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Observational Evidence

DOT CaII K image close to the limb



DOT Hα image



TRACE Loops



SOLIS VSM Magnetic Field Distribution



Evidence from MHD Simulations

Stein & Nordlund, Quiet Sun



Thin Flux Tube Approximation

Force Balance
all relative length scales are large compared to tube diameter

neglect diffusion term in induction equation

equation of motion
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Radial Force Balance

force balance in general coordinate system

∇
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Plasma Beta

β =
2µ0p
B2

Plasma β: ratio of gas pressure to magnetic pressure

determines whether gas pressure or magnetic field ’pressure’ is
more important



Vertical Force Balance

in the z-direction (along the field lines)

∂p
∂z

= −ρg

with ideal gas law ρ = µp
kT

∂p
∂z

= −µg
kT

p

pressure as a function of height z

p (z) = p (z0) exp
(
−
∫ z

z0

1
H (z ′)

dz ′
)

with the pressure scale height

H (z) =
kT
µg
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2-D Simulations by Oskar Steiner



Small-Scale Magnetic Elements

A Little History

much of measured magnetogram
signal 0-100 Gauss

ratio of magnetograms in 2 spectral
lines with “only” different Landé
g-factors (line ratio technique)

indicates high field strengths of
1000-2000 Gauss

indicates that magnetic field is not
space-filling

filling factor describes fraction of
resolution element filled with
magnetic field
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Flux vs. Field Strength



Temperature Structure



Direct Detection of Concentrated Fields



Convective Collapse

A Description

kinetic equipartition field strength

B2

2µ0
=

ρ

2
v2

typical values in the photosphere: 400 G

magnetic field inhibits convection

reduced heating leads to lower temperature

correspondingly higher density makes material sink



G-Band Bright Points



Faculae

The Sun in White Light



The Sun without Limb Darkening



1-m Swedish Solar Telescope Observations by Lites et al. (2004)

3-D impression when looking at images
Faculae appear predominantly in plages
Facular brightenings on disk-center side of granules
Brightening can extend over about 0.5 arcsec
Narrow, dark lanes centerward of the facular brightening














