
XPipeline: Starlight subtraction at scale for MagAO-X

Joseph D. Longa, Jared R. Malesa, Sebastiaan Y. Hafferta, Laird M. Closea,
Katie M. Morzinskia, Kyle Van Gorkoma, Jennifer Lumbresb, Warren Fosterb,

Alexander Hedglenb, Maggie Kautzb, Alex Rodackb, Lauren Schatzc, Kelsey Millerc,
David Doelmand, Steven Bosd, Matthew A. Kenworthyd, Frans Snikd, and

Gilles P. P. L. Ottene

aSteward Observatory, University of Arizona, Tucson, 933 N. Cherry Ave., Tucson, AZ 85721,
USA

bWyant College of Optical Sciences, University of Arizona, Tucson, 1630 E. University Blvd.,
Tucson, AZ 85721, USA

cAir Force Research Lab, Kirtland Air Force Base, New Mexico, USA
dLeiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
eAcademia Sinica, Institute of Astronomy and Astrophysics, 11F Astronomy-Mathematics

Building, NTU/AS campus, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan

ABSTRACT

MagAO-X is an extreme adaptive optics (ExAO) instrument for the Magellan Clay 6.5-meter telescope at Las
Campanas Observatory in Chile. Its high spatial and temporal resolution can produce data rates of 1 TB/hr or
more, including all AO system telemetry and science images. We describe the tools and architecture we use for
commanding, telemetry, and science data transmission and storage. The high data volumes require a distributed
approach to data processing, and we have developed a pipeline that can scale from a single laptop to dozens
of HPC nodes. The same codebase can then be used for both quick-look functionality at the telescope and for
post-processing. We present the software and infrastructure we have developed for ExAO data post-processing,
and illustrate their use with recently acquired direct-imaging data.

Keywords: coronagraphy, post-processing, high-performance computing

1. INTRODUCTION

Extreme adaptive optics, or ExAO, pushes the limits of adaptive optics to enable detection and characterization
of faint companions at small separations from their host stars. The MagAO-X instrument at the Magellan
Clay 6.5-meter telescope in Chile is designed to correct for atmospheric aberrations at 2 kHz with a pyramid
wavefront sensor (PWFS) and three deformable mirrors (DMs).1 The wavefront sensor and deformable mirror
data streams provide information on the state of the system beyond what is captured in the science focal planes.
This may prove useful for starlight subtraction, but scaling conventional starlight subtraction algorithms to
very large numbers of observations (or high-dimensional observations, or both) quickly becomes computationally
intractable due to the scaling behavior of large matrix decompositions.2 Nevertheless, MagAO-X is designed to
save every bit of information collected with the observation, and observers can access it for use in their analysis.

In order to enable efficient analysis of data from extreme adaptive optics instruments, we have prototyped
our instrument pipeline on top of distributed execution platforms which allow mostly-unchanged Python code
to distribute computations over multiple CPU cores and even multiple machines in a cluster configuration.
This work describes the movement of data and commands through the MagAO-X system and the XPipeline
post-processing architecture.

Send correspondence to J.D.L.: josephlong@arizona.edu.

ar
X

iv
:2

20
8.

07
35

4v
1

 [
as

tr
o-

ph
.I

M
]

 1
5

A
ug

 2
02

2

HTTPS/WebSocket

Optical system

Detectors

Deformable mirrors

Filter wheels

Stages & actuators

Real-time Control
Computer
(RTC)

12 TB SSD RAID5

images telemetry

12 TB SSD RAID5

images telemetry

Instrument Control
Computer
(ICC)

commands

images

telemetry

Instrument LAN InternetControl roomInstrument Electronics rack

Adaptive optics
Operator computer

(AOC)
Assistant
operators

Guest
observers

Remote
workstations

Control GUIs
Stream repeater

Observer Interfaces

commands

streaming images

device status

NFS

NFS
SSH/rsync

commands

streaming images

device status

SSH tunnels

observatory VPN

FITS export service

Web GUI

Figure 1. Command and data flow within MagAO-X, organized with the instrument hardware on the left and control
computers on the right. The adaptive optics control computer (AOC) runs control GUIs locally, but also serves as
the home for guest observer services like reduced-frame-rate image streams, web GUIs, and the service that produces
science-ready FITS files for observers.

