Solutions 2: CO vs. CS excitation

 $\mathbf{a}.$

$$E_J = B[J(J+1)] \Rightarrow \nu = E_{J+1} - E_J = B[(J+1)(J+2) - J(J+1)] = 2B(J+1) \text{ cm}^{-1} (1)$$

Convert cm⁻¹ to GHz: ν [GHz] = ν [cm⁻¹] × c[cm s⁻¹] × 10⁻⁹.

Molecule	$J+1{ ightarrow}J$	$\nu~({\rm cm}^{-1})$	ν (GHz)
CO	$1 \rightarrow 0$	2B = 3.8	115
CO	$7 \rightarrow 6$	$14\mathrm{B} = 26.9$	807
\mathbf{CS}	$1 \rightarrow 0$	2B = 1.6	49
CS	$7 \rightarrow 6$	14B = 11.4	343

b. In the two-level approximation, neglecting stimulated absorption and emission, we have:

$$\frac{n_u}{n_l} = \frac{n_c \ q_{lu}}{A_{ul}} \left[\frac{1}{1 + n_c \ q_{ul}/A_{ul}} \right]$$
(2)

 n_c is the density of the collision partner. q_{lu} is related to q_{ul} by: $q_{lu} = q_{ul} \frac{g_u}{g_l} \exp\left(-\frac{h\nu}{kT}\right)$. Hence:

$$\frac{n_u}{n_l} = \frac{n_c \ q_{ul}}{A_{ul}} \frac{g_u}{g_l} \exp\left(-\frac{h\nu}{kT}\right) \cdot \left[\frac{1}{1 + n_c \ q_{ul}/A_{ul}}\right] \tag{3}$$

$$g = 2J + 1 \Rightarrow \frac{g_u}{g_l} = \frac{2J_u + 1}{2J_l + 1} = 3, \text{ for } J_l = 0 \text{ and } J_u = 1. \text{ Therefore:}$$
$$\frac{n_1}{n_0} = 3\frac{n_c \ q_{10}}{A_{10}} \exp\left(-\frac{h\nu}{kT}\right) \cdot \left[\frac{1}{1 + n_c \ q_{10}/A_{10}}\right] \tag{4}$$

For CO:

•
$$\frac{n_c q_{10}}{A_{10}} = \frac{10^3 \ 2.6 \times 10^{-11}}{7.17 \times 10^{-8}} = 0.3626$$

• $\frac{h\nu}{kT} = \frac{3.8}{0.695 \times 20} = 0.2766$
• $\frac{n_1}{n_0} = 3 \times 0.3626 \times \exp(-0.2766) \cdot \frac{1}{1 + 0.3626} = 0.6$

For CS:

•
$$\frac{n_c q_{10}}{A_{10}} = \frac{10^3 \ 2.2 \times 10^{-11}}{1.75 \times 10^{-6}} = 1.26 \times 10^{-2}$$

• $\frac{h\nu}{kT} = \frac{1.6}{0.695 \times 20} = 0.1176$
• $\frac{n_1}{n_0} = 3 \times 1.26 \times 10^{-2} \times \exp(-0.1176) \cdot \frac{1}{1 + 1.26 \times 10^{-2}} = 0.03$

c. The outputs from the RADEX program can be found in "Radex_CO.pdf" and "Radex_CS.pdf" for CO and CS, respectively. These outputs were obtained using the line-command version of RADEX and include additional output (compared to the online version): wavelength, fluxes in $K \,\mathrm{km}\,\mathrm{s}^{-1}$ and in erg cm⁻² s⁻¹, and populations of the upper and lower levels of the transitions.

	CO(1-0)	CO(7-6)	$\mathrm{CS}(10)$	$\mathrm{CS}(76)$	
ν (GHz)	115	807	49	392	
$A_{ul} (\mathrm{s}^{-1})$	7.17×10^{-8}	3.42×10^{-5}	1.75×10^{-6}	8.39×10^{-4}	
$q_{ul} \; (\mathrm{cm}^3 \; \mathrm{s}^{-1})$	2.6×10^{-11}	7.7×10^{-11}	2.2×10^{-11}	4.2×10^{-11}	
$n_{\rm crit}~({\rm cm}^{-3})$	2.8×10^{3}	$4.4{ imes}10^5$	$7.95{ imes}10^4$	$2.0{ imes}10^6$	
Wavelength regime, 20 K	RJ	—	RJ	—	
Wavelength regime, 60 K	RJ	—	RJ	RJ	

Table 1: Some numbers and infor	mation
---------------------------------	--------

First note/recall that:

