Lecture 6: Polarimetry 1

@ Fundamentals of Polarized Light
@ Descriptions of Polarized Light

@ Polarized Light in Solar Physics

@ SOLIS VSM: A Modern Instrument
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Fundamentals of Polarized Light

Electromagnetic Waves in Matter

@ electromagnetic waves are a direct consequence of Maxwell’s
equations

@ optics: interaction of electromagnetic waves with matter as
described by material equations

@ polarization properties of electromagnetic waves are integral part
of optics




Maxwell's Equations in Matter Symbols

) D electric displacement
VD =4mp p electric charge density
VxH_ 10D _ 4r- H magnetic field vector
cat ¢ c speed of light in vacuum
V xE + 108 =0 f electric current density
;atg _ 0 E: electric.fie_ld vec_tor
B magnetic induction
t time




Linear Material Equations

¢ dielectric constant

[ magnetic permeability
o electrical conductivity
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Linear Material Equations

¢ dielectric constant

[ magnetic permeability
o electrical conductivity

D = ¢E
B =puH
j=0E

Isotropic and Anisotropic Media

@ ¢ and p are scalars for isotropic media
@ ¢ and p tensors of rank 2 for anisotropic media

@ isotropy of medium can be broken by
e anisotropy of material itself (e.g. crystals)

e external fields (e.g. Kerr effect)




Wave Equation in Matter

@ static, homogeneous medium with no net charges (p = 0)

@ for most materials ;=1
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Wave Equation in Matter

@ combination of Maxwell's and material equations leads to
differential equations for a damped (vector) wave

@ E and H are equivalent

@ interaction with matter almost always through E

@ but: at interfaces, boundary conditions for H are crucial
@ damping controlled by conductivity o




Plane-Wave Solutions

Plane Vector Wave ansatz

E— Eoei(lz.z—wt)

spatially and temporally constant wave vector

normal to surfaces of constant phase

wave number

spatial location

angular frequency (27 x frequency)

time

Eo a (generally complex) vector independent of time and space
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Plane-Wave Solutions

Plane Vector Wave ansatz

E— Eoei(lz.z—wt)

K spatially and temporally constant wave vector

K normal to surfaces of constant phase
k| wave number

X spatial location

w angular frequency (27 x frequency)

t time
Eo a (generally complex) vector independent of time and space
@ damping if K is complex

@ real electric field vector given by real part of E




Complex index of refraction

@ after doing temporal derivatives = Helmholtz-equation
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Complex index of refraction
@ after doing temporal derivatives = Helmholtz-equation
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v2E+°"Cz"<e+|M>E:o,

w

@ dispersion relation between K and w

R 2 4
K-k="2 <e+i”>
C w

@ complex index of refraction

. 4 oo WP
A2 = <e+|m>, K-K=2f2
w




Complex index of refraction
@ after doing temporal derivatives = Helmholtz-equation

- 2 4 -
v2E+°"Cz"<e+|M>E:o,

w

@ dispersion relation between K and w

@ split index into purely real and imaginary parts:

n=n-+ik

n: (real) index of refraction, k: extinction coefficient



Transverse Waves
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@ plane-wave solution must also fulfill Maxwell’'s equations
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Eg-k=0, Ho-k=0
- Rk =
Ho:DTXEo

k|

@ isotropic media: electric, magnetic field vectors normal to wave
vector = transverse waves
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Transverse Waves

@ plane-wave solution must also fulfill Maxwell’'s equations

@ isotropic media: electric, magnetic field vectors normal to wave
vector = transverse waves

) EO, I:|0, and K orthogonal to each other, right-handed vector-triple
@ conductive medium = complex A, I§0 and I—To out of phase

@ E, and Hy have constant relationship = consider only one of two
fields
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@ Poynting vector




Energy Propagation

@ Poynting vector
- C - -
S= - (ExH)

47

° |§|: energy through unit area perpendicular to S per unit time
@ direction of S is direction of energy flow




Energy Propagation
@ Poynting vector

@ time-averaged Poynting vector given by
- C - -,
<s> ~ o-Re (Eo x HO) ,

Re real part of complex expression
* complex conjugate
(.) time average




Energy Propagation

@ time-averaged Poynting vector given by
- C - -,
<s> ~ o-Re (Eo X HO) ,

Re real part of complex expression
* complex conjugate

(.) time average
=\ c [ K
S =
< > 8r W E ’ K|

@ energy flow parallel to wave vector (in isotropic media)




