.2	0.124
CH ₃ COCH ₃ :H ₂ O :CO ₂		-	-	-	

Table B.8. Peak position and FWHM of the acetone CH ₃ symmetric deformation mode for pure acetone and mixtures with acetone ratio 1:20 and
for temperatures ranging from 15 K to 140 K. See also Figs. A.11 and A.12.

Mixture	Temperature	Peak p	Peak position		VHM
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		1363.4	7.3345	19.2	0.064
CH ₃ COCH ₃ :CO		1353.3	7.3893	6.1	0.0332
		1363.9	7.3319	5.7	0.030
CH ₃ COCH ₃ :CO ₂		1356.9	7.3696	6.6	0.035
		1367.5	7.3125	6.2	0.033
CH ₃ COCH ₃ :H ₂ O	15	1358.1	7.3631	-	-
		1371.9	7.2894	13.2	0.180
CH ₃ COCH ₃ :CH ₃ OH		1367.3	7.3138	16.3	0.0870
$CH_3COCH_3:H_2O:CO_2$		1359.3	7.3566	_	-
		1372.6	7.2855	11.1	0.058
CH ₃ COCH ₃ :H ₂ O:CH ₄		1359.8	7.354	10.7	
		1373.1	7.2828	10.9	
CH ₃ COCH ₃ :CH ₃ OH:CO		1356.7	7.3710	-	0.077
		1370.4	7.2971	14.6	0.077
CH ₃ COCH ₃		1363.2	7.3358	19.7	0.106
CH ₃ COCH ₃ :CO		1352.8	7.3920	8.1	0.040
		1363.9	7.3319	7.6	0.044
CH ₃ COCH ₃ :CO ₂		1356.7	7.3710	_	-
	20	1367.5	7.3125	6.6	0.035
CH ₃ COCH ₃ :H ₂ O	30	1358.1	7.3631	-	-
		1371.6	7.2906	13.5	0.071
CH ₃ COCH ₃ :CH ₃ OH		1366.8	7.3164	16.6	0.088
CH ₃ COCH ₃ :H ₂ O:CO ₂		1359.1	7.3579	- 11.2	-
		1372.3	7.2868	11.3	0.060
CH ₃ COCH ₃ :H ₂ O:CH ₄		1360.3	7.3513	10.5	
		1372.8 1356.4	7.2843 7.3723	10.7	
CH ₃ COCH ₃ :CH ₃ OH:CO		1330.4	7.2958	 14.0	0.074
CH ₃ COCH ₃		1363.2	7.3358	20.8	0.112
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1365.1	7.3254	16.5	0.088
CH ₃ COCH ₃ :H ₂ O		1357.2	7.3683	-	-
	70	1369.9	7.2996	15.5	0.082
CH ₃ COCH ₃ :CH ₃ OH	70	1364.4	7.3293	16.9	0.090
CH ₃ COCH ₃ :H ₂ O:CO ₂		1359.1	7.3579	-	0.062
		1372.1 1359.6	7.2881	11.7	0.062
CH ₃ COCH ₃ :H ₂ O:CH ₄		1359.0	7.3551 7.284	10.5 13.3	
CH ₃ COCH ₃ :CH ₃ OH:CO		1372.8	7.3841	-	
CH3COCH3.CH3OH.CO		1364.1	7.3306	11.6	0.062
CH ₃ COCH ₃		1363.2	7.3358	21.0	0.113
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1365.1	7.3254	16.5	0.089
CH ₃ COCH ₃ :H ₂ O		1356.9	7.3696	-	0 120
	00	1369.7	7.3009	22.4	0.120
CH ₃ COCH ₃ :CH ₃ OH	90	1363.7	7.3332	15.9	0.085
CH ₃ COCH ₃ :H ₂ O:CO ₂		1359.1	7.3579	-	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		1371.9 1359.8	7.2894 7.354	12.3 10.3	0.065
LH3COCH3.H2O.CH4		1359.8	7.334	10.5	
		1372.8 1354.3	7.284		
CH ₃ COCH ₃ :CH ₃ OH:CO		1354.5	7.3332	12.0	0.064
CH ₃ COCH ₃		1345.3	7.4330	7.7	0.0424
		1349.2	7.4118	-	-
		1361.3	7.3462	8.8	0.047
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1351.1	7.4012	-	-
	100	1369.7	7.3009	14.0	0.075
CH ₃ COCH ₃ :H ₂ O	100	1356.9	7.3696	-	-
		1369.7	7.3009	22.5	0.120
CH ₃ COCH ₃ :CH ₃ OH		1363.7	7.3332	15.5	0.0834
CH ₃ COCH ₃ :H ₂ O:CO ₂		1358.4	7.3618	-	_
		1371.1	7.2932	22.4	0.120

