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Rotationally resolved  AZIT ,« X ZHg electronic transition of NC  gN™
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The rotationally resolvedl\zl'[uszl'[g electronic origin band spectrum of dicyanodiacetylene
cation, NGN™, has been recorded in the gas phase using frequency-production double modulation
spectroscopy in a liquid nitrogen cooled hollow cathode discharge and cavity ring down
spectroscopy in a supersonic plasma. The analysis of the complementary results provides accurate
molecular parameters for the two spin-orbit components in both electronic state200®
American Institute of Physics[DOI: 10.1063/1.1427710

I. INTRODUCTION plasma [,o=15 K), yielding spectra with significantly dif-

In recent years several cyanopolyacetylene radical erent rotational profiles. Both experimental techniques have
(HC,N) have been studied by Fourier transform microwave een described. In the FPM experlr_ﬁ@nmxtgres. of 0.5%—
spectroscop’y2 and, following their laboratory detection, 0.6% cyanogen/He are d|schgrged Ina I_|qU|d mtroge_n cooled
species as large as Kl have been identified by radio as- hollow cathode incorporated into a White-type multiple re-

tronomy in the interstellar mediufiThe dicyano derivatives flection cell (Li~100 m. Production modulation is ob-

(NC,N) may be comparably abundant in space, but are unt_ained by applying a rectified 17 kHz ac voltage

suitable for microwave detection due to absence of a dipolfz_530 to 703 \lf' The laser ?eam is elect:jo(-jopticalg/t:nod?-
moment. In this case accurate spectroscopic information cafte aF a radio frequency of 192 MH;_an etecte oy & ast
be obtained from high resolution studies of vibrational orp_hOtOd'Ode' Subsquent phase sensitive c_iemodulauon (_)f the
electronic transitions in the gas phase. The latter are avair-]Igh frequency portion of the signal during a production

able for a series of carbon chain radicals. Examples are th(éyCIe gives absor.ptioln bands that. have a d_erivativelike
nonpolar NGN (Ref. 4 and HGH,5® as well as chains that shape. The resolution is Doppler limited and typically of the

were already detected in dense interstellar clouds such Ayder of 550 MHz. .
HCeN (Ref. 6 and GH.” These species are formed in ion- In the CRD setuf} the NGN" radicals are formed by a

molecule reactions and consequently spectroscopic inform&i—iSCharge throu%h a high pressul(rg gas pulgpically 1000
tion on carbon chain ions is needed as well, but high resolur-nA at —1000 V for a 12 bar backing pressuref an 0.2%

tion data are rare and pure rotational spectra are limited to gyanogen/H_e mixture n the throatf @ 3 cmix300 pm
few specied multilayer slit nozzle device. A standard CRD spectrometer

This is particularly true for thedi)cyanopolyacetylene is used to detect the signals in direct absorption. The resolu-

cations. Electronic spectra have been recorded in neofion 1S limited _by the pandmdth of the laser t00.035 cm .
matrices for NG,N* (n=2-6) and HG,.;N* (n In both experiments iodine spectra are used for an absolute

=2-6)2"12 Following these and low resolution emission frequency calibration.

studied®~*° the rotationally resolved electronic gas phase
spectrum of the cyanodiacetylene (M) and dicy- 1ll. RESULTS AND DISCUSSION

anoacetylene (NfN*)'® as well as the cyanotriacetylene . . -
¢ (NEN) y y An overview scan of thé*I1,,— XI1 electronic origin

(HC,N™")" were reported. In the present work the rotation- - " . .
ally resolved spectrum of the next larger member in theband transition of NN * recorded by FPM in the discharge

dicyano-series, NEN™, is presented. The results are com-ce" IS ;hown n F|g. 1...|n the range_ 15 .240_15 248 ¢m
pared with the results of density functional theoryapproxmately 200 individual absorption lines are resolved.

calculation$® and the spectroscopic parameters available fo;l'hese transitions belong to the, Q- andR-branches of two

g . . : + 19 subbands corresponding to the paraléll,,— X215, and
the iso-electronic chains HE™ (Ref. 17 and HGH™. A1, X211, electronic transitions. The intensity ratio of

the two bands is determined by the “spin-orbit temperature”
Il. EXPERIMENT and the value of the spin-orbit splittingA() in the ground

