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Chapter 1

Basic Concepts of Optics

The polarization properties of electromagnetic waves is an integral part of optics. As such, it is
useful to review the basic physics upon which polarimetry is based. Electromagnetic waves are a
direct consequence of Maxwell’s equations. The interaction of electromagnetic waves with matter
as described by the material equations is the basis of optics. While it is possible to derive the
properties of waves in anisotropic media of arbitrary electrical conductivity, it is more instructive
to study the special cases that have a direct relation to most applications in polarimetry. In this
chapter, we concentrate on the propagation of electromagnetic waves in isotropic, homogeneous
media.

1.1 Electromagnetic waves in isotropic, homogeneous media

1.1.1 Maxwell and material equations

The basic physical equations on which polarimetry is based are the Maxwell equations ([?]). Here
we look at the macroscopic electrical and magnetic fields, i.e. the fields are averaged over a volume
that is large compared to the size of individual atoms and molecules. However, the volume may
still be small with respect to the wavelength of light. The Maxwell equations are:

∇ ·D = 4πρ, (1.1)

∇×H − 1
c

∂D

∂t
=

4π
c

j, (1.2)

∇×E +
1
c

∂B

∂t
= 0, (1.3)

∇ ·B = 0. (1.4)

In the order of occurence, D is the electric displacement, ρ is the electric charge density, H is the
magnetic field vector, c is the speed of light in vacuum, j is the electric current density, E is the
electric field vector, and B is the magnetic induction. As usual, t is the time. The first equation
describes Coulomb’s law, the second describes Ampère’s law, the third describes Faraday’s law,
and the fourth equation supresses magnetic monopoles.

The first two equations, and therefore D and H describe the interaction of electromagnetic
fields with matter via electrical charges and currents. The Maxwell equations are, however, insuffi-
cient to describe electromagnetic fields in matter, and we need to add equations that relate D, H,
and j to E and B. In general, these material equations (or constitutive equations) are non-linear
and time-dependent. Any anisotropy of the medium is reflected in these relations. It is often useful
to write the relations in the following form:

D = E + 4πP ,

B = H + 4πM , (1.5)
j = σE .
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4 CHAPTER 1. BASIC CONCEPTS OF OPTICS

P is the electric polarization, M is the magnetic polarization, and sigma is the eletric conductivity,
i.e. Ohm’s law. Media for which σ 6= 0 are called electric conductors. For metals, σ decreases with
temperature, while for semiconductors, σ increases with temperature. Media that have sufficiently
small σ are called insulators or dielectrica.

Of course, the matieral equations 1.5 do not make the relation any simpler, but puts all the
complications into P and M . However, writing the relation in this way has some advantages:
ferroelectric and ferromagnetic materials have non-vanishing P and M , respectively, even in the
absence of external fields.

External electric and magnetic fields can introduce internal electric and magnetic dipole (and
higher order multipole) fields in matter, which are, to first order, linear in the electric and magnetic
fields, respectively. The material equations 1.5 can then also be written as

D = εE ,

B = µH , (1.6)
j = σE .

ε is the dielectric constant and µ is the magnetic permeability. For anisotropic media, these two
scalars need to be replaced with the corresponding tensors of rank 2 (see Chapter ??). Note that
the isotropy of a medium can be broken by the anisotropy of the material itself (e.g. crystals, see
Chapter ??) or by external fields (e.g. Kerr effect, see Chapter ??).

For sufficiently large field strengths, the relations between D,H and E,B become non-linear,
e.g. D also depends on the product of components of E. Such strong fields can be generated with
focusing lasers or strong external fields. This is the area of non-linear optics, which is outside the
scope of this book.

For vacuum, both scalars ε and µ are unity. For air, they are almost unity. For most materials,
µ is almost unity, but for magnetic materials, it significantly deviates from unity. If µ < 1, we call
a medium diamagnetic, and for µ > 1 it is called paramagnetic.