Polarization

@ spatially, temporally constant vector Eo lays in plane
perpendicular to propagation direction k
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Polarization

@ represent Eg in 2-D basis, unit vectors €; and €,, both
perpendicular to k
EO = Elél + Ezéz.
E,, E,: arbitrary complex scalars

@ damped plane-wave solution with given w, K has 4 degrees of
freedom (two complex scalars)

@ additional property is called polarization
@ many ways to represent these four quantities
@ if E; and E; have identical phases, E oscillates in fixed plane




Description of Polarized Light

E’ (t) _ E’Oei(lz-)?fwt)
éo = Elei‘51§x + Ezeiézéy
@ wave vector in z-direction

@ €, €y: unit vectorsin x, y
directions

@ Eq, E5: (real) amplitudes
@ 01 : (real) phases




Description of Polarized Light

Polarization Ellipse 3
E’ (t) _ E’Oei(k-)?fwt)
EO = Elei‘51§x + Ezeiézéy
@ wave vector in z-direction

@ €, €y: unit vectorsin x, y
directions

@ Eq, E5: (real) amplitudes
@ 01 : (real) phases

Polarization Description

@ 2 complex scalars not the most useful description
@ at given X, time evolution of E described by polarization ellipse
@ ellipse described by axes a, b, orientation v
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@ beam in z-direction
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Jones Formalism

beam in z-direction
€x, €y unit vectors in x, y-direction

. ( Ex
(&)
phase difference between Ey, Ey multiple of 7, electric field

vector oscillates in a fixed plane = linear polarization
phase difference +7 = circular polarization

complex scalars Ey y
Jones vector




Summing and Measuring Jones Vectors

EO == Exéx + Eyéy

. ([ E
e_(Ey>

@ Maxwell's equations linear = sum of two solutions again a
solution

@ Jones vector of sum of two waves = sum of Jones vectors of
individual waves if wave vectors k the same

@ addition of Jones vectors: coherent superposition of waves




Summing and Measuring Jones Vectors

EO == Exéx + Eyéy

. ([ E
e_(Ey>

@ elements of Jones vectors are not observed directly

@ observables always depend on products of elements of Jones
vectors, i.e. intensity

| =€e-e" =exey +eye§,




Jones matrices

@ influence of medium on polarization described by 2 x 2 complex

Jones matrix J
—, — \]11 \]12 > —
&' =Je= e .
< Jo1 J2

@ assumes that medium not affected by polarization state

@ different media 1 to N in order of wave direction, combined
influence described

J=InIn1e - d2dn

@ order of matrices in product is crucial

@ Jones calculus describes coherent superposition of polarized
light
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@ monochromatic light: purely theoretical concept
@ monochromatic light wave always fully polarized
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Quasi-Monochromatic Light

@ real life: light includes range of wavelengths =
quasi-monochromatic light

@ gquasi-monochromatic: superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in narrow
range d\ around central wavelength A\
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Quasi-Monochromatic Light

@ gquasi-monochromatic: superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in narrow
range d\ around central wavelength A\

oA
— <1
A
@ measurement of quasi-monochromatic light: integral over

measurement time tp

@ amplitude, phase (slow) functions of time for given spatial
location

@ slow: variations occur on time scales much longer than the mean
period of the wave




Polarization of Quasi-Monochromatic Light

@ electric field vector for quasi-monochromatic plane wave is sum
of electric field vectors of all monochromatic beams

—

E (t) = Eo (t) e/ (k¥—1)

@ can write this way because 6\ < Ag




Polarization of Quasi-Monochromatic Light

@ electric field vector for quasi-monochromatic plane wave is sum
of electric field vectors of all monochromatic beams

E (t) = Eo (t) e/ (k¥—1)
@ can write this way because 6\ < Ag
@ measured intensity of quasi-monochromatic beam

o w2 L
(BE)+(E8)) = im T /Wz Ex(VE; (1) + Ey (DE; (t)dt ,

(---): averaging over measurement time tp,.
@ measured intensity independent of time