Table B.8. continued.

Mixture	Temperature	Peak p	osition	FV	VHM
	(K)	(cm ⁻¹)	(µm)	(cm ⁻¹)	(µm)
CH ₃ COCH ₃ :H ₂ O:CH ₄		1360.3	7.351	10.3	
		1372.8	7.284	14.4	
CH ₃ COCH ₃ :CH ₃ OH:CO		1354.5	7.3831	-	_
5 5 5		1363.7	7.3332	12.5	0.0674
CH ₃ COCH ₃		1345.6	7.4317	7.5	0.0413*
		1349.2	7.4118	_	-
		1361.0	7.3475	8.7	0.0471
CH ₃ COCH ₃ :CO		_	_	_	_
CH ₃ COCH ₃ :CO ₂		-	-	-	-
CH ₃ COCH ₃ :H ₂ O	110	1356.9	7.3696	-	-
		1369.5	7.3022	22.6	0.121*
CH ₃ COCH ₃ :CH ₃ OH		1363.4	7.3345	19.9	0.107
CH ₃ COCH ₃ :H ₂ O:CO ₂		1358.1	7.3631	-	-
		1369.9	7.2996	22.2	0.119*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1359.8	7.354	9.5	
		1372.8	7.284	15.0	
CH ₃ COCH ₃ :CH ₃ OH:CO		1349.9	7.4078	_	_
		1363.7	7.3332	12.1	0.0650
CH ₃ COCH ₃		1346.1	7.4290	7.3	0.0404*
		1349.4	7.4105	-	_
		1360.8	7.3488	8.7	0.0470
CH ₃ COCH ₃ :CO		-	_	-	_
CH ₃ COCH ₃ :CO ₂		-	_	_	_
CH ₃ COCH ₃ :H ₂ O	120	1356.7	7.3710	_	_
		1369.5	7.3022	22.6	0.121*
CH ₃ COCH ₃ :CH ₃ OH		1363.7	7.3332	24.6	0.133*
CH ₃ COCH ₃ :H ₂ O:CO ₂		1356.9	7.3696	-	-
		1369.9	7.2996	22.6	0.121*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1372.6	7.285	15.6	
		1359.8	7.354	8.7	
CH ₃ COCH ₃ :CH ₃ OH:CO		1345.1	7.4344	-	-
		1349.7	7.4091	-	-
		1363.7	7.3332	10.9	0.0583
CH ₃ COCH ₃		1346.6	7.4264	-	_
		1350.9	7.4025	-	_
		1361.7	7.3436	9.3	0.0499
CH ₃ COCH ₃ :CO		-	-	-	_
CH ₃ COCH ₃ :CO ₂		-	-	-	-
CH ₃ COCH ₃ :H ₂ O		1356.7	7.3710	-	-
		1369.2	7.3035	23.1	0.124*
CH ₃ COCH ₃ :CH ₃ OH	140	1363.7	7.3332	14.0	0.0753
CH ₃ COCH ₃ :H ₂ O:CO ₂		1356.4	7.3723	_	-
		1364.9	7.3267	20.5	0.110*
CH ₃ COCH ₃ :H ₂ O:CH ₄		1366.1	7.320	-	
CH ₃ COCH ₃ :CH ₃ OH:CO		-	-	-	-
CH ₃ COCH ₃		-	-	-	-
CH ₃ COCH ₃ :CO		-	-	-	_
CH ₃ COCH ₃ :CO ₂		-	-	-	_
CH ₃ COCH ₃ :H ₂ O	160	1357.5	7.3666	-	-
		1367.0	7.3151	23.3	0.125
CH ₃ COCH ₃ :CH ₃ OH		-	-	-	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		-	-	-	-
CH ₃ COCH ₃ :H ₂ O:CH ₄			-	-	-
CH ₃ COCH ₃ :CH ₃ OH:CO		-	-	-	_