) state. The latter is estimated from previous studies to be of
The spectra are recorded using two complementary €Xne order of —40(5) cmL® the minus indicating that

perimental approaches. These are frequency productiofe (=2 spin-orbit component is lower in energy than the
double modulationFPM) spectroscopy of a static plasma ()—1 At the high ambient temperature in the cell both spin-
generated in a discharge cel i~ 1,50 K) and cavny nng- orhit components are equally intense. The rotational popula-
down (CRD) spectroscopy sampling a supersonic planagijqp, js distributed over many levels and the intensity of both
Q-branches and transitions starting from |dvevels is low.
3Electronic mail: Henricus.Linnartz@unibas.ch Clear band heads, however, are missing. Moreover, the spin-
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FIG. 1. Rotationally resolved fre-
guency production double modulation
absorption spectrum of theA?Tl,
<—X21'Ig electronic origin band of
NC¢N" measured in a liquid-nitrogen
cooled hollow cathode dischargd §;
~150 K). The P-, Q- and R-branches
of the AZ[l4,— X2y, and A%Il,,
—X2I1,;, subbands are indicated.

12 R1/2

Q112

15242 15243 15244 15245 15246 15247 cm™

qrbit components overlap as the difference in spin-orbit splityespond taP(2) andR(%). Adjacent transitions are separated

tings in ground and excited stat®A, appears to be small. py 2B |n this way more than §@0) transitions have been

All these factors together lead to ambiguity in the aSSignme”éssigned inP(R)-branch of theA2IT 4, X2I14, band with

of the rotational lines. What is missing is a clearly defined‘]_\/a'ues up to 90.8% These values are then fitted with

starting _point. This is provided by th(_e jet spgctrum. PGophe? using v, B, B,, D andD}, as variables yield-

Thel2p':elgtlrjrr??sttrgf:ctnl:gezps(:tgl?rDe?rlloagprI:allg.mt IZXZZ?]V;% ing a rms of 0.002 cm'. The resulting constants are listed in
y Yable 1. The value foB{=0.018 753 3(55) cm' is close to

Only the lower subband\?I1;,— X214, is clearly visible - _ :
dhe Be-value of 0.01867 cm' as obtained from density

now, as the population of the upper spin-orbit component i > TR X _
low. Besides unresolved®- and R-branche£? a clear functional calculation$® A simulation using these constants

branch is not visible in Fig. 1, but the CRD position allows M * corresponds to th&-branch band head of the? Il 5
the assignment of transitions be|onging to tﬁénslz <—X2H3/2 system. A similar feature is observed at 15247.85

—X2I14, subband within+1 J quantum numbering in the cm ! and is tentatively assigned to tfiebranch band head
FPM spectrum. The band gap-s10B [with B~0.019 cm®  of the second spin-orbit system.
(Ref. 18] reflecting that the lowest rotational transitions cor- The lines that are left over are mainly due to fe-3

FIG. 2. Cavity ring down absorption spectrum of the
A?[15,— X211, electronic origin band of NgN*, re-
corded through a supersonic plasma. The second spin-
orbit component is not visible at the low temperature in
the jet (T,,r~15 K). The Q-branch position is used to
assign the FPM spectrum.

-1

15243.5 15244.0 152445 15245.0 152455 15246.0 15246.5 cm

Downloaded 27 Feb 2002 to 131.152.105.107. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



926 J. Chem. Phys., Vol. 116, No. 3, 15 January 2002 Linnartz et al.

TABLE I. Molecular constantgin cm™) for the A’[15,— X?IIg, and for  transitions belonging to thé\’IT,,—X?II;, system are

22 L e N i A ’
the A"l ,— X°IL,, electronic origin band transition of N8 . The mo- — 4y/ajjaple from(Ref. 26. The resulting molecular parameters
lecular parameters for th&?I1,—X [ electronic origin band transition of

the iso-electronic HEN* (Ref. 17 and HGH" (Ref. 19 species are listed '€ 9iVeN in Table I. The quality of the fit will be worse as

for comparison. only a few transitions share a common leyahs ~0.004
cm 1).28 Nevertheless, using Eq1l) an A”-value between
NCeN™ HCN® HCH" —15 and—32 cm s calculated’ The simulation confirms