1.1.2 Wave equation

In a static, homogeneous medium (vanishing spatial and temporal derivatives of ε, µ, and σ) that
has no (net) charge density (ρ = 0), Maxwell’s equations 1.4 can be combined with the latter form
of the material equations 1.6 (see e.g.[?]) to

∇2E − µε

c2
∂2E

∂t2
− 4πµσ

c2
∂E

∂t
= 0, (1.7)

which is the classical differential equation for a damped wave. The assumption of vanishing charge
density (ρ = 0) is justified for any good conductor by the fact that the relaxation time for the
charge density is much shorter than the inverse frequency of the electromagnetic wave (see e.g.[?]).

The magnetic field vector H obeys the equivalent damped wave equation

∇2H − µε

c2
∂2H

∂t2
− 4πµσ

c2
∂H

∂t
= 0, (1.8)

The electric and magnetic field vector are therefore completely equivalent. However, in almost all
materials relevant for polarimetry, the fundamental interaction between light and matter occurs
through the magnetic field, which is the reason why we will often only consider the electric field
vector, E. Nevertheless, the magnetic field vector H is also important, in particular when con-
sidering interfaces between different media. The boundary conditions that apply to the magnetic
field vector at these interfaces has considerable consequences for the transmission and reflection at
such interfaces.

The magnitude of the damping term ∂E
∂t in Eq. 1.8 is controlled by the finite conductivity σ.

For non-conducting media (σ = 0), the wave is not attenuated by the medium. Finite conductivity
(σ > 0) implies conversion of energy in the electromagnetic wave into thermal energy via Joule
heating (e.g.[?]). The latter is proportional to the conductivity and the electrical field squared.
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Good conductors such as metals therefore are extremely good absorbers. As we shall see, along
with the absorption goes a high reflectivity, which makes metals good mirros and therefore useful
in optics.

1.1.3 Plane-wave solutions to the wave equation

The wave equation can be solved by making the following damped plane-wave ansatz

E = E0e
i(k·x−ωt) (1.9)

where the spatially and temporally constant wave vector k is normal to the surfaces of constant
phase and its magnitude is the wave number. x is the spatial location, ω is the angular frequency,
and t is the time. E0 is a (generally complex) vector independent of time and space. The damping
is made possible by allowing the wave vector k to be complex. A complex E is, of course, not
realistic, which implies that the real field vector is given by the real part of the right hand side of
Eq. 1.9.

We have made a crucial choice in this plane wave ansatz, which will carry on throughout the
rest of the book. An equally valid ansatz would be the one with the opposite sign of the phase
term, i.e. E′ = E0e

−i(k·x−ωt). The only important part is the fact that the spatial term k · x and
the temporal term ωt have opposite signs. While one is free to choose one of the two forms, it is
absolutely crucial to consistently use the same definition since this influences the signs of many
equations to come, and in particular the sign of phase differences. Too many books on optics do
not consistenly use the same definition of a plane wave, which has led to considerable confusion.
In the following, I will always use the form shown in Eq. 1.9 and indicate when this choice has an
influence on other equations, which should facilitate the comparison with equations in books that
use the alternate plane wave ansatz. The sign convention used here is in agreement with the usual
definition of plane waves in quantum mechanics as well as the books by Jackson and Born and
Wolf.

When using the plane-wave ansatz in Eq. 1.9, it is useful to list the influence of the various
vector operators and derivatives on these plane waves. They are summarized in the following
relations

∇ ·E = ik ·E (1.10)
∇×E = ik ×E (1.11)
∂

∂t
E = −iωE (1.12)

∂2

∂t2
E = −ω2E (1.13)

By carrying out the temporal derivatives in 1.8 using this plane-wave ansatz, one obtains

∇2E +
ω2µ

c2

(
ε+ i

4πσ
ω

)
E = 0, (1.14)

which is the Helmholtz wave equation. Of course, our ansatz is also a solution of this equation. In
general, ε, µ, and even σ depend on the angular frequency ω.

In order for our ansatz to solve Eq. 1.14, the dispersion relation relating k2 to the angular
frequency ω by

k · k =
ω2µ

c2

(
ε+ i

4πσ
ω

)
(1.15)

must hold.
By defining the complex index of refraction ñ by

ñ2 = µ

(
ε+ i

4πσ
ω

)
, (1.16)
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one obtains

k · k =
ω2

c2
ñ2 . (1.17)

It is customary to split the complex index of refraction into purely real and imaginary parts,
i.e.