Table B.9. Peak position and FWHM of the acetone CCC asymmetric deformation mode for pure acetone and mixtures with acetone ratio 1:20 and for temperatures ranging from 15 K to 140 K. See also Figs. A.13 and A.14.

Mixture	Temperature	Peak p	Peak position		VHM
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		1228.4	8.1404	12.8	0.0640
CH ₃ COCH ₃ :CO		1224.1	8.1693	9.6	0.0641*
		1231.3	8.1216	-	-
CH ₃ COCH ₃ :CO ₂		1230.8	8.1245	7.6	0.0502
CH ₃ COCH ₃ :H ₂ O	15	1244.6	8.0348	14.6	0.0947

Table B.9. continued.

Mixture	Temperature	Peak p	osition		ΉМ
	(K)	(cm^{-1})	(µm)	(cm^{-1})	(µm)
CH3COCH3:CH3OH		1225.5	8.1597	8.3	0.0554
		1238.1	8.0770	9.7	0.0635
CH ₃ COCH ₃ :H ₂ O:CO ₂		1244.6	8.0348	14.2	0.0919
CH ₃ COCH ₃ :H ₂ O:CH ₄		1244.6	8.035	12.1	
CH ₃ COCH ₃ :CH ₃ OH:CO		1226.3	8.1548	6.3	0.0419
		1239.3	8.0692	9.0	0.0588
CH ₃ COCH ₃		1228.4	8.1404	12.6	0.0836
CH ₃ COCH ₃ :CO		1228.7	8.1389	10.6	0.0706
$CH_3COCH_3:CO_2$		1230.8	8.1245	8.0	0.0529
CH ₃ COCH ₃ :H ₂ O	30	1244.6	8.0348	14.8	0.0956
CH ₃ COCH ₃ :CH ₃ OH		1225.3	8.1613	7.6	0.0507
		1238.3	8.075	9.2	0.06
$CH_3COCH_3:H_2O:CO_2$		1244.6 1244.3	8.035 8.037	14.2 12.0	0.092
CH ₃ COCH ₃ :H ₂ O:CH ₄ CH ₃ COCH ₃ :CH ₃ OH:CO		1244.3	8.1548	6.0	0.0400
CH3COCH3.CH3OH.CO		1239.5	8.0676	7.7	0.0400
CH ₃ COCH ₃		1228.0	8.14	11.8	0.078
CH ₃ COCH ₃ :CO		1227.2	8.1484	- 11.7	-
CH ₃ COCH ₃ :CO ₂ CH ₃ COCH ₃ :H ₂ O	70	1227.2	8.1484 8.0364	11.7	0.0778 0.1062
CH ₃ COCH ₃ :CH ₃ OH	70	1244.5	8.1613	6.8	0.1062
CH3COCH3.CH3OH		1225.5	8.0770	8.1	0.0430
CH ₃ COCH ₃ :H ₂ O:CO ₂		1236.1	8.0348	13.5	0.0870
CH ₃ COCH ₃ :H ₂ O:CH ₄		1245.5	8.029	14.5	0.0070
CH ₃ COCH ₃ :CH ₃ OH:CO		1227.23	8.1484	7.25	_
		1239.5	8.0677	8.43	0.048