2. BACKGROUND

The MagAO-X instrument is described in terms of its light path and its control loops elsewhere in these pro-
ceedings, but here we provide an overview of the path of machine-readable commands into the system and data
streams out of the system. The diagram in Figure 1 illustrates these pathways, and how they enable remote
operation and a loose coupling of user-interface code to the actual hardware control functionality.

2.1 Commanding and device status

The commanding of the MagAO-X instrument’s many controllable degrees of freedom, with the notable excep-
tion of latency-sensitive deformable mirror positions, is accomplished with the Instrument-Neutral Distributed
Interface, or INDI.3 The INDI protocol enforces an architecture in which all controllable instrument properties
are described by a deviceName.propertyName.elementName triple. Each property is either a number, a text
string, a switch, or a light (status indicator) with metadata like the valid limits (for a number) or the number
of simultaneously active elements allowed (for a switch). Client applications receive updates to properties they
indicate an interest in, and can send new values (which the receiving device process may or may not choose to
accept).

The protocol notably does not enforce access controls, leaving that to the application. In our system, all
INDI communication uses sockets bound to localhost, available only to software running on the same computer
or over SSH tunnels (which provide authentication and authorization).

The properties of interest to the AO operator are largely exposed through C++/Qt GUIs that run on the
operator workstation. However, since simple TCP sockets carry all commands, these can be used remotely on
any computer with the software installed. The software system for MagAO-X can be installed in an automated
fashion in a virtual machine (VM) which then connects to the instrument like any other workstation.4 This
remote operation capability proved invaluable during the pandemic when occupancy limits meant not everyone
who needed to use the instrument could access the lab or telescope control room.

To expose a subset of properties for guest observers and operators, the MagAO-X web GUI application wraps
them in a web-based interface that is simpler for guest observers to access without installing additional software
or creating a VM. This interface is shown in Figure 2. Since the user’s browser cannot communicate directly
with the INDI server (and devices), a Python server process translates commands to and from the INDI protocol
format. The resulting instrument state is connected to UI controls with Vue, a JavaScript library for building
application interfaces.

No special treatment is required to ensure properties set in Qt GUIs are updated in the web interface, or vice
versa. Likewise, the system does not need to distinguish between commands from a physically-present operator
sitting at the control computer and those from a remote operator.

Figure 2. The MagAO-X web interface is designed to balance flexibility with logical organization, so that new capabilities
added to the instrument require minimal bespoke code to integrate in the web interface. When attached to the Magellan
telescope, telescope control system (TCS) information is replicated to the web interface for guest observers and AO
operators who cannot see the telescope operator’s screen. The web UI also includes some sanity checks to warn operators
if their instrument configuration would do something they likely did not intend.

2.2 Streaming

Low-latency communication is accomplished through shared-memory images (“shmims”) provided as part of the
CACAO and MILK packages5,6 which implement synchronization primitives around a ring buffer. This data
structure allows the AO system to synchronize access to things like wavefront sensor images and DM commands.
MagAO-X also uses these images to hold science focal plane images as they are read out. Persisting science data
and AO data to disk is then accomplished identically, with a MagAO-X software process that reads these shared
memory images and writes them to a compressed format on the computer’s local RAID5 SSD array.

As the real-time control computer (RTC) may need to access images from the instrument control computer
(ICC), and the adaptive optics operator computer (AOC) needs to visualize both, it is necessary to replicate
these data over the network. A helper application watches for updates and transmits them over the instrument’s
local area network (LAN) to clients which write them into shared-memory images on the receiving computer
(“streaming images” in Figure 1). Remote operation uses a special mode of this same helper application that
limits the maximum frame rate, as even compressed data can saturate a consumer internet connection (“stream
repeater” in Figure 1).

