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Project Title:
An adversarial approach to self-consistent astrophysical simulations.

Summary

I propose to hire a graduate student to work on deep generative adversarial architectures for constructing
initial realizations and run-time validation of simulations. This approach is novel and may lead to entirely new
leadership in computer-aided astrophysics.

GANULATIONS

Initial conditions for simulations are generally motivated by mathematical principles describing the system’s
macroscopic characteristics. The actual starting point is then realized by random sampling from initial distri-
bution functions. After the simulations are finished, the result is compared to observations or analyzed in a
more theoretical context. To further study the initial parameter space, small variations in the initial conditions
are mapped in a systematic, human-guided fashion or via MCMC until the best match with the observations is
achieved.

This entire process can be automated using machine learning through a generative adversarial neural network
(GAN, discovered in 2014). Generative adversarial neural networks are deep architectures comprised of two
networks in a generator-discriminator setup. For GANULATIONS, the discriminator space (the observations) is
known, and the generator’s latent space (the initial conditions) are constrained by the underlying physics. Both
networks compete; one generates initial conditions (the generator), and the other tries to discover this impostor
from observations (the discriminator) as depicted in Fig. The GAN network iteratively takes physically
motivated realizations and maps these into conditions until the discriminator cannot tell whether the data
originated from the observations or the generator. A GAN is ideal for this semi-supervised approach, and
training improves continuously while more simulation and observational data become available.
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Figure 1: A GAN network setup generating realizations for simulations. The discriminator compares observations
with physically motivated initial conditions (top left). If the impostor is recognized new initial conditions are selected
(bottom left) to produce a new realization using the generator network (bottom right). Simulations start (top right)
when the discriminator network is unable to recognize the initial conditions as the impostor.

The advantage of using a GAN is that initial conditions can be motivated directly by observations: Observed
maps of column densities or ionization levels, stellar positions, velocities, etc. The GAN can subsequently,
generate a self-consistent realization that is directly motivated by the observations and constrained by the
theoretical framework (such as continuity, pressure gradients, kinematic structure, etc.). A GAN can deal with
incomplete observational data, such as limited spectral coverage, discrete evolutionary stages, partial spatial
coverage or the reduced dimensionality of the observations.
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Figure 2: A photo of Ghent city (left) is used together with a painting of van Gogh (right) to construct a new middle
image in which scenery (from Ghent) and style (from van Gogh) are combined [I].

In figure[2] we give an example of how this works. From an astrophysical perspective, one takes a numerically
generated set of initial conditions (represented with Ghent’s city to the left) and an observed temperature or
density structure of a molecular cloud (represented by a painting of van Gogh to the right). The GAN will
make a new distribution (middle image) consistent with the simulation results and the observations.

Eventually, the simulation results can also be compared with observations using a similar GAN setup. This
approach can be extended to an entire chronology of machine-validated simulation-results. This could lead to
initial conditions that are directly motivated by some observation, but in which also the temporally resolved
simulation results are validated with observations. This cascade of GAN validation steps at run-time leads to
a time-resolved consistency between simulations and observational data.

This is complicated, in particular, because the observed systems may intrinsically have different initial
conditions, which should not necessarily (and probably not desirable) lead to a converged GAN. On the other
hand, intrinsic variations in observational data, uncertainties in the initial conditions, freedom in the selected
parameter space and systematic errors in the observations will provide inherent freedom allowing the GAN to
find a Nash equilibrium.

The proposed setup of a single GAN has been demonstrated to arrive at a Nash equilibrium, but this does
not guarantee that they also converge in this complicated task. However, if GANs fails to converge we will
implement reinforcement-learning instead of unsupervised learning. This would be a revolutionary (high-risk)
approach, and the outcome cannot be predicted without trying.
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