- Critical density: $n_{\rm crit} = A_{ul}/q_{ul}$ Optical depth: $\tau \propto N_u A_{ul}$ Einstein-A coefficient: $A_{ul} \propto \mu^2$, where μ = dipole moment; since $\mu(\rm CS) > \mu(\rm CO)$, CS has larger A_{ul} and a larger $n_{\rm crit}$ (see table). $\Rightarrow n_{\rm crit} \propto \mu^2$ and $\tau \propto N_u \mu^2$
- $T_{\rm R} \propto T_{\rm A} \propto I_{\nu} = I_{\nu}(0)e^{-\tau} + B_{\nu}(T)(1 e^{-\tau})$
 - In the optically thin case ($\tau \ll 1$) and weak background ($I_{\nu}(0) \ll 1$), we have $I_{\nu} \sim \tau B_{\nu}(T)$.
 - \rightarrow Additionally, in RJ regime¹, $I_{\nu} \propto \tau T \propto N_u \mu^2 T \Rightarrow T_R \propto N_u \mu^2 T$
 - In the optically thick case $(\tau \gg 1)$, we have $I_{\nu} \sim B_{\nu}(T)$.

 \rightarrow Additionally, in RJ regime, $I_{\nu} \propto T \Rightarrow T_{\rm R} \propto T$

Taking the above into consideration, we see that:

- For a given transition, since $\tau \propto N$, an increase in N leads to an increase in τ .
- As $n(H_2)$ increases, T_{ex} increases towards T_{kin} and when $n(H_2) > n_{crit}$, $T_{ex} \sim T_{kin}$ (LTE).
- If $n(H_2) > n_{crit}$ and $\tau \gg 1$, then $T_{\rm R} \sim T_{\rm kin} \sim T_{\rm ex}$.
- Increase in $T_{\rm kin}$ will lead to increase in $T_{\rm R}$ and τ . \rightarrow Additionally, as $n({\rm H}_2)$ tends to $n_{\rm crit}$, increase in $T_{\rm kin}$ will also lead to increase in $T_{\rm ex}$.
- CS vs CO: due to the higher dipole moment of CS, rotational excitation is more difficult to achieve for this molecule, hence $T_{\rm ex}(\rm CS)$ is lower for low $n(\rm H_2)$ and low $T_{\rm kin}$. Also at low $n(\rm H_2)$, N and T, population is dominated by radiation and CMB dominates the radiation field such that $T_{\rm ex} \sim T_{\rm CMB} \sim 2.8$ K for the low-J transitions of CS.
- High-J vs low-J lines: since $n_{\text{crit}} \propto \nu^3$, higher densities are needed to reach LTE for high-J compared to low-J transitions (e.g. J = 7 6 vs J = 1 0). Hence T_{ex} is generally lower with increasing J.

¹Rayleigh-Jeans regime: $h\nu \ll kT \Rightarrow B_{\nu}(T) \sim 2kT\nu^2/c^2 \propto T$

Also note that the following temperature and density conditions:

 $T = 60 \,\mathrm{K}, \, n(\mathrm{H}_2) = 10^5 \,\mathrm{cm}^{-3},$

in combination with $N = 10^{12}$ or 10^{14} cm⁻² yield a very interesting result for CS, namely that we get a negative T_{ex} ! This in fact corresponds to a maser, i.e. a population inversion.

<u>Final note</u>: As you may have noticed, T_{ex} is very high for, e.g., CS(1–0) with T = 60 K, $n(H_2) = 10^6$ cm⁻³ and $N = 10^{14}$ cm⁻². This is the explanation from Floris van der Tak:

"Suprathermal excitation of the ground state lines is a well-known effect in linear molecules, first described by Köppen & Kegel 1980 (A&AS 42, 59). The effect occurs for CO at densities around 10⁴ and for CS around 10⁶ cm⁻³, and modest column densities. The reason is that collision rates for $\Delta J = 2$ tend to be larger than for $\Delta J = 1$, leading to a "traffic jam" in the lowest levels. The effect is strongest at densities just below critical; at lower densities, the lines become weak masers whereas at higher densities, the excitation becomes thermalized. The main observable consequence is a large uncertainty on column densities derived from ground-state lines at densities just below critical. In this regime, the excitation temperature is very sensitive to the volume density."

d. This is because we assume a H₂ density below the critical density of each of these transitions. Hence we are not dominated by collisions and effects from background radiation are not negligible. For $n(H_2) = 10^5$ or 10^6 cm⁻³ the ratios given by RADEX will be very close to what you would calculate using the method in problem (b).