Solutions 3: CH₃OH rotation diagram

If you have problems writing the code necessary to solve the exercises, I can provide you with an example *Python* script.

a. You should obtain a plot similar to Fig. 1.

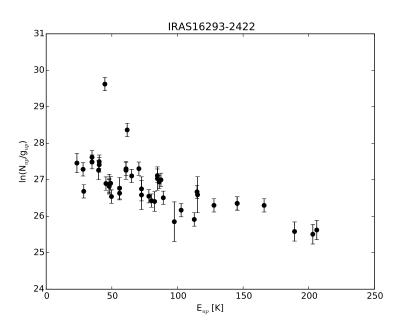


Figure 1: Rotation diagram for CH₃OH in IRAS16293-2422

b. curve fit yields: $a = 27.7253 \pm 0.07077$ and $b = -0.0105 \pm 0.00079$.

c.

$$\frac{N_u}{g_u} = \frac{N}{Q(T_{\text{rot}})} e^{-E_u/T_{\text{rot}}} \tag{1}$$

$$\frac{N_u}{g_u} = \frac{N}{Q(T_{\text{rot}})} e^{-E_u/T_{\text{rot}}}$$

$$\Rightarrow \ln\left(\frac{N_u}{g_u}\right) = \ln\left(\frac{N}{Q(T_{\text{rot}})} e^{-E_u/T_{\text{rot}}}\right)$$
(2)

$$= \ln\left(\frac{N}{Q(T_{\text{rot}})}\right) - \frac{E_u}{T_{\text{rot}}} \tag{3}$$

Now set: $\ln\left(\frac{N_u}{a_u}\right) = a + b E_u$

Then $b = -\frac{1}{T_{\rm rot}} \Rightarrow T_{\rm rot} = -\frac{1}{b}$ From $(b), b = -0.0105 \pm 0.00079$, hence $T_{\rm rot} = 95 \pm 7$ K.

d. Similarly, $a = \ln\left(\frac{N}{Q(T_{\rm rot})}\right) \Rightarrow N = Q(T_{\rm rot}) \ e^a$. Interpolating the data for Q at 95 K using <code>interp1d</code> in log space yields $Q(T_{\rm rot}) = 1057.86$. Hence $N = 1057.86 \times e^{27.7253} = 1.16 \times 10^{15} \ {\rm cm}^{-2}$, and $\Delta N = 1057.86 \times e^{27.7253} \times 0.07077 = 0.08 \times 10^{15} \ {\rm cm}^{-2}$. So $N = 1.16 \pm 0.08 \times 10^{15} \ {\rm cm}^{-2}$.