CH ₃ COCH ₃		1227.5	8.1468	11.3	0.0750
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1227.2	8.1484	11.0	0.0729
CH ₃ COCH ₃ :H ₂ O		1237.7	8.0793	_	-
		1244.3	8.0364	17.0	0.1100
CH ₃ COCH ₃ :CH ₃ OH	90	1225.1	8.1629	6.6	0.0440
		1238.1	8.0770	8.0	0.0521
CH ₃ COCH ₃ :H ₂ O:CO ₂		1244.6	8.0348	14.3	0.0923
CH ₃ COCH ₃ :H ₂ O:CH ₄		1245.5	8.029	14.7	
CH ₃ COCH ₃ :CH ₃ OH:CO		1227.0	8.1499	7.41	-
		1239.0	8.0710	7.4	0.049
CH ₃ COCH ₃		1233.0	8.1102	5.0	0.0327
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		1226.7	8.1516	-	-
		1236.9	8.0849	4.3	0.0282
CH ₃ COCH ₃ :H ₂ O		1237.2	8.0827	_	_
a a.a.a a a	100	1244.3	8.0364	17.1	0.111
CH ₃ COCH ₃ :CH ₃ OH	100	1225.1	8.1629	6.6	0.0437
		1237.8	8.0786	8.0	0.0524
CH ₃ COCH ₃ :H ₂ O:CO ₂ CH ₃ COCH ₃ :H ₂ O:CH ₄		1241.9 1245.5	8.0520	16.1 15.0	0.1042
CH ₃ COCH ₃ :H ₂ O:CH ₄ CH ₃ COCH ₃ :CH ₃ OH:CO		1245.5	8.029 8.1533	7.32	0.0490
engeoeng.engon.eo		1220.5	8.0710	8.95	0.0490
					0.0227
CH ₃ COCH ₃		1232.8	8.1118	5.1	0.0337
CH ₃ COCH ₃ :CO		-	—	-	-
CH ₃ COCH ₃ :CO ₂ CH ₃ COCH ₃ :H ₂ O	110	1237.6	8.0803	-	-
CH3COCH3.H2O	110	1237.6	8.0803	17.3	0.112
CH3COCH3:CH3OH		1224.8	8.1645	6.6	0.0438
engeoeng.engon		1236.6	8.0865	9.0	0.0591
CH ₃ COCH ₃ :H ₂ O:CO ₂		1230.0	8.0676	16.3	0.105
CH ₃ COCH ₃ :H ₂ O:CH ₄		1245.3	8.030	15.5	
CH ₃ COCH ₃ :CH ₃ OH:CO		1226.3	8.1549	7.38	_
		1234.9	8.0978	5.34	0.0352
CH ₃ COCH ₃		1232.5	8.1134	5.3	0.0347
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		_	_	_	_
CH ₃ COCH ₃ :H ₂ O	120	1237.4	8.0818	_	_
		1244.3	8.0364	17.1	0.111

M. G. Rachid et al.: Infrared spectra of complex organic molecules in astronomically relevant ice mixtures

Table B.9. continued.