2.3 Storage and access

For maximum throughput, image data (including DM commands and WFS images) are stored to a RAID5 array
of SSDs attached to the computer (ICC or RTC) where they are acquired or computed. Compression with the

launches
cluster

(e.g. on HPC)
Python
APIresearcher

laptop

HPC node 2
ray worker
process

xpipeline task
xpipeline task
xpipeline task

HPC node N
ray worker
process

xpipeline task
xpipeline task
xpipeline task

HPC node 1
xpipeline
process

ray head node
process

…

Figure 3. Illustration of the operation of XPipeline on an HPC cluster. The parent xpipeline process on HPC node 1
invokes separable subtasks within the pipeline as Ray “tasks”, which delegates responsibility for scheduling them and
retrieving their outputs to the Ray head node process. Ray workers contact the head node for assignments, and retrieve
task arguments over the network. The results are stored in a distributed fashion, to be retrieved by the controlling
xpipeline process or a downstream task. The xpipeline process uses the object references obtained from Ray at submission
to await the final results of the tasks, which are converted back into plain Python objects for manipulation in the parent
process.

eXtreme Reordered Image Format (XRIF) library7 is applied to the stream, achieving 2:1 or better size reduction
on integer image data.

Instrument telemetry like filter wheel states and camera temperatures is stored in a binary log format adjacent
to the image data. To obtain final images with associated metadata, the XRIF images have to be extracted with
access to the telemetry files from both RTC and ICC. To accomplish this, the RTC and ICC data arrays are
mounted with NFS on the operator computer. A system service (lookyloo) watches for active observations
(when an observer name and title are set, and the recording property is “on”) and extracts the image archives as
they become available using the MagAO-X xrif2fits utility. These science-ready images are exposed to guest
observers with SSH access via rsync.

3. DISTRIBUTED PIPELINE ARCHITECTURE

MagAO-X can produce thousands of images per second, with observations encompassing many GB or even TB of
data. To enable observers to continue to carry out quick-look data reductions on their own computers, while also
enabling scalability to larger computing facilities, we implemented a pipeline atop the Ray distributed execution
framework.8

In single-machine mode, parallel parts of the reduction pipeline (e.g. hyperparameter searches) can be run
in parallel on different CPU cores. In cluster mode, the same code can be run across multiple computers, with
Ray handling the serialization and deserialization of data over the network between them (Figure 3).

To validate our architecture, we used a 10,000 frame data cube taken with the gvAPP-180 coronagraph on
Clio with MagAO.9 This is a very finely temporally sampled dataset for Clio, but still a fraction of the number
of frames generated in a typical MagAO-X observation. The data acquired in April 2022 and the upcoming
December 2022 MagAO-X observing run will further test the limits of our architecture.

3.1 Distributed execution on HPC cluster resources

The task we chose to validate the architecture was a hyperparameter optimization grid for a modified version of
the Karhunen-Loève Image Projections (KLIP) starlight subtraction algorithm. Using 19 nodes with 94 accessible
cores each (1,786 total CPU cores), we applied XPipeline in cluster mode to the hyperparameter optimization
task. This involved applying the data reduction algorithm to the full data cube injected with a fake signal at 167
locations in the focal plane and four contrast levels (plus the no-injection case), then measuring the recovered
SNR at 11 different numbers of modes subtracted to determine the optimal hyperparameters for a blind search.
This test was executed on The University of Arizona’s Puma high-performance computing (HPC) cluster.

0 50 100 150 200 250 300 350
position angle [degree]

20

30

40

50

60

se
pa

ra
tio

n
[

/D
]

6.0

5.5

5.0

4.5

4.0

3.5

3.0

lo
g 1

0 c
on

tra
st

Figure 4. The calibrated contrast floor for an SNR=5 signal as a function of position angle and separation, shown in
unwrapped rectilinear coordinates after interpolation and contour-calculation. The focal plane sampling (black points,
also shown in Figure 5) gets finer in PA as separation increases. The final contrast surface exhibits clear structure with
two maxima in contrast as a function of PA.

