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Why MHD in Solar Physics

Synoptic Kitt Peak Magnetogram over 2 Solar Cycles
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Evolution of Small-Scale Fields in the Quiet Sun
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Electromagnetic Equations (SI units)

Maxwell’s and Matter Equations

∇ · ~D = ρc

∇ · ~B = 0

∇× ~E +
∂~B
∂t

= 0

∇× ~H − ∂~D
∂t

= ~j

~D = ε~E
~B = µ~H

Symbols
~D electric displacement
ρc electric charge density
~H magnetic field vector
c speed of light in vacuum
~j electric current density
~E electric field vector
~B magnetic induction
t time
ε dielectric constant
µ magnetic permeability
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Simplifications
use vacuum values: ε = ε0, µ = µ0

by definition: (ε0µ0)
− 1

2 = c

eliminate ~D and ~H and rearrange

Equations from before

∇ · ~D = ρc

∇ · ~B = 0

∇× ~E +
∂~B
∂t

= 0

∇× ~H − ∂~D
∂t

= ~j

~D = ε~E
~B = µ~H

Simplified Equations

∇ · ~E =
ρc

ε0

∇ · ~B = 0

∇× ~E = −∂
~B
∂t

∇× ~B = µ0
~j +

1
c2
∂~E
∂t
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Further Simplifications
magnetic field generation by currents and changing electrical
fields (displacement current)

∇× ~B = µ0
~j +

1
c2
∂~E
∂t

Maxwell’s equations are relativistic
non-relativistic MHD, i.e. v � c where v typical velocity
neglect displacement current (see exercises)

∇× ~B = µ0
~j

∇ ·
(
∇× ~B

)
= 0⇒ ∇ ·~j = 0, no local charge accumulation,

currents flow in closed circuits
magnetic dominates over electrical energy density
plasma is neutral, i.e. ρc = 0
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Charge Neutrality
electrically neutral plasma: n+ − n− � n
charge imbalance ρc = (n+ − n−)e

from ∇ · ~E = ρc
ε0

we get

ρc ≈
ε0E

l

using ∇× ~E = −∂~B
∂t

E
l
≈ B

t
with t = l/v

ρc ≈
ε0vB

l
charge neutrality condition becomes

ε0vB
el
� n

condition is well satisfied in solar photosphere
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Generalized Ohm’s Law

normally~j = σ~E , σ is electrical conductivity
plasma moving at non-relativistic speed with respect to electrical
and magnetic fields
~j1 = σ~E due to electrical field
~j2 = σ

(
~v × ~B

)
due to transformation to rest frame

Ohm’s law for neutral plasma

~j = σ
(
~E + ~v × ~B

)
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Induction Equation

∇× ~B = µ0
~j , ∇× ~E = −∂

~B
∂t
, ~j = σ

(
~E + ~v × ~B

)
eliminate ~E and~j

∂~B
∂t

= −∇×
(
−~v × ~B +

1
σ
~j
)

= ∇×
(
~v × ~B

)
−∇×

(
η∇× ~B

)
η = 1/ (µ0σ): magnetic diffusivity

using ∇×
(
∇× ~B

)
= ∇

(
∇ · ~B

)
− (∇ · ∇) ~B we obtain the

induction equation

∂~B
∂t

= ∇×
(
~v × ~B

)
+ η∇2~B
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Interpretation of Induction Equation

∂~B
∂t

= ∇×
(
~v × ~B

)
+ η∇2~B

for given ~v , ~B can be determined with induction equation and
∇ · B = 0
first term describes generation of magnetic fields by plasma
motions and magnetic field
field cannot be created, only amplified
second term describes Ohmic diffusion
second term can mostly be neglected because of large length
scales (often (wrongly) called infinite conductivity limit)
ratio of magnitudes of the two terms with typical length, velocity
scales l , v is magnetic Reynolds number

Rm =
lv
η
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Magnetic Reynolds Number in the Sun
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Electric Field Interpretation

electrical current is determined by~j = ∇× ~B
µ0

electrical field, but not current is determined by

~E = −~v × ~B +
~j
σ

~v × ~B produces electric field of order

E~v×~B ∼ vB ∼ 100Vm−1

with v=1000 ms−1 and B=1000 G
1
σ
~j produces electric field of order

E 1
σ
~j ∼

1
σµ0

B
l
∼ 10−5Vm−1

assuming a typical length scale of l = 107 m and a conductivity of
σ = 103 mho m−1
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Electric Field and Electric Current
generalized Ohm’s law:

~j = σ
(
~E + ~v × ~B

)
electric current determined by

~j =
1
µ0

(
∇× ~B

)
electric field almost always determined by

~E = −~v × ~B

not infinite conductivity, but large length scale, because

E ≈ vB

1
σ

j ≈ B
µσl
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Electrical Conductivity
Spitzer conductivity provides easy way to calculate the
conductivity of plasma
in temperature minimum region, number of electrons to neutral
atoms is ne

nn
= 0.001

since less than 10−6 of hydrogen is ionized, most electrons must
come from metals
collision frequency is high enough so that charged particles
transfer momentum to neutrals
despite small relative electron numbers, plasma can be
considered as a single medium
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Plasma Equations

Mass Conservation and Equation of Motion
magnetic field and mass flows coupled by induction equation
plasma motion must also obey other laws
mass convservation

∂ρ

∂t
+∇ ·

(
ρ~v
)

= 0

where ρ is mass density
equation of motion (force balance)

ρ

(
∂~v
∂t

+ ~v · ∇~v
)

= −∇p +~j × ~B + ~Fgravity + ~Fviscosity

perfect gas law with gas constant R and mean atomic weight µ:

p =
R
µ
ρT
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Lorentz Force

Lorentz force~j × ~B perpendicular to field lines
motion and density variations along field lines must be produced
by other forces
rewrite Lorentz force in terms of ~B alone

~j × ~B =
(
∇× ~B

)
×

~B
µ0

use vector identity for triple vector product

~j × ~B =
(
~B · ∇

) ~B
µ0
−∇

(
B2

2µ0

)
first term: magnetic tension, i.e. variations of ~B along ~B, effect
when field lines are curved
second term: magnetic pressure
along magnetic field lines, the two components cancel
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Magnetic Tension Force

magnetic tension force
(
~B · ∇

)
~B
µ0

write magnetic field as ~B = B~s to obtain

B
µ0

d
ds
(
B~s
)

=

B
µ0

dB
ds
~s +

B2

µ0

d~s
ds

=

d
ds

(
B2

2µ0

)
~s +

B2

µ0

~n
Rc

where ~n is the principle normal to the field line and Rc is the
radius of curvature of the field line
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Frozen Fields

The Theorem
for Rm � 1, typical for the Sun, induction equation becomes

∂~B
∂t

= ∇×
(
~v × ~B

)
and Ohm’s law becomes

~E + ~v × ~B = 0

Frozen flux theorem by Alvén:
In a perfectly conducting plasma, magnetic field lines
behave as if they move with the plasma.
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The Proof

consider closed curve c enclosing surface S moving with plasma
in time δt , a piece ~δs of curve c sweeps an element of area
~vδt × ~δs
magnetic flux of ~B ·

(
~vδt × ~δs

)
passes through this area

magnetic flux through S is given by
∫∫

S
~B · ~dS
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The Proof

rewrite flux through the sides ~B ·
(
~vδt × ~δs

)
as −δt~v × ~B · ~δs

rate of change of magnetic flux through S is then given by∫∫
S

∂~B
∂t
· ~dS −

∮
c
~v × ~B · ~ds

first term due to change of magnetic field in time, second due to
motion of boundary
with Stokes’ theorem, second term becomes

−
∫∫

S
∇×

(
~v × ~B

)
· ~dS

rate of change of magnetic flux through S∫∫
S

(
∂~B
∂t
−∇×

(
~v × ~B

))
· ~dS = 0

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics, Lecture 11: Basic MHD 20



Cowling’s Antidynamo Theorem

Why generating magnetic fields is not easy

T.G.Cowling (1934):

A steady axisymmetric magnetic field cannot be maintained.

steady process⇒ ∂
∂t = 0

axial symmetry⇒ ∂
∂φ = 0 in cylindrical coordinate system (r , φ, z)
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Toroidal and Poloidal Components

separate magnetic field into
azimuthal (toroidal) and poloidal
(radial and axial) components

~B(r , φ, z) = Bφ(r , z)~eφ + ~Bp(r , z)

consider only ~Bp in meridional
planes through axis

The Proof
magnetic configuration must be the same in all meridional planes
~Bp field lines closed because ∂

∂φ = 0 and therefore ∇ · ~Bp = 0

at least one neutral point where ~Bp(r , z) = 0
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The Proof

in points where ~Bp = 0: ~B = Bφ~eφ
jφ 6= 0 because ∇× ~B = µo~j

integrate Ohm’s law 1
σ
~j = ~E + ~v × ~B through curve c of all neutral

points ∮
c

1
σ
~j · d~s =

∮
c

~E · d~s +

∮
c
~v × ~B · d~s

since d~s has only azimuthal component and using Stokes’
theorem ∮

c

1
σ

jφds =

∫
S

(
∇× ~E

)
· d~S +

∮
c
~v × ~B · d~s

but ∇× ~E = −∂~B
∂t = 0 and ~v × ~B · d~s = 0

therefore
∮

c
1
σ jφds = 0, which cannot be
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