Lecture 11: Basic MagnetoHydroDynamics (MHD)

@ Motivation

@ Electromagnetic Equations

@ Plasma Equations

Q@ Frozen Fields

© Cowling’s Antidynamo Theorem




Why MHD in Solar Physics

Synoptic Kitt Peak Magnetogram over 2 Solar Cycles

| |




Evolution of Small-Scale Fields in the Quiet Sun

white line Cal 61034 line wing Cal 6103& Stokes V

time: 0 min




Electromagnetic Equations (S| units)

Maxwell's and Matter Equations Symbols

D electric displacement

VD= pe e electric charge density
V-B =0 H magnetic field vector
V xE + %7? -0 c speed of light in vacuum
- j electric current density
- 0D - - .
VxH-— i J E electric field vector
5 _ B magnetic induction
B — mjl t time

e dielectric constant

1 magnetic permeability
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Simplifications

@ use vacuum values: € = eg, it = pg

@ by definition: (eo,uo)_% =C

@ eliminate D and H and rearrange

Equations from before Simplified Equations

VB == pc
V-B =0

-~ 0B
E+— =0

V x +8t
-~ D -

H- = =

V x o j
D = ¢E
B = uH




Further Simplifications

@ magnetic field generation by currents and changing electrical
fields (displacement current)
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Further Simplifications

@ magnetic field generation by currents and changing electrical
fields (displacement current)

1 9E

B o+ &
VX MOJJcm&t

@ Maxwell's equations are relativistic
@ non-relativistic MHD, i.e. v <« ¢ where v typical velocity
@ neglect displacement current (see exercises)

V x B = o]
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Further Simplifications

@ neglect displacement current (see exercises)
V x B = o]

°oV. (V X I§) = 0= V-j =0, no local charge accumulation,
currents flow in closed circuits
@ magnetic dominates over electrical energy density

@ plasma is neutral, i.e. pc =0
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@ normally f: oE, o is electrical conductivity

@ plasma moving at non-relativistic speed with respect to electrical
and magnetic fields

@ j; = oE due to electrical field

°ojr=0 (\7 X I§) due to transformation to rest frame

@ Ohm’s law for neutral plasma

Tza(é—i—VXé)




Induction Equation

VXB:,qu,VXEZ—%,]ZU<E+VXB)




Induction Equation

VxB=po, VxE=-Z, J_U<E+va)

@ eliminate E and |

%?:—Vx(—Vx§+if>:Vx(\7><I§>—V><<77V><I§)

n =1/ (uoo): magnetic diffusivity




Induction Equation

-|
1

VxB=po, VxE=-Z, J_U<E+va)

@ eliminate E and |

o8

—— . = -
B =-Vx (—VXB+O_J> =V x (va)—Vx (anB)
n =1/ (uoo): magnetic diffusivity
@ using V x (V X I§) :V<V~I§) — (V- V) B we obtain the
induction equation

%?:VX<\7><§)+WZ§
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Interpretation of Induction Equation
8 L 3
aat:Vx (v ><B)+77VZB

e for given Vv, B can be determined with induction equation and
V-B=0

@ first term describes generation of magnetic fields by plasma
motions and magnetic field

@ field cannot be created, only amplified

@ second term describes Ohmic diffusion

@ second term can mostly be neglected because of large length
scales (often (wrongly) called infinite conductivity limit)

@ ratio of magnitudes of the two terms with typical length, velocity
scales I, v is magnetic Reynolds number
Iv

Rm:f
n




Magnetic Reynolds Number in the Sun
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Electric Field Interpretation
@ electrical current is determined byf: V X qu
@ electrical field, but not current is determined by

Q |—

E—=_VxB+

oV xB produces electric field of order

-1
E,.g ~ VB ~ 100Vm

with v=1000 ms~! and B=1000 G
%fproduces electric field of order

1B
~—— ~107°Vm™1

Uuol

5]

assuming a typical length scale of | = 10’ m and a conductivity
of o = 10° mho m~?
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Electrical Conductivity

@ Spitzer conductivity provides easy way to calculate the
conductivity of plasma

@ in temperature minimum region, number of electrons to neutral
atoms is p¢ = 0.001

@ since less than 10~ of hydrogen is ionized, most electrons must
come from metals

@ collision frequency is high enough so that charged particles
transfer momentum to neutrals

@ despite small relative electron numbers, plasma can be
considered as a single medium
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Plasma Equations
Mass Conservation and Equation of Motion

@ magnetic field and mass flows coupled by induction equation
@ plasma motion must also obey other laws
@ mass convservation

op o
ﬁ‘l‘V'(pV)—o

where p is mass density
@ equation of motion (force balance)

o BB L F
p (011 +vVv- VV) =-Vp+)xB+ Fgravity+ I:viscosity

@ perfect gas law with gas constant R and mean atomic weight u:
R
p=

= —pT
1
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Lorentz Force

@ Lorentz force fx B perpendicular to field lines

@ motion and density variations along field lines must be produced
by other forces

