Lecture 12: Flux Tubes

@ Evidence for Flux Tubes

@ Thin Flux Tube Approximation
@ Small-Scale Magnetic Elements
Q@ Faculae




Observational Evidence

DOT Call K image close to the limb
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DOT Ha image




TRACE Loops
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Evidence from MHD Simulations

Stein & Nordlund, Quiet Sun
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Thin Flux Tube Approximation

@ all relative length scales are large compared to tube diameter
@ neglect diffusion term in induction equation
@ equation of motion

N B L F
p <6'[ +V- VV) = —Vp +] x B + Fgravity + Fuviscosity
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Thin Flux Tube Approximation

@ all relative length scales are large compared to tube diameter
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Radial Force Balance

@ force balance in general coordinate system
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@ in cylindrical coordinates, radial component
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Radial Force Balance
@ force balance in general coordinate system
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@ in cylindrical coordinates, radial component
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@ and therefore horizontal pressure balance
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Plasma Beta
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@ Plasma (: ratio of gas pressure to magnetic pressure

@ determines whether gas pressure or magnetic field 'pressure’ is
more important




Vertical Force Balance

@ in the z-direction (along the field lines)
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Vertical Force Balance
@ in the z-direction (along the field lines)
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Vertical Force Balance

@ in the z-direction (along the field lines)
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@ pressure as a function of height z
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@ with the pressure scale height
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2-D Simulations by Oskar Steiner
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Small-Scale Magnetic Elements

@ much of measured magnetogram
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Small-Scale Magnetic Elements

@ much of measured magnetogram
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Small-Scale Magnetic Elements

| @ much of measured magnetogram
| signal 0-100 Gauss

/ @ ratio of magnetograms in 2 spectral

L : lines with “only” different Landé

' g-factors (line ratio technique)

@ indicates high field strengths of
1000-2000 Gauss

@ indicates that magnetic field is not
space-filling

o @ filling factor describes fraction of

resolution element filled with
magnetic field
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Flux vs. Field Strengt

S2HEaE

s

1BeE Field strength

(Gauss)

A oA e

@ e
2.2 2.5 1.8 1.5 2.d = 2.2 4.8

Mean amplitude Stokes V Crl 5247 (%)




Temperature Structure
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Direct Detection of Concentrated Fields




Convective Collapse

A Description

@ kinetic equipartition field strength

B2
5 _ P2
Z/Lo 2

@ typical values in the photosphere: 400 G

@ magnetic field inhibits convection

@ reduced heating leads to lower temperature

@ correspondingly higher density makes material sink




G-Band Bright Points
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Faculae

The Sun in White Light




The Sun without Limb Darkening

MDI Intensitygram: 2004.02.12_17:36




1-m Swedish Solar Telescope Observations by Lites et al. (2004)

3-D impression when looking at images

Faculae appear predominantly in plages

Facular brightenings on disk-center side of granules
Brightening can extend over about 0.5 arcsec

Narrow, dark lanes centerward of the facular brightening




Observations by Lites et al. (2004) Simulation, 200 G
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Simulations by Keller,
Schiissler, Vogler, Zakharov,
ApJL 607, L59 (2004 May 20)
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¢ Largely consistent with “bright wall' model of Spruit (1976)

* Qualitatively similar features (dark lane followed by more extended
brightening) already apparent in 2D flux sheet models (e.g., Deinzer et al.
1984, Knolker & Schiissler 1988, Knolker et al. 1991)

¢ Expansion of flux concentrations with height and 3D geometry of
granules lead to limbward extension of facular brightenings significantly
in excess of the Wilson depression

* The same simple geometric effects lead to the formation of the narrow,
dark lanes centerward of the facular brightenings

magnetic
boundary
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