ñ = n (1 + iκ) = n+ ik, (1.18)

where n is the (real) index of refraction. κ and k have many names, and the same names have been
used for either quanitities by different authors. In the following, we will call κ the attenuation index
and k the extinction coefficient. To avoid confusion, the length of the wave vector will always be
written in the form |k|, and k is reserved for the imaginary part of the complex index of refraction.
Either form of writing the complex index of refraction simplifies some of the equations in the
following. For consistency, however, we will always use the form ñ = n + ik. When using the
alternate form of the plane-wave ansatz, the sign of the imaginary part of the complex index of
refraction changes, i.e. ñ′ = n− ik.

The plane-wave ansatz must not only fulfill the wave equation, but it must also fulfill all of
Maxwell’s equations. For ∇ ·E = 0 and ∇ ·B = 0 to hold requires that

E0 · k = 0, (1.19)
H0 · k = 0. (1.20)

The electric and magnetic field vectors of electromagnetic waves in isotropic media are therefore
perpendicular to the wave vector, i.e. we deal with purely transverse waves.

The other two Maxwell equations imply

H0 =
ñ

µ
s×E0 , (1.21)

where s is a unit vector in the direction of k, i.e.

k = |k| s . (1.22)

E0, H0, and k are therefore orthogonal to each other and form a right-handed vector-triple.
E0 and H0 only have the same phase if the the index of refraction of the medium, ñ, is a purely
real quantity, i.e. the medium is not conductive. In a conductive medium with a complex ñ, E0

and H0 are out of phase. Finally, E0 and H0 have a constant relationship, which makes it possible
to only consider one of the two fields.

1.1.4 Energy propagation and the Poynting vector

The flow of energy density associated with an electromagnetic field is given by the Poynting vector
S,

S =
c

4π
(E ×H) . (1.23)

The magnitude of the Poynting vector is the amount of energy that flows through a unit area
perpendicular to S within one time unit. Its direction is the direction of the energy flow.

For a plane-wave with complex amplitudes, the time-averaged Poynting vector is given by

〈S〉 =
c

8π
Re (E0 ×H∗0) , (1.24)

where Re indicates the real part of a complex expression, ∗ indicates the complex conjugate, and
〈.〉 indicates the time average. For a monochromatic wave as considered here, it is sufficient to
average over one period of the wave to obtain the time average. The additional factor 1

2 comes
from the time average of the harmonic wave amplitude (

〈
sin2

〉
= 1

2 . Using the relation between
H0 and E0 in Eq. 1.21, we can write the time-averaged Poynting vector as

〈S〉 =
c

8π
|ñ|
µ
|E0|2 s . (1.25)



1.2. POLARIZATION 7

The Poynting vector is therefore parallel to the wave vector. However, this is only true for homo-
geneous, isotropic media and does not hold for arbitrary media.

The time-averaged energy density in a unit volume for a plane wave is given by

〈u〉 =
|ñ|2

8πµ
|E0|2 . (1.26)

Dividing the length of the Poynting vector by the energy density provides the velocity of the energy
density flow, which is given by

v =
c

|ñ|
, (1.27)

which is the well-known result that electromagnetic waves propagate at the speed of light, which
is reduced by a factor |ñ| in a medium as compared to the speed of light in vacuum.

1.2 Polarization

As we have seen above, the spatially and temporally constant vector E0 lays in a plane perpendic-
ular to the propagation direction s. It therefore makes sene to represent E0 in a two-dimensional
basis with unit vectors e1 and e2, both of which are perpendicular to the propagation direction s

E0 = E1e1 + E2e2. (1.28)

E1 and E2 are arbitrary complex scalars.
For a damped plane-wave solution of the wave equation 1.8 with a given angular frequency ω

and a given direction of the wave vectors, we have four degrees of freedom (two complex scalars)
in terms of the exact form of the wave. This additional property is called polarization. There are
many ways to represent these four quantities, which we will discuss in detail in Chapter ??. For
the rest of this chapter it is sufficient to realize that if the phases of E1 and E2 are identical, the
electric field vector will oscillate in a fixed plane, the orientation of which is such that its normal
is perpendicular to k and determined by the ratio of the amplitudes of E1 and E2.