@ rewrite Lorentz force in terms of B alone
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@ use vector identity for triple vector product
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e first term: magnetic tension, i.e. variations of B along B, effect
when field lines are curved

@ second term: magnetic pressure




Lorentz Force

@ Lorentz force fx B perpendicular to field lines

@ motion and density variations along field lines must be produced
by other forces

@ rewrite Lorentz force in terms of B alone

fxl§:(Vx§)xi

@ use vector identity for triple vector product

fxé:(ﬁ-v)i—v<2i>

e first term: magnetic tension, i.e. variations of B along B, effect
when field lines are curved

@ second term: magnetic pressure
@ along magnetic field lines, the two components cancel




Magnetic Tension Force

@ magnetic tension force (B V)

5 |o




Magnetic Tension Force

@ magnetic tension force (I§ \Y %
B =

@ write magnetic field as

B dBS LB B2ds
pods” ' po ds

ds \ 2u0 o Re

where 1 is the principle normal to the field line and R. is the
radius of curvature of the field line

=1




Frozen Fields

The Theorem

@ for Ry > 1, typical for the Sun, induction equation becomes
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Frozen Fields

The Theorem

@ for Ry > 1, typical for the Sun, induction equation becomes

OB T
a0 V x (v X B)
and Ohm'’s law becomes

E4+VxB=0

@ Frozen flux theorem by Alvén:

In a perfectly conducting plasma, magnetic field lines
behave as if they move with the plasma.
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The Proof

5 4

ds

@ consider closed curve ¢ enclosing surface S moving with plasma

@ intime ot, a piece Js of curve ¢ sweeps an element of area
Vit x ds

@ magnetic flux of B (\76t X 575) passes through this area

@ magnetic flux through S is given by [[ B.dS
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The Proof

@ rewrite flux through the sides B - (\75t X 63) as —6tV x B - 65

@ rate of change of magnetic flux through S is then given by

// .dS — jfvxé.dé

first term due to change of magnetic field in time, second due to
motion of boundary

@ with Stokes’ theorem, second term becomes

—/SVX<\7xI§)-d§

@ rate of change of magnetic flux through S

JL (5w (x8))- &0
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Cowling’s Antidynamo Theorem

Why generating magnetic fields is not easy

T.G.Cowling (1934):
A steady axisymmetric magnetic field cannot be maintained.

@ steady process = & =0
@ axial symmetry = % = 0 in cylindrical coordinate system

(r,¢,2)
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Toroidal and Poloidal Components

@ separate magnetic field into
azimuthal (toroidal) and poloidal
(radial and axial) components

@ consider only B, in meridional
planes through axis

The Proof
@ magnetic configuration must be the same in all meridional planes
® B, field lines closed because ;2 = 0 and therefore V - By =0

@ at least one neutral point where l§p =0




The Proof

@ in points where By, = 0: B = By,




The Proof

@ in points where By, = 0: B = By,

@ j, # 0 because V x B :uof




The Proof

@ in points where By, = 0: B = By,

@ j, # 0 because V x B = uof
e integrate Ohm's law 1] = E + V x B through curve c of all neutral

points
flj*-ds*:fé-dswf\?xé.ﬁ
cO c c




The Proof

@ in points where By, = 0: B = By,

@ j, # 0 because V x B = uof
e integrate Ohm's law 1] = E + V x B through curve c of all neutral

points
1- . - o T
fj-ds:fE-dSJrfva.ds
cO c c

@ since ds has only azimuthal component and using Stokes’

theorem
f1j¢ds:/(vX|§).d§+j{\7x§.d§
cO S I




The Proof

@ in points where By, = 0: B = By,
@ j, # 0 because V x B = uof
e integrate Ohm's law 1] = E + V x B through curve c of all neutral

points
1- . - o T
fj-ds:fE-derfva.ds
cO c c

@ since ds has only azimuthal component and using Stokes’

theorem
f1j¢ds:/(vX|§).d§+j{\7x§.d§
cO S I

obuthﬁ:—%—%:Oandel§-d§:O




@ in points where By, = 0: B = By,
@ j, # 0 because V x B = uof
e integrate Ohm's law 1] = E + V x B through curve c of all neutral

points
1- . - o T
fj-ds:fE-derfva.ds
cO c c

@ since ds has only azimuthal component and using Stokes’

theorem
f1j¢ds:/(vX|§).d§+j{\7x§.d§
cO S I

obuthﬁ:—%—%:Oandel§-d§:O

e therefore ¢, 1j,ds = 0, which cannot be