@ Quasi-monochromatic: frequency-dependent material properties
(e.g. index of refraction) are constant within A\




Stokes and Mueller Formalisms

@ need formalism to describe polarization of quasi-monochromatic
light
@ directly related to measurable intensities
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@ need formalism to describe polarization of quasi-monochromatic
light
@ directly related to measurable intensities

@ Stokes vector fulfills these requirements

| ExEx + EyEy EZ +EZ
| Q|- ExEx — EyEy _ EZ —EZ

U ExEy + EyEx 2E1E, cos

\Y i (ExEy — EyEy) 2E,E;siné

Jones vector elements Ey y, real amplitudes E; », phase
difference § = 9, — d1




Stokes and Mueller Formalisms

@ need formalism to describe polarization of quasi-monochromatic
light
@ directly related to measurable intensities

@ Stokes vector fulfills these requirements

| ExEx + EyEy EZ +EZ
| Q|- ExEx — EyEy _ EZ —EZ

U ExEy + EyEx 2E1E, cos

\Y i (ExEy — EyEy) 2E,E;siné

Jones vector elements Ey y, real amplitudes E; », phase
difference § = 9, — d1

o
1>2>Q%+U%2+V2,




Stokes Vector Interpretation

[ intensity

Q | _ linear @ — linear 90
U | | linear 45 — linear 135
\% circular left— right
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Stokes Vector Interpretation

[ intensity

Q | _ linear @ — linear 90
U | | linear 45 — linear 135
\% circular left— right

—

@ degree of polarization

,/Q2+U2+V2

P —
|

1 for fully polarized light, O for unpolarized light

@ summing of Stokes vectors = incoherent adding of
guasi-monochromatic light waves




Mueller Matrices

@ 4 x 4 real Mueller matrices describe (linear) transformation
between Stokes vectors when passing through or reflecting from
media

—

I

I
=

@ N optical elements, combined Mueller matrix is

M = MyMy_1 - - MaMy




Polarized Light in Solar Physics

Magnetic Field Maps from Longitudinal Zeeman Effect




Second Solar Spectrum from Scattering Polarization
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SOLIS Vector-Spectro-Magnetograph (VSM)

Provide unique observations to understand

@ the solar activity cycle

@ sudden energy releases in the solar atmosphere (flares,
coronal mass ejections)

@ solar irradiance changes and relationship to global change

Magnetic field

@ Line-of-sight component of photospheric magnetic field:
Averaged over 2 Mm?, sensitivity = 1 gauss, zero point stable to
0.1 gauss, time for a full disk map = 15 minutes

@ Transverse component of the photospheric magnetic field: Same
parameters as line-of-sight component except sensitivity > 20
gauss.




Science Requirements

Parameter Specification

angular element 17125 by 17125

angular coverage 2048" by 2048”
geometric accuracy <05 rms after remapping
motion in RA +0.25° for flat-fielding
scan rate in Dec 0.2-5.0 s/

timing accuracy better than 1 ms

spectral resolution 200,000

wavelength ranges 630.2 +0.1 nm
polarimetry 630.2 nm: ,Q,U,V
polarimetric sensitivity 0.0002 per pixel in 0.5 s
polarimetric accuracy  0.001

image stabilization >40 Hz to improve spatial resolution




Design Challenges

@ compact instrument no longer than 2.5 m

@ athermal optical design that is stable at varying ambient
temperatures

@ high guiding accuracy of better than 0”5 rms

@ low instrumental polarization of less than 1 - 103

large wavelength range (630 to 1090 nm) with constant
magnification

high spectral resolution of 200,000

highest possible throughput

high energy densities of up to 20 W/cm?

high data rate of up to 300 MByte/s




Concept in Proposal

Vector Spectromagnetograph

Ritchey-Chretien, f/7.4, d=50cm

corrector, prefilter,
60 cm

polarization modulation ~ collimating
polarization calibration ~ '€"S
window

= P RN

<> imaging lens
flat field
optics

slit
field lens H
grating 95:5%
H beamsplitter
Littrow lens

" guider
mask, beamsplitter,
camera




On the Computer
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Aligning the Optics




Ready for Science