Mixture	Temperature	Peak p	osition	FW	'HM
	(K)	(cm ⁻¹)	(µm)	(cm^{-1})	(µm)
CH3COCH3:CH3OH		1225.3	8.1613	19.3	0.127*
		1233.7	8.1055	_	_
CH ₃ COCH ₃ :H ₂ O:CO ₂		1238.1	8.0770	16.4	0.107
CH ₃ COCH ₃ :H ₂ O:CH ₄		1245.1	8.031	16.3	
CH ₃ COCH ₃ :CH ₃ OH:CO		1226.3	8.1548	5.6	-
		1234.7	8.0991	4.5	0.0297
CH ₃ COCH ₃		1232.0	8.1166	5.4	0.0357
CH ₃ COCH ₃ :CO		-	-	_	_
CH ₃ COCH ₃ :CO ₂		-	-	_	_
CH ₃ COCH ₃ :H ₂ O	140	1237.4	8.0818	-	_
		1244.3	8.0364	17.2	0.112
CH ₃ COCH ₃ :CH ₃ OH		1233.5	8.1070	3.6	0.0235
CH ₃ COCH ₃ :H ₂ O:CO ₂		-	8.	-	-
		-	-	-	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		1225.8	8.158	7.1	
CH ₃ COCH ₃ :CH ₃ OH:CO		-	-	-	-
CH ₃ COCH ₃		_	_	_	_
CH ₃ COCH ₃ :CO		-	-	_	_
CH ₃ COCH ₃ :CO ₂		-	-	_	_
CH ₃ COCH ₃ :H ₂ O	160	1224.6	8.1661	-	-
		1235.7	8.0928	24.9	0.163
CH ₃ COCH ₃ :CH ₃ OH		-	-	_	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		-	-	_	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		_	_	_	-
CH ₃ COCH ₃ :CH ₃ OH:CO		_	_	_	-

Table B.10. Peak position and FWHM of the acetone CO in-plane deformation mode for pure acetone and mixtures with acetone ratio 1:20 and for temperatures ranging from 15 K to 120 K. See also Figs. A.15 and A.16.

Mixture	Temperature	Peak p	osition	FWI	HM
	(K)	(cm ⁻¹)	(µm)	(cm^{-1})	(µm)
CH ₃ COCH ₃		532.7	18.77	7.6	0.266
CH ₃ COCH ₃ :CO		531.8	18.80	4.2	0.147
CH ₃ COCH ₃ :CO ₂		536.1	18.65	7.4	0.257
CH ₃ COCH ₃ :H ₂ O	15	_	_	_	-
CH ₃ COCH ₃ :CH ₃ OH		_	_	_	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		_	_	_	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		546.0	18.31	9.5	
CH ₃ COCH ₃ :CH ₃ OH:CO		-	_	-	-
CH ₃ COCH ₃		532.7	18.771	7.5	0.264
CH ₃ COCH ₃ :CO		532.5	18.779	4.7	0.165
CH ₃ COCH ₃ :CO ₂		536.1	18.653	6.9	0.238
CH ₃ COCH ₃ :H ₂ O	30	_	_	_	-
CH ₃ COCH ₃ :CH ₃ OH		_	_	_	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		_	_	_	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		545.8	18.32	7.9	
CH ₃ COCH ₃ :CH ₃ OH:CO		-	-	-	-
CH ₃ COCH ₃		532.5	18.779	7.1	0.249
CH ₃ COCH ₃ :CO		-	-	-	-
CH ₃ COCH ₃ :CO ₂		533.5	18.745	5.5	0.194
CH ₃ COCH ₃ :H ₂ O	70	-	-	-	-
CH ₃ COCH ₃ :CH ₃ OH		-	-	-	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		-	-	_	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		545.8	18.32	4.0	
CH ₃ COCH ₃ :CH ₃ OH:CO		532.3	18.788	4.4	0.154
CH ₃ COCH ₃		532.3	18.788	6.8	0.240
CH ₃ COCH ₃ :CO		_	_	_	-
CH ₃ COCH ₃ :CO ₂		532.5	18.779	7.3	0.257
CH ₃ COCH ₃ :H ₂ O	90	_	_	_	-
CH ₃ COCH ₃ :CH ₃ OH		_	_	_	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		_	_	_	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		545.8	18.32	4.6	
CH ₃ COCH ₃ :CH ₃ OH:CO		532.3	18.788	4.7	0.167

Notes. For higher temperatures this band is not visible.

Table B.10. continued.