One could equally well define the polarization of light by using an equivalent decomposition of
the magnetic field vector as compared to the electric field vector used above. The reason to prefer
the electric field vector is due to the fact that the interaction of light with electrons is dominated
by the electric field of the electromagnetic wave as compared to the magnetic field.

1.3 Quasi-monochromatic light

Monochromatic light as considered in the previous sections is a theoretical concept that has no
equivalent in nature. This is true even for lasers that have clearly defined wavelengths. Laser
lines have a very narrow distribution of wavelengths, but they are not monochromatic. By defi-
nition, monochromatic light is always fully polarized. Due to Heisenberg’s uncertainty principle,
monochromatic light implies infinite measuring times, which is unrealistic.

Light found in real life therefore needs to be expressed in terms of light that includes a range of
wavelengths, even though this range can be very narrow, as is the case with lasers. This is called
quasi-monochromatic light, since its properties are very similar to monochromatic light.

Quasi-monochromatic light can be described as a superposition of mutually incoherent monochro-
matic light beams whose wavelengths vary in a narrow range δλ around a central wavelength λ0.
Narrow in the present context is defined as

δλ

λ
<< 1 . (1.29)

The coherence time ∆t is then given by

∆t =
λ2

0

cδλ
. (1.30)
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For all practical purposes discussed in this book, the coherence time is much shorter than the
typical speed with which common detectors work.

A measurement involving quasi-monochromatic light can then be written as the integral over
the measurement time tm. Since by definition, tm >> ∆t, it is customary to determine the limit of
the integral when tm goes to infinity. One can show that this limit exists for all practical purposes
(see Born and Wolf for some mathematical details).

A quasi-monochromatic plane wave can be written in the same way as a monochromatic plane
wave with the difference that the amplitude and phase are (slow) functions of the time for a given
spatial location. Slow in this context means that variations occur on time scales much longer than
the mean period of the wave, 2π

ω . The electric field vector for a quasi-monochromatic plane wave
is the sum of electric field vectors of all monochromatic beams and is therefore given by

E (t) = E0 (t) ei(k·x−ωt) . (1.31)

The reason for being able to write this is in the form is due to the fact that the range of wavelengths
is small compared to the wavelength itself. This notation is, of course, only valid within the
coherence length ∆t

c .
The measured intensity of a quasi-monochromatic beam can then be expressed as

〈ExE
∗
x〉+

〈
EyE

∗
y

〉
= lim
tm−>∞

1
tm

∫ tm/2

−tm/2
Ex(t)E∗x(t) + Ey(t)E∗y(t)dt , (1.32)

where 〈· · ·〉 indicates the averaging over the measurement time tm. Obviously, the measured
intensity is independent of time.

Quasi-monochromatic also implies that frequency-dependent material properties such as the
index of refraction can be assumed to be constant within the wavelength range ∆λ.

1.4 Polychromatic light or white light

When the wavelength range of light is comparable to its wavelength, i.e. δλ
λ ∼ 1, then we call

this polychromatic light. Polychromatic light can be thought of as the (incoherent) sum of quasi-
monochromatic beams that have large variations in wavelength. For such a broad wavelength range,
we cannot write the electric field vector in a plane-wave form, and we have to explicitely take into
account frequency-dependent meterial characteristics. Nevertheless, the intensity of polychromatic
light is given by the sum of intensities of the constituting quasi-monochromatic beams since the
(time-averaged) cross-products vanish because we assume incoherent superpositions.



Chapter 2

Description of Polarized Light

As we have seen in Chapter 1, the polarization of an electromagnetic wave can be expressed with
two complex scalars. While this provides a very general description of polarized light, it is not
always the most useful notation. Over the years, various other descriptions of the polarization have
been developed, each having its particular advantages and disadvantages. This chapter presents
the most common descriptions and discuss their range of applications.

