Lecture 14: Solar Cycle

@ Observations of the Solar Cycle
@ Babcock-Leighton Model




Observations of the Solar Cycle
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Hale’s Polarity Law

www.nso.edu
@ magnetic Carrington maps on 2 July 1988 and 28 May 1999
@ bipolar groups have constant magnetic polarity during one cycle
@ magnetic polarity is opposite on opposite hemispheres



ftp://nsokp.nso.edu/kpvt/synoptic/mag

Polar Fields
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@ polar fields change polarity in synchrony with bipolar regions
@ unipolar fields at the poles
@ 22-year magnetic cycle (Hale Cycle)



http://science.nasa.gov/ssl/pad/solar/dynamo.htm
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science.nasa.gov/ssl/pad/solar/sunspots.htm
@ latitude dependence with cycle noted by Scheiner and Carrington
@ studied in detail by Gustav Sporer
@ butterfly diagram



http://science.nasa.gov/ssl/pad/solar/sunspots.htm
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@ sunspot groups are tilted with respect to equator
@ tilt angle depends on lattitude (Joy’s Law)
@ leading spots are closer to equator than following



http://science.nasa.gov/ssl/pad/solar/dynamo.htm
http://www.ociw.edu/ociw/babcock/howardtalk.pdf
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Other Cycle Indicators

@ many solar
parameters depend
on solar cycle
emission in
chromospheric
lines

radio emission

cosmic rays




Long-Term Records

@ potential records
longer than
sunspot
observations

@ aurorae

@ radioactive
isotopes due to
cosmic rays
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ulysses.sr.unh.edu/NeutronMonitor/Misc/neutron2.html



http://ulysses.sr.unh.edu/NeutronMonitor/Misc/neutron2.html

@ cosmic rays: particles originating from outside the Earth’s
atmosphere, electrically charged, often with high energies,
mostly atomic nuclei

@ galactic cosmic rays from outside the solar system

@ anomalous cosmic rays coming from interstellar space at edge of
heliopause

@ Solar Energetic Particles from solar flares and coronal mass
ejections

@ galactic cosmic rays produce neutrons in the Earth’s atmosphere

@ solar cosmic rays rarely have high enough energy to produce
neutrons

@ solar and Earth’s magnetic field deflect cosmic rays
= anti-correlation between cosmic ray flux and sunspot cycle




Sun-Magnetosphere Interaction
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Carbon-14

UNtn=¥C+lH

mostly produced between 9 and 15 km
fast oxidation to carbon dioxide
radioactive CO? part of carbon cycle
half-life of about 5730 years
photosynthesis in plants absorbs #C

atmospheric *C content: equilibrium between production by
cosmic rays, radioactive decay, exchange with other reservoirs

14C 'frozen’ into dead plants and decays
knowing initial **C concentration is basis of radiocarbon dating

@ calibration with dated material such as tree-rings




Carbon-14 in Modern Times
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en.wikipedia.org/wiki/Radiocarbon_dating



http://en.wikipedia.org/wiki/Radiocarbon_dating

Solar Magnetic Field Relation
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Reconstructed Sunspot Numbers
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_o4 Solar Activity Proxies

%0,6 l‘

£o it | ) | i

g ! l ’h’ ll I||x f“ ’k n 150 8

gmz 1 n ”11205

2:01,4 l i ‘ E
16+ Ug)'

2

1400 1500 1600 1700 1800 1900 2000

Beryllium-10

@ fragmentation of nitrogen, oxygen by cosmic rays makes 1°Be
@ half-life 1.51 - 10° years, long-term cycle behavior

@ 19Be attaches to aerosols, then preticipates

@ time in atmosphere only weeks to 2 years




1.8 41

164 °
143
124

K
084
06 ]

10Be [104 atoms g-1]

043
0.2

Dye3

60

T T T T T T T
1440 1520 1600 1680 1760 1840 1920 Year AD

b

503

409

304

10Be [10 atoms cm2 y]

20 ]

GISP Il

80

T
Year BP 2.510*

t
210*
L

T
1.510*
L

1
110*
L

T
5000
L

[
704

604
503
404
304

19Be [10% atoms cmr2 y-1]