Mixture	Temperature	Peak p	osition	FWI	НМ
	(K)	(cm ⁻¹)	(µm)	(cm ⁻¹)	(µm)
CH ₃ COCH ₃		532.7	18.771	4.0	0.141
CH ₃ COCH ₃ :CO		_	_	_	-
CH ₃ COCH ₃ :CO ₂		_	_	_	-
CH ₃ COCH ₃ :H ₂ O	100	-	-	-	-
CH ₃ COCH ₃ :CH ₃ OH		-	-	-	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		-	-	-	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		546.0	18.31	5.0	
CH ₃ COCH ₃ :CH ₃ OH:CO		532.0	18.796	4.6	0.162
CH ₃ COCH ₃		532.5	18.779	4.1	0.141
CH ₃ COCH ₃ :CO		_	_	_	-
CH ₃ COCH ₃ :CO ₂		_	_	_	-
CH ₃ COCH ₃ :H ₂ O	110	_	_	_	-
CH ₃ COCH ₃ :CH ₃ OH		_	-	-	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		-	-	-	-
CH ₃ COCH ₃ :H ₂ O:CH ₄		546.0	18.31	4.4	
CH ₃ COCH ₃ :CH ₃ OH:CO		532.5	18.779	4.1	0.146
CH ₃ COCH ₃		532.3	18.788	4.1	0.143
CH ₃ COCH ₃ :CO		_	_	_	-
CH ₃ COCH ₃ :CO ₂		_	_	_	-
CH ₃ COCH ₃ :H ₂ O	120	_	-	-	-
CH ₃ COCH ₃ :CH ₃ OH		_	_	-	-
CH ₃ COCH ₃ :H ₂ O:CO ₂		-	-	-	_
CH ₃ COCH ₃ :H ₂ O:CH ₄		546.0	18.31	6.7	
CH ₃ COCH ₃ :CH ₃ OH:CO		532.5	18.779	2.9	0.103

Appendix C: Integrated absorbance values

In this section, the integrated absorbance of the analyzed acetone bands is presented in tables. The tables contain the integrated absorbance of the acetone bands normalized in relation to the C=O stretch mode of the respective mixture at 15 K.

All the measurements are taken from baseline-corrected spectra and for the C=O stretch band of acetone, water sub-traction is also performed, since the O–H bending mode of water (around 1667 cm^{-1}) overlaps with this mode. For modes that present two or more overlapping components, the values listed below refer to the absorbance integrated over all the components (Tables C.1–C.15).

Table C.1. Integrated absorbance ratios of selected transitions in pure acetone ice.

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu m)$	CCC asymm. stretch $(8.141\mu m)$	CO in-plane deformation $(18.77 \mu\text{m})$
15	1.00	0.40	0.53	0.27	0.08
30	1.00	0.40	0.53	0.27	0.08
70	1.01	0.39	0.52	0.28	0.08
90	1.02	0.38	0.52	0.28	0.07
100	0.89	0.31	0.62	0.30	0.09
110	0.90	0.31	0.61	0.30	0.09
120	0.91	0.30	0.61	0.30	0.09
140	0.79	0.26	0.49	0.25	0.07

Table C.2. Integrated absorbance ratios of selected transitions in CH₃COCH₃:H₂O(1:5).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch (8.141 µm)	CO in-plane deformation (18.77 μm)
15	1.00	0.33	0.44	0.19	0.060
30	1.04	0.33	0.45	0.20	0.059
70	1.03	0.31	0.44	0.19	0.055
90	1.02	0.30	0.43	0.19	0.044
100	1.02	0.29	0.43	0.19	_
110	1.02	0.29	0.42	0.18	_
120	1.01	0.27	0.42	0.19	_
140	0.86	0.24	0.40	0.20	-