2.1 Polarization Ellipse

We can write the plane-wave equation 1.9 in the form

E (t) = E0e
i(k·x−ωt) (2.1)

with
E0 = E1e

iδ1ex + E2e
iδ2ey. (2.2)

ex and ey are unit vectors in the x and y directions, respectively. The beam propagates along
the z-axis. The coefficients E1 and E2 are the (real) amplitudes and δ1,2 are the phases. At a
given point x, the time evolution of the electric field vector is described by an ellipse. Equation ??
describes two equations, one for each of the x and y components of the electrical field vector,Ex(t)
and Ey(t), respectively. These are the real parts of the x and y components of Eq. ??. The two
equations can be combined to obtain(

Ex (t)
E1

)2

+
(
Ey (t)
E2

)2

− 2
(
Ex (t)
E1

)(
Ey (t)
E2

)
cos δ = sin2 δ , (2.3)

where δ = δ1 − δ2 (see e.g. Born and Wolf for the derivation). Figure 2.1 shows the ellipse with
the various parameters used here.

The three parameters E1, E2, and δ are related to the major axis 2a, the minor axis 2b, and
the orinentation ψ of the major axis with respect to the positive x-axis by the relations

a2 + b2 = E2
1 + E2

2 (2.4)
tan 2ψ = tan 2α cos δ (2.5)
sin 2χ = sin 2α sin δ , (2.6)

where the ellipticity is given by the ratio of the axes of the ellipse,

tanχ = ± b
a
. (2.7)

The two signs indicate the direction in which the electric field vector describes the ellipse, either
clockwise or counter-clockwise. α is given by

tanα =
E2

E1
. (2.8)

9



10 CHAPTER 2. DESCRIPTION OF POLARIZED LIGHT

E
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y

b

a

!

Figure 2.1: The polarization ellipse that describes the time evolution of the electric field vector at
a fixed location in space. a and b are the major and minor semi-axes, ψ is the orientation of the
ellipse, and E1, 2 are the amplitudes in the x and y directions respectively.

For an ellipticity of 0, we have linear polarization with an orientation of ψ with respect to the
positive x-axis, while for b

a = 1 we have circularly polarized light. For this case it becomes evident
that we need both signs of the ratio. Otherwise it would be impossible to distinguish between
the two senses of circular polarization since all the other parameters are identical for left- and
right-circular polarization.

2.2 Jones formalism

2.2.1 Jones vector

The Jones formalism is most closely related to the description given in Chapter 1. There we had
the following equation for the spatially and temporally invariant complex amplitude of the electric
field vector:

E0 = E1e1 + E2e2. (2.9)

At that point we only specified that e1 and e2 are basis vectors in a plane perpendicular to the
direction of propagation. In principle, the vectors could be complex. For the Jones formalism,
we use unit vectors along the x and y axes as basis vectors. We then combine the two associated
complex scalars Ex and Ey into a complex vector of length 2. If the electromagnetic wave travels
along the z-axis, the Jones vector describing the polarization of this wave contains the complex
amplitude electrical field in the form

e =
(
Ex
Ey

)
. (2.10)



2.2. JONES FORMALISM 11

The most intuitive way to understand the Jones vector is obtained by separating each vector
component into an amplitude and a phase factor. The amplitudes can then be interpreted as the
amplitude of the electric field vector projected onto the x and y directions, respectively. The phase
difference between the x and y components represents the (constant) phase difference between the
two electric field components. This phase difference is a crucial property that directly influences
the type of polarization. If the two components have a phase difference that is a multiple of π,
the electric field vector oscillates in a fixed plane. If the phase difference is ±π2 , we have circularly
polarized light. We are left with one more phase factor, which describes the absolute phase of the
wave with respect to a given coordinate system. At the wavelengths discussed in this book, we only
measure intensities, and the absolute phase is therefore not important. However, when superposing
(adding) Jones vectors, one needs to keep track of the relative phases of the various vectors. In
almost all cases, adding a constant phase to all vectors involved does not change observable effects.
In many cases, it is therefore practical to set one of the phases or the sum of the phases to zero.