5 0 5
resolution elements [/D]

8

6

4

2

0

2

4

6

8

re
so

lu
tio

n
el

em
en

ts
 [

/D
]

1.0 0.5 0.0 0.5 1.0
separation [arcsec]

1.0

0.5

0.0

0.5

1.0

se
pa

ra
tio

n
[a

rc
se

c]

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
separation [arcsec]

10 6

10 5

10 4

10 3

co
nt

ra
st

6.0

5.5

5.0

4.5

4.0

3.5

3.0

lo
g 1

0(
co

nt
ra

st
)

6

4

2

0

2

4

6
2 3 4 5 6 7 8

resolution elements [/D]

Figure 5. (left) The calibrated contrast floor for an SNR=5 signal in the example gvAPP-180 data as a function of position
in the final derotated focal plane. (middle) The SNR measured at each point with the optimal hyperparameters for that
focal plane location (without any injected signal). (right) The calibrated contrast curve as a function of separation, with
the shaded region encompassing the variation with position angle.

The gvAPP-180 coronagraph forms two complementary dark-hole regions, which means derotated images
will have a varying amount of coverage from one or both dark-hole regions. The contrast limits of direct imaging
data are expected to vary strongly with separation, but Figure 4 illustrates that it varies with position angle as
well in these data. As a result, the optimal hyperparameters for recovering a faint companion may not be the
same for a whole annulus (as in annular PCA starlight subtraction), but rather be specific to individual focal
plane locations. In Figure 5, the focal plane locations sampled are shown in the derotated frame, along with the
SNR of the detection map and the predicted contrast limits for each point grouped by separation.

3.2 High-throughput computing with the Open Science Grid

The Open Science Grid (OSG)10,11 is a free resource for US-based researchers that employs HTCondor for high-
throughput distributed computing. For tasks like a hyperparameter search, where each task is independent and
inputs are known ahead of time, the xpipeline grid tasks can be launched as multiple fully independent worker
processes and store their results separately. This use case for the xpipeline package is illustrated in Figure 6.
Using a Singularity container, the same execution environment can be made available on many different research
computing clusters that donate excess capacity to the Open Science Grid. We successfully employed xpipeline
on OSG for an experiment in Bayesian optimization of hyperparameters, about which we hope to share more in
future work.

4. CONCLUSIONS

The MagAO-X instrument control and data systems provide a wealth of information on instrument performance,
and, by persisting it all for later analysis, open the door to telemetry-informed starlight subtraction. However,

uploads
grid

specification

uploads data
to analyze

researcher
laptop

OSG storage

OSG submit host Institution 1
xpipeline
process

xpipeline
process …

Institution 2
xpipeline
process

xpipeline
process …

submit to HTCondor

collect results

Figure 6. Illustration of the operation of XPipeline on the Open Science Grid. Rather than farming the tasks out through
a central coordinator process, the task arguments are determined before submission and supplied to the xpipeline process
through HTCondor. This uses the grid framework in xpipeline, but does not necessarily leverage Ray.

data volumes are increasing faster than the capacity of individual researchers’ laptops. To develop the next
generation of ExAO pipelines, we will need to leverage new technologies to distribute computations and handle
data sets larger than any single computer’s available RAM.

To post-process ExAO data, we must attack the scalability problem from both the algorithmic and the ar-
chitectural angles. The Ray distributed execution framework provides a radically simplified API for distributing
computations from Python code, preserving researcher flexibility for quick iteration and extension to new algo-
rithms. We have not yet reached a point where we are bottlenecked on throughput by the underlying platform,
and anticipate RAM usage as our biggest limiting factor going forwards. The Open Science Grid provides a
wealth of free high-throughput computing resources, but scaling to the next order of magnitude in data volume
may push us beyond their preferred task sizes for efficient scheduling.

ACKNOWLEDGMENTS

This work has been supported by the Heising-Simons Foundation award #2020-1824 and NSF MRI Award
#1625441 (MagAO-X). Parts of this research were done using services provided by the OSG Consortium,10,11

which is supported by the National Science Foundation awards #2030508 and #1836650. S.Y.H. is supported
by NASA through the NASA Hubble Fellowship grant #HST-HF2-51436.001-A awarded by the Space Telescope
Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated,
under NASA contract NAS5-26555. This work also made use of High Performance Computing (HPC) resources
supported by the University of Arizona.