M. G. Rachid et al.: Infrared spectra of complex organic molecules in astronomically relevant ice mixtures

Table C.3. Integrated absorbance ratios of selected transitions in CH₃COCH₃:CO₂(1:5).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch (8.141 µm)	CO in-plane deformation (18.77 μm)
15	1.00	0.37	0.56	0.28	0.087
30	1.01	0.37	0.56	0.28	0.084
70	1.05	0.38	0.57	0.30	0.067
90	1.00	0.32	0.51	0.27	0.044
100	1.00	0.30	0.48	0.25	0.044

Table C.4. Integrated absorbance ratios of selected transitions in CH₃COCH₃:CO(1:5).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch (8.141 µm)	CO in-plane deformation $(18.77 \mu\text{m})$
15	1.00	0.31	0.51	0.26	0.07
30	0.99	0.34	0.50	0.25	0.07

Table C.5. Integrated absorbance ratios of selected transitions in CH₃COCH₃:CH₃OH(1:5).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu m)$	CCC asymm. stretch (8.141 µm)	CO in-plane deformation (18.77 μm)
15	1.00	_	0.47	0.23	0.031
30	0.98	_	0.47	0.23	0.037
70	0.96	_	0.46	0.23	0.043
90	0.92	_	0.46	0.23	0.054
100	0.92	_	0.46	0.23	0.054
110	0.98	_	0.50	0.24	0.052
120	1.01	_	0.46	0.18	0.038
140	0.64	-	0.30	0.12	0.011

Table C.6. Integrated absorbance ratios of selected transitions in CH₃COCH₃:H₂O(1:20).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch $(8.141\mu m)$	CO in-plane deformation $(18.77 \mu m)$
15	1.00	0.25	0.40	0.19	_
30	1.06	0.26	0.42	0.20	_
70	0.97	0.24	0.42	0.21	_
90	1.00	0.22	0.41	0.20	_
100	0.98	0.22	0.41	0.20	_
110	0.98	0.24	0.41	0.20	_
120	0.94	0.22	0.41	0.19	_
140	0.88	0.21	0.39	0.19	_

Table C.7. Integrated absorbance ratios of selected transitions in CH₃COCH₃:CO₂(1:20).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch $(8.141\mu m)$	CO in-plane deformation (18.77 µm)
15	1.00	0.38	0.55	0.27	_
30	0.99	0.48	0.69	0.38	_
70	0.99	0.41	0.61	0.39	_
90	1.01	0.34	0.51	0.27	_
100	1.13	0.30	0.34	0.15	_

Temperature (K)	C=O stretch (5.847 µm)	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch (8.141 µm)	CO in-plane deformation (18.77 μm)
15	1.00	0.36	0.54	0.30	0.09
30	1.09	0.35	0.55	0.29	0.09

Table C.8. Integrated absorbance ratios of selected transitions in CH₃COCH₃:CO(1:20).

Table C.9. Integrated absorbance ratios of selected transitions in CH₃COCH₃:CH₃OH(1:20).

Temperature (K)	C=O stretch (5.847 µm)	CH ₃ assym. deformation $(7.053 \mu m)$	CH ₃ symm. deformation $(7.335 \mu m)$	CCC asymm. stretch $(8.141\mu m)$	CO in-plane deformation $(18.77 \mu m)$
15	1.00	_	0.55	0.21	_
30	0.99	_	0.57	0.21	_
70	1.01	_	0.64	0.21	_
90	0.92	_	0.66	0.22	_
100	0.91	_	0.67	0.22	_
110	1.00	_	0.75	0.24	_
120	1.06	_	0.71	0.19	_
140	0.48	_	0.37	0.06	_

Table C.10. Integrated absorbance ratios of selected transitions in CH₃COCH₃:H₂O:CO₂(1:2.5:2.5).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch $(8.141\mu m)$	CO in-plane deformation $(18.77 \mu m)$
15	1.00	0.43	0.56	0.28	0.07
30	1.00	0.42	0.56	0.27	0.07
70	0.98	0.40	0.56	0.26	0.05
90	0.97	0.38	0.54	0.24	_
100	0.92	0.36	0.51	0.23	_
110	0.90	0.35	0.50	0.23	_
120	0.89	0.32	0.48	0.22	_
140	0.58	0.20	0.33	0.18	-