0=3/2 0=1/2 0=3/2 0=3/2and 1/2 that the band head position coincides with the feature at

By 0.018 753 &5 0018 70719 0018 966 571 0.010 077 03 -0 2485 cm™.
D?; 6.7(15).10° 62(38).10° ' The spectral features of N are expected to be quali-

tatively similar to those of the iso-electronic cyanotriacety-
B, 0.018 558 §6) 0.018 56519 0.018 773 (72 0.018 867 ®4)  lene cation’ and tetraacetylene catidh.The molecular pa-
Dy  7.1(16).10°  8.3(39).10° rameters of theAIl,—X?I1, electronic origin bands of
these two ions are listed in Table | as well. These bands are

AB - —0.00019 ~0.00014 ~0.00019 ~0.00021 shifted to lower energy, by 320 cm for HC,N* and by
AA L 056 204 ~300 1103 cm® for HCgH™. The AA value of HGN™ (—2.04
vo 15 245.7371) 14 925.4284) 14 143.1816) cm 1) is comparable to that of HE™ (—3.00 cm'}), but

the corresponding value for NE™ is significantly smaller
and, moreover, is positive+0.56 cm'}). This value, how-

. : : . ver, is very close to the\A=+0.53 cm! found for
component. The rotational assignment is problematic now . . .
b 9 P C,N*.1® There it was concluded that this anomaly is due to

information on theQ-branch of theA?IT,,,— X?I1,,, band is . L . .
missing. The difference between the band heads, howeve?, spin-orbit induced interaction of the uppafIly, elec-

indicates that theQ,-branch is expected around 15 246_1'u’onic st;:\te with another low lying %Iectronic stt_ate, presum-
cm L. In addition, only minor differences between the rota-abli/ C?f Tzh' cht?racter, Whlereafs the tl;3,2d§ftfate Its ncTt af-f
tional constants for the two spin-orbit systems are expecteé?ce - [TIS becomes clear from the dilierent vaues for

: : " LT . AB=B/,—B}: for the Q=2 component a value of 0.000 19
In previous studies transitions originating from different 0 =0 2 :

71 . . . .
spin-orbit components were fitted with one single set of ro—Ccr)nO O(;sll;oungl, S|m(|jla|_r| toHtPeovggJ(;eg ldet§r1m|ge:i fforéﬂi
tational parameters!®1°In the present experiment this turns (©. cm’) and HGH™ (0. cm’), but for =3

out not to be possible. However, as long as the effect of Spiﬁhg.}[/aluetqte)c:e astas ttﬁ O'O?(),[.lfﬁmThe ?ec:) ?digrdte rtspm-
uncoupling is small, i.e., RJ<|A|, B is best replaced by orbit contrioution 1o the rotational constant forla state 1S

i 8,29
effective parameter8qq(3Il;;,) and Beg(3lls). In second  IVEN by
: i 2! ,
order perturbation theory the differendd ¢ is given by 8Oy 4B o
n
2B? ES—E?

ABer=— @ With | AE| =40 cm this givesB()~0.000 04 cmi?, i.e., an

_ unperturbed value foAB of 0.00018 cm?, close to the
where A=A—2B.?> A is expected to be of the order of value of the other spin-orbit component.
—40(5) cm ! (Ref. 16 which puts an additional constraint In the case of NEN' it was also found that the
to the fit. The line positions and most likely assignment for2s, —2[] interaction removes the degeneracy of theand

FIG. 3. High J-level transitions with

their typical If derivative line shapes
recorded in the FPM experiment. The
simulated spectrum is shown for both
spin-orbit components. There is no

evidence forA -doubling(see the text
Q=372

Q=1/2

] [ [2d =] ~ ~
o ) N o o« [+
o o (2] 341 3] 3]

152416 15241.7 15241.8 152419 152420 152421 15242.2 cm
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f-symmetry, resulting in a resolvable-doubling. This effect
is not observed here. In Fig. 3 part of tRébranch range for

high J-levels in both spin-orbit components is shown. The

A, XTI ; transition 927
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