Since the wave equation derived from Maxwell’s equations is linear, the sum of two solutions is
again a solution. When considering two waves of the same angular frequency ω and the direction of
propagation, the Jones vector of the sum is the sum of Jones vectors of the individual waves. The
addition of Jones vectors therefore describes a coherent superposition of waves, and it inherently
assumes that the waves have the same frequency and direction of propagation. it can be shown
that is still is a good approximation as long as the directions of propagations are almost but not
exactly the same.

Elements of Jones vectors, i.e. the complex electric field amplitudes are not observed directly
by detectors in the wavelength range considered here. Therefore, observables always depend on
products of the elements of Jones vectors such as the intensity I of the wave,

I = e · e∗ = exe
∗
x + eye

∗
y, (2.11)

where ∗ indicates the complex transpose operation. Similar to the phase issue, it is rare that we
deal with absolute intensities, which is why the Jones vectors are often normalized to unit intensity.
However, when adding Jones vectors, it is crucial to keep their relative amplitudes.

Let us look at some examples of normalized Jones vectors whose absolute phase is neglected.
Light that is linearly polarized in the x-direction e0 (subscript 0 for horizontal) is represented by

e0 =
(

1
0

)
, (2.12)

and similarly, light polarized in the y-direction e90 (subscript 90 for 90◦ or vertical) is represented
by

e90 =
(

0
1

)
, (2.13)

and light polarized at +45◦ is represented by

e+45 =
1√
2

(
1
1

)
, (2.14)

Finally, left and right circularly polarized light are represented by

el =
1√
2

(
1
−i

)
(2.15)

and

er =
1√
2

(
1

+i

)
. (2.16)

Using the Jones vectors, we can create circularly polarized light of unit intensity by adding a
horizontally and a vertically linearly polarized wave, each having an intensity of 1

2 (corresponding
to an amplitude of 1√

2
:

1√
2

(
1
0

)
+

1√
2

(
0
ei
π
2

)
=

1√
2

(
1

+i

)
= er. (2.17)

Here we have made use of the fact that eiφ = cosφ+ i sinφ.
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2.2.2 Jones matrix

The influence of a medium on the polarization property of an electromagnetic wave can be described
by a 2 by 2 complex matrix J, the Jones matrix. If the original Jones vector is e, the Jones vector
after passing the medium is given by

e′ = Je =
(
J11 J12

J21 J22

)
e . (2.18)

It is important to realize that this makes the assumption that the propoeries of the medium are
not affected by the polarization state of the wave passing through it, i.e. this is valid in the area
of linear optics.

The simplest form for a Jones matrix is the case of vacuum, i.e.

Jvacuum =
(

1 0
0 1

)
. (2.19)

If a medium only changes the overall phase of the wave (e.g. a phase aberration in the Earth’s
atmosphere) by φ, the Jones matrix is described as

J =
(
eiφ 0
0 eiφ

)
. (2.20)

Such a matrix does not change the phase difference between the two Jones vector components, and
therefore does not influence the polarization of the passing wave. Another simple Jones matrix is
the one for a horizontal linear polarizer:

J =
(

1 0
0 0

)
. (2.21)

It is easy to verify that an arbitrarily polarized wave will be transformed into a horizontally
linearly polarized wave. Of course, a vertically polarized wave will not be transmitted at all. We
will introduce more complicated Jones matrices in Part II where we discuss various optical elements
that affect the state of polarization.

When a wave successively passes through N different media (numbered 1 to N in order of the
wave passing through them), the combined influence of all media on the polarization of the wave
as indicated by the Jones matrix J is described by the product of the individual Jones matrices Ji,
i.e.

J = JNJN−1 · · · J2J1 (2.22)

The order of the matrices in the product is crucial because Jones matrices do not commute in
general (J1J2 6= J2J1).