Table C.11. Integrated absorbance ratios of selected transitions in CH₃COCH₃:H₂O:CO₂(1:10:10).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch (8.141 µm)	CO in-plane deformation (18.77 μm)
15	1.00	0.37	0.50	0.20	_
30	1.01	0.39	0.54	0.22	_
70	0.99	0.33	0.49	0.21	_
90	0.99	0.28	0.45	0.25	_
100	0.85	0.24	0.38	0.21	_
110	0.84	0.22	0.37	0.20	_
120	0.81	0.22	0.37	0.21	_
140	0.56	0.17	0.34	0.18	—

M. G. Rachid et al.: Infrared spectra of complex organic molecules in astronomically relevant ice mixtures

Table C.12. Integrated absorbance ratios of selected transitions in CH₃COCH₃:H₂O:CH₄(1:2.5:2.5).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu m)$	CH ₃ symm. deformation $(7.335 \mu m)$	CCC asymm. stretch (8.141 µm)	CO in-plane deformation (18.77 μm)
15	1.00	0.32	0.49	0.26	0.09
30	1.00	0.30	0.48	0.26	0.08
70	1.04	0.47	0.47	0.24	0.06
90	1.05	0.27	0.46	0.23	0.05
100	1.05	0.25	0.44	0.23	0.04
110	1.04	0.24	0.23	0.23	0.05
120	1.02	0.23	0.44	0.23	0.07
140	0.51	0.11	0.22	0.13	0.05

Table C.13. Integrated absorbance ratios of selected transitions in CH₃COCH₃:H₂O:CH₄(1:10:10).

Temperature (K)	C=O stretch (5.847 µm)	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch (8.141 μm)	CO in-plane deformation (18.77 μm)
15	1.00	0.31	0.49	0.26	0.10
30	1.04	0.33	0.48	0.27	0.08
70	1.18	0.29	0.48	0.24	0.05
90	1.17	0.28	0.46	0.24	0.04
100	1.20	0.27	0.44	0.24	0.04
110	1.17	0.27	0.45	0.23	0.03
120	1.16	0.25	0.43	0.23	0.04
140	0.74	0.17	0.35	0.22	0.02

Table C.14. Integrated absorbance ratios of selected transitions in CH₃COCH₃:CO:CH₃OH(1:2.5:2.5).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch (8.141 µm)	CO in-plane deformation $(18.77 \mu\text{m})$
15	1.00	_	0.43	0.22	0.022
30	0.97	_	0.43	0.22	0.029
70	0.87	_	0.41	0.22	0.050
90	0.86	_	0.41	0.23	0.051
100	0.85	_	0.41	0.23	0.047
110	0.80	_	0.41	0.19	0.041
120	0.80	_	0.40	0.19	0.037
140	0.24	-	0.13	0.05	0.022

Table C.15. Integrated absorbance ratios of selected transitions in CH₃COCH₃:CO:CH₃OH(1:10:10).

Temperature (K)	C=O stretch $(5.847 \mu m)$	CH ₃ assym. deformation $(7.053 \mu\text{m})$	CH ₃ symm. deformation $(7.335 \mu\text{m})$	CCC asymm. stretch $(8.141\mu m)$	CO in-plane deformation (18.77 μm)
15	1.00	_	0.43	0.21	_
30	0.96	_	0.42	0.20	_
70	0.79	_	0.47	0.20	_
90	0.79	_	0.46	0.20	_
100	0.79	_	0.45	0.20	_
110	0.82	_	0.47	0.17	_
120	0.83	_	0.44	0.16	_
140	0.07	-	0.08	-	-