REFERENCES

[1] Males, J. R., Close, L. M., Guyon, O., Hedglen, A. D., Van Gorkom, K., Long, J. D., Kautz, M. Y., Lumbres,
J., Schatz, L., Rodack, A. T., Miller, K. L., Doelman, D. S., Snik, F., Knight, J. M., Morzinski, K. M.,
Gasho, V., Keller, C. U., Haffert, S. Y., and Pearce, L., “MagAO-X first light,” in [Adaptive Optics Systems
VII], Schmidt, D., Schreiber, L., and Vernet, E., eds., 218, SPIE, Online Only, United States (Dec. 2020).

[2] Long, J. D. and Males, J. R., “Unlocking Starlight Subtraction in Full-data-rate Exoplanet Imaging by
Efficiently Updating Karhunen–Loève Eigenimages,” The Astronomical Journal 161, 166 (Apr. 2021).

[3] Downey, E. C., “INDI: Instrument Neutral Distributed Interface (v1.7),” (June 2007).

[4] Long, J., Males, J., Pearce, L., Lumbres, J., Van Gorkom, K., Rodack, A. T., and Haffert, S. Y., “Remote
operation,” in [MagAO-X Instrument Handbook],

[5] Guyon, O., Sevin, A., Ltaief, H., Skaf, N., Martinache, F., Gratadour, D., Cetre, S., Males, J. R., Lozi,
J., Clergeon, C. S., Bernard, J., Norris, B., Wong, A., and Sukkari, D. E., “The compute and control for
adaptive optics (CACAO) real-time control software package,” in [Adaptive Optics Systems VI], Schmidt,
D., Schreiber, L., and Close, L. M., eds., 51, SPIE, Austin, United States (July 2018).

[6] Guyon, O., Sevin, A., Ferreira, F., Ltaief, H., Males, J. R., Deo, V., Gratadour, D., Cetre, S., Martinache,
F., Lozi, J., Vievard, S., Fruitwala, N., Bos, S. P., and Skaf, N., “Adaptive optics real-time control with the
compute and control for adaptive optics (Cacao) software framework,” in [Adaptive Optics Systems VII],
Schmidt, D., Schreiber, L., and Vernet, E., eds., 145, SPIE, Online Only, United States (Dec. 2020).

[7] Males, J. R., “Xrif.” GitHub https://github.com/jaredmales/xrif (Sept. 2021).

[8] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z., Paul, W.,
Jordan, M. I., and Stoica, I., “Ray: A Distributed Framework for Emerging AI Applications,” 17.

[9] Otten, G. P. P. L., Snik, F., Kenworthy, M. A., Keller, C. U., Males, J. R., Morzinski, K. M., Close, L. M.,
Codona, J. L., Hinz, P. M., Hornburg, K. J., Brickson, L. L., and Escuti, M. J., “On-Sky Performance Analy-
sis of the Vector Apodizing Phase Plate Coronagraph on MagAO/Clio2,” The Astrophysical Journal 834(2),
175 (2017).

[10] Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., Avery, P., Blackburn, K., Wenaus,
T., Würthwein, F., Foster, I., Gardner, R., Wilde, M., Blatecky, A., McGee, J., and Quick, R., “The open
science grid,” in [J. Phys. Conf. Ser.], 78 78, 012057 (2007).

[11] Sfiligoi, I., Bradley, D. C., Holzman, B., Mhashilkar, P., Padhi, S., and Wurthwein, F., “The pilot way
to grid resources using glideinwms,” in [2009 WRI World Congress on Computer Science and Information
Engineering], 2 2, 428–432 (2009).

https://github.com/jaredmales/xrif

	1 INTRODUCTION
	2 BACKGROUND
	2.1 Commanding and device status
	2.2 Streaming
	2.3 Storage and access

	3 Distributed pipeline architecture
	3.1 Distributed execution on HPC cluster resources
	3.2 High-throughput computing with the Open Science Grid

	4 CONCLUSIONS