Often we know the Jones matrix of a medium acting on a polarized wave. If we want to know
the Jones matrix of the medium at a different angle, we can make use of the following relation:

J′ = R(−α)JR(α) , (2.23)

where the rotation matrix R is given by

R =
(

cos θ sin θ
− sin θ cos θ

)
. (2.24)

This is easy to derive when considering the transformation of a Jones vector under rotation around
the z-axis (recall that the electric field vector only has x and y components).

The Jones calculus is the adequate way to describe the coherent superposition of polarized light
because it operates on amplitudes rather than on intensities. Coherent superposition is important
when considereing coherent light such as produced by lasers, interference effects, and the influence
of optical aberrations on polarization. However, Jones vectors and matrices can only describe 100%
polarized light because a monochromatic wave is always 100% polarized.
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2.3 Coherency, Density, or Polarization Matrix

As we have seen above, observables need to be expressed as products of Jones vectors or their
elements, which is somewhat unsatisfactory. It would be nice if we had a way to have a formal-
ism that directly involves measurable quantities. Another limitation is the restriction to strictly
monochromatic waves, which are always fully polarized. In nature, most of the light is not polar-
ized because it is an incoherent superposition of many waves. The Jones formalism can only deal
with coherent superpositions.

To deal with incoherent superpositions, i.e. adding the intensities and not the amplitudes of
the waves, we need to find a description that involves suitably chosen products of the Jones vector
components. The coherency matrix (also callsed density matrix or polarization matrix) formalism
provides such an approach. It was introduced by Wiener (19??) and Wolf (????).

Going back to our representation of the spatially and temporally invariant part of the complex
electric field vector in the plane perpendicular to the propagation direction,

E0 = Exex + Eyey, (2.25)

we can write the coherency matrix C as

C = E ⊗E∗, (2.26)

where ⊗ is the tensor product (also called outer product) and ∗ indicates the complex conjugate
transposed. Writing out the tensor product, we obtain

C =
(
C11 C12

C21 C22

)
=
(
ExE

∗
x ExE

∗
y

EyE
∗
x EyE

∗
y

)
. (2.27)

It is evident that the sum of the diagonal elements (also called the trace of a matrix and written
as Tr) is equal to the intensity of the wave,

I = C11 + C22 = TrC = ExE
∗
x + EyE

∗
y . (2.28)

It is clearly a Hermitian matrix since C = C∗. Furthermore, it can be shown that its determinant
is positive:

detC = C11C22 − C12C21 ≥ 0. (2.29)

A density matrix with purely diagonal elements of the same magnitude describes unpolarized
light.

For a rotation of the coordinate system, the coherency matrix transforms as follows:
The coherency or density matrix approach is closely related to the quantum-mechanical density

matrix approach. It is therefore particularly useful in the quantum-mechanical study of radiative
transfer. However, for purely technical calculations, on which we focus here, it does not have any
substantial advantages over the other approaches. Nevertheless, it is an important approach to
describing polarized light.

2.4 Stokes parameters, vectors, and Mueller matrices

2.4.1 Stokes vector

“... the Stokes parameters are simple linear combinations of correlations that may exist between two
mutually orthogonal components of the electric vector perpendicular to the direction of propagation
of a fluctuating electromagnetic plane wave.” (Wolf 2003).

The Stokes vector is similar to the density matrix formalism discussed above in that it describes
averages of quantities related to the electric field vector. The components of the Stokes vector are
measurable quantities, and Stokes vectors transform linearly when passing through a medium.
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The four components of a Stokes vector I have been indicated with various characters:

I =


I
Q
U
V

 =


I
M
C
S

 =


s0

s1

s2

s3

 =


I1
I2
I3
I4

 , (2.30)

where the first form is used in many modern texts dealing with Stokes parameters, the second form
can be found in some of the older texts (e.g. Perrin 1942), while the last two forms are useful when
applying methods of linear algebra to Stokes vectors.