204
10

GRIP  E

Year BP

Beer 2000

T T T T T T ¥
4 510" 4510 410* 3510' 310* 2510

Long-Term 19Be Variation

@ short-term variations
reflect 11-year cycle

@ medium-term variations
reflect cycle amplitude

@ long-term variations
consistent with
geomagnetic field
variations

@ both medium and
long-term variations show
periodicity of 205 years




ago [T T T Differential Rotation

@ Christoph Scheiner
measured the equatorial
rotation rate and noticed
slower rotation at higher
latitudes

@ helioseismology provides
in-depth measurements of
360 1 the internal solar rotation
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http://soi.stanford.edu/press/GONG_MDI_03-00/

Babcock-Leighton Model

Babcock 1961

Stage 1: Poloidal Field

@ start with a pure dipole field (poloidal field)

@ located at constant depth under surface

@ magnetic field layer thickness d, assumed to be 0.05 solar radii
@ exits at about +55 degrees latitude



http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1961ApJ...133..572B

Poloidal Field (continued)

@ V.-B=0in integral form implies magnetic flux conservation

® = By2nrdg R cos ¢ = constant




Poloidal Field (continued)

@ V.-B=0in integral form implies magnetic flux conservation

® = By2nrdg R cos ¢ = constant

@ field strength given by
Bo

~ cos¢

By

with field strength at equator By ~ 20 Gauss




N Stage 2: Amplification
@ differential rotation
w = 14.38° — 2.77°sin’ ¢
@ differential rotation winds up
magnetic field

—

Babcock 1961


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1961ApJ...133..572B

Amplification (continued)
@ assume that amplification starts 3 years before start of new cycle
@ compared to polar rotation, wind-up after n years is

§ =17.6(n+3)sin¢

in radians per year




Amplification (continued)
@ assume that amplification starts 3 years before start of new cycle
@ compared to polar rotation, wind-up after n years is

§ =17.6(n+3)sin¢

in radians per year
@ inclination angle of field lines

tany = gz =35.2(n+ 3)sin¢cos ¢




Amplification (continued)
@ assume that amplification starts 3 years before start of new cycle
@ compared to polar rotation, wind-up after n years is

§ =17.6(n+3)sin¢

in radians per year
@ inclination angle of field lines

tany = gz =35.2(n+ 3)sin¢cos ¢

@ magnetic field
_
%cos 6 cos P




Amplification (continued)
@ assume that amplification starts 3 years before start of new cycle
@ compared to polar rotation, wind-up after n years is

§ =17.6(n+3)sin¢

in radians per year
@ inclination angle of field lines

tany = gz =35.2(n+ 3)sin¢cos ¢

@ magnetic field
_
%cos 6 cos P

@ fory~ 73
tan

B=B
OCOqu

=35.2(n+3)Bgsing
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Babcock 1961

Amplification (continued)

@ critical value for emergence of sunspots B; =~ 1100 Gauss
@ latitude where field reaches critical value is

15

sing =+
¢ n+3



http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1961ApJ...133..572B

Stage 3: Formation of Bipolar Magnetic
Regions

@ depth-dependence of differential rotation
and convective motion lead to
inhomogenous magnetic field = flux tube
approximation

@ total pressure equilibrium pe = p; + 25720

@ temperature inside and outside the same
= density lower inside magnetic field =
buoyancy lifts magnetic field to the
surface

STAGE 3 @ accounts for Hale’s polarity law, Sporer’s
Babcock 1961 law

@ Coriolis force also provides appropriate
tilt angles (Joy’s law)



http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1961ApJ...133..572B

Stage 4: Neutralization and Reversal of Dipole Field

Babcock 1961

@ active regions diffuse = magnetic field diffuses
@ opposite polarities drift towards equator and poles
@ poleward migration in higher latitudes assisted by meridional flow



http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1961ApJ...133..572B

Stage 5: Reversed Dipolar Field
@ residual magnetic field is a reversed dipole field
@ obtained after about 11 years
@ similar to Stage 1 but with reversed polarity




Discussion

@ Babcock-Leighton dynamo replaced in 1960s by mean-field
dynamo theory

@ mean-field dynamo theory has fundamental problems
@ revival of Babcock-Leighton-type models in early 1990s

@ Babcock-Leighton model produces excessively strong polar
surface magnetic fields

@ physical mechanism responsible for the regeneration of the
poloidal component of the solar magnetic field has not yet been
identified with confidence (Charbonneau 2005)

@ strong cycles last shorter than weak cycles, but diffusion time
should be proportional to cycle strength