In terms of our plane wave descriptions using real or complex amplitudes, the Stokes vector
has the following forms:

I =


ExE

∗
x + EyE

∗
y

ExE
∗
x − EyE∗y

ExE
∗
y + EyE

∗
x

i
(
ExE

∗
y − EyE∗x

)
 =


E2

1 + E2
2

E2
1 − E2

2

2E1E2 cos δ
2E1E2 sin δ

 (2.31)

where Ex,y are the complex amplitudes of the electric field vector, E1,2 are the (real) amplitudes
of the electric field vector in the x and y axes, and δ is the phase difference between the two
components. The components of the Stokes vector are therefore real and obey the following
inequality:

I2 ≥ Q2 + U2 + V 2 . (2.32)

For completely polarized light, the equality holds. Otherwise, polarized light obeys the inequality.
It makes therefore sense to define the degree of polarization as

P =

√
Q2 + U2 + V 2

I
, (2.33)

which is 1 for fully polarized light, and 0 for unpolarized light.
Addition of Stokes vectors corresponds to incoherently adding two beams, i.e. the two beams

are uncorrelated in terms of amplitudes and phases.

2.4.2 Mueller matrices

Mueller matrices describe the (linear) transformation between Stokes vectors associated with op-
tical elements and surfaces, i.e.

I ′ = MI , (2.34)

Mueller matrices have the following form:

M =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 . (2.35)

When a beam of light passes through N optical elements, each described by a Mueller matrix
Mi, the combined Mueller matrix M′ of the whole assembly is given by

M′ = MNMN−1 · · ·M2M1 (2.36)

Note the reversed order of the Mueller matrices as compared to the order in which the light passes
through the optical elements. This order is important since Mueller matrices do not commute in
general.

Rotation of elements described by Mueller matrices are given by

M′ = R(−α)MR(α) , (2.37)
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where α is the rotation angle and the rotation matrix R is given by

R (α) =


1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1

 . (2.38)

Since Stokes vectors and Mueller matrices operate on intensities and their differences, i.e.
incoherent superpositions of light, they are not adequate to describe interference nor diffraction
effects. However, they are ideally suited to describe partially polarized and unpolarized light.

2.5 Poincaré Sphere

Since a Stokes vector for a fully polarized beam obeys the following relationsship

I2 = Q2 + U2 + V 2 , (2.39)

we can think of this as the equation describing a sphere in cartesian coordinates labeled Q, U ,
and V . Without loss of generality, one can assume unit intensity, which makes the sphere have a
radius of 1. A Stokes vector for a fully polarized beam then corresponds to a point on the sphere’s
surface. Points within the surface can be thought of as representing partially polarized light. This
is the Poincaré sphere as first described by Henri Poincaré in 1892 in his book on the mathematical
theory of light (Poincaré 1892).

The influence of optical elements on polarized light that do not change the degree of polarization
can then be described by transformations on the sphere’s surface, i.e. rotations around an axis
that goes through the center of the sphere, which are largely exercies in spherical geometry. The
Poincaré sphere has been used extensively in the past, in particular before the Mueller matrix
approach was established. However, the advent of computers that can easily deal with large sets
of Mueller matrices has rendered the Poincaré sphere formalism rather unimportant. However,
it sometimes offers unique ways to understand certain issues such as the operation of achromatic
retarders.

The plane defined by the Q and U axes defines the equator. Purely linearly polarized light is
therefore represented by a point on the equator. Since Q and U are 90◦ apart on the Poincaré
sphere, but in real space Q becomes U by a 45◦ rotation, the location of a linearly polarized beam
with an orientation of its plane of polarization at angle θ is then represented by a point on the
equator at ‘longitude’ 2θ, where the zero or Greenwich longitude is defined by a purely linearly
polarized beam with only Stokes Q. Circularly polarized light is located at the poles of the sphere.
Apart from this special locations, other locations on the sphere represent elliptically polarized
light.

2.6 Important polarization states in various formalisms
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Table 2.1: Normalized polarization states in various formulations.
description Jones coherency Stokes ellipse
unpolarized — (1,0,0,0) —
linear at 0◦ (1,1,0,0)
linear at 90◦ (1,-1,0,0)
linear at 45◦ (1,0,1,0)
linear at -45◦ (1,0,-1,0)
linear at φ (1,q,u,0)
right circular (1,0,0,1)
left circular (1,0,0,-1)
elliptical (1,q,u,v)


