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Motivation

The Visible Solar Spectrum

N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF
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What can be extracted from spectral lines?
elemental and molecular compositions (abundances)
atmospheric properties: temperature, pressure, density
velocity fields: rotation, convection, turbulence, gravity
magnetic and electrical fields

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics, Lecture 7: Spectral Line Diagnostics 1 3



What can be extracted from spectral lines?
elemental and molecular compositions (abundances)
atmospheric properties: temperature, pressure, density
velocity fields: rotation, convection, turbulence, gravity
magnetic and electrical fields

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics, Lecture 7: Spectral Line Diagnostics 1 3



What can be extracted from spectral lines?
elemental and molecular compositions (abundances)
atmospheric properties: temperature, pressure, density
velocity fields: rotation, convection, turbulence, gravity
magnetic and electrical fields

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics, Lecture 7: Spectral Line Diagnostics 1 3



What can be extracted from spectral lines?
elemental and molecular compositions (abundances)
atmospheric properties: temperature, pressure, density
velocity fields: rotation, convection, turbulence, gravity
magnetic and electrical fields

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics, Lecture 7: Spectral Line Diagnostics 1 3



White-Light

Courtesy of Big Bear Solar Observatory
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Calcium II K

Courtesy of Big Bear Solar Observatory
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Hα

Courtesy of Learmonth Solar Observatory
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HeI 1083.0 nm

Courtesy of National Solar Observatory
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HeII 304 Å

Courtesy of SOHO/EIT consortium
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FeXII 195 Å

Courtesy of SOHO/EIT consortium
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X-ray

Courtesy of Yohkoh mission
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Radio at 1.7 cm

Courtesy of Nobeyama Radio Observatory

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Solar Physics, Lecture 7: Spectral Line Diagnostics 1 11



Solar Spectrum from X-rays to UV
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Local Emission

local emission by volume: dIν = ενds
ν light frequency
Iν intensity

dIν change in intensity
ds infinitesimal path length
s geometrical path length along the beam
εν emission coefficient (by volume)

local emission by mass: dIν = ενρds
ρ density
εν emission coefficient (by mass)
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Local Absorption

local absorption by volume: dIν = −σνnIνds = −αν Iνds
dIν change in intensity
Iν intensity

ds infinitesimal path length
σν cross-section per particle
n absorber density in particles per volume
αν = σνn extinction coefficient

local absorption by mass: dIν = −κνρIνds
κν absorption coefficient
ρ density
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Optical Depth

local absorption by mass: dIν(s) = −κν(s)ρ(s)Iν(s)ds
dividing by intensity Iν(s)

dIν(s)

Iν(s)
= d (ln Iν(s)) = −κν(s)ρ(s)ds = −dτν

optical depth

τν(s) =

∫ s

0
κν(s′)ρ(s′)ds′

integration of both sides from 0 to s0 of d (ln Iν(s)) = −dτν gives

ln Iν(s)− ln Iν(0) = ln
Iν(s)

Iν(0)
= −τν(s)

intensity as a function of optical depth

Iν(s) = Iν(0)e−τν(s)
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Radiative Transfer Equation

local emission and absorption by mass:

dIν(s) = εν(s)ρ(s)ds
dIν(s) = −κν(s)ρ(s)Iν(s)ds

optical depth at frequency ν

dτν = −κνρdr

ds = dr/µ with µ = cos θ
radiative transfer equation

µ
dIν
dτν

= Iν −
εν
κν

= Iν − Sν

Sν source function
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Emergent Intensity

radiative transfer equation

µ
dIν
dτν

= Iν − Sν

formal solution

Iν(τν , µ) = Iν(τ0ν , µ)e−(τ0ν−τν)/µ +
1
µ

∫ τ0ν

τν

Sν(τ ′ν)e−
τ ′ν−τν

µ dτ ′ν

emergent intensity by integration from τν = 0 to τ0ν =∞

Iν(τν = 0, µ) =
1
µ

∫ ∞
0

Sν(τν)e
−τν

µ dτν

calculate emergent intensity from model atmosphere
derive source function from Iν(µ)
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Solution for Constant Source Function
radiative transfer equation for µ = 1, leaving out subscript ν

dI
dτ

= I − S

with S constant along path and I(τ = 0) = I0, forml solution
simplifies to

I = I0e−τ + S
(
1− e−τ

)
with no incoming light, i.e. I0 = 0

I = S
(
1− e−τ

)
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Optically Thick and Thin

intensity for constant source function: I = S (1− e−τ )

τ � 1: optically thin (ex = 1 + x − x2/2 + ...)

I = τS

τ � 1: optically (very) thick

I = S

black body radiation in LTE independent of κν

Courtesy R.J.Rutten
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Eddington-Barbier Relation
emergent intensity

Iν(τν = 0, µ) =
1
µ

∫ ∞
0

Sν(τν)e
−τν

µ dτν

assume Sν(τν) = aν + bντν
emergent intensity

Iν(τν = 0, µ) = aν + bνµ = Sν(τν = µ)

emergent flux through integration over solid angle

πFν = π(aν +
2
3

bν) = πSν(τν =
2
3

)
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Equilibria

Thermodynamic Equilibrium
thermal equilibrium: single temperature T describes
thermodynamic state everywhere
ionization according to Saha equations for same T
excitation according to Boltzmann equations for same T
radiation field is homogeneous, isotropic black-body according to
Kirchhoff-Planck equation for same T

Bν(T ) =
2hν3

c2
1

e
hν
kT − 1

temperature gradients are not allowed!
unrealistic for stellar atmosphere
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Local Thermodynamic Equilibrium
concept of local thermodynamic equilibrium (LTE) where single
temperature T is sufficient to locally describe gas and radiation
field
as a consequence of the Kirchhoff law:

Sν = Bν(T )

LTE: thermalization length must be smaller than length scale of
temperature change
thermalization: particle/photon looses its identity in distribution
assumption of LTE depends on spectral lines
rule of thumb: continuum in visible and infrared, weak lines, and
wings of stronger lines are formed in LTE, but not line cores and
strong spectral lines
LTE: absorption in a single line⇒ black-body emission
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non-LTE
non-LTE (NLTE) often when radiative processes are rare, i.e.
photons travel large distances from areas where temperature is
different
single temperature is inadequate to describe radiation field,
ionization stages, and atomic levels
in most cases electrons are still Maxwell-distributed with electron
temperature Te because of frequent collisions
but population of atomic levels depends on radiative processes,
which may be rare; levels described by statistical equations
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Black-Body Radiation
Planck:

Bν(T ) =
2hν3

c2
1

ehν/kT − 1

Courtesy R.J.Rutten
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Black-Body Approximations
Planck:

Bν(T ) =
2hν3

c2
1

ehν/kT − 1
Wien Approximation:

ehν/kT � 1 : Bν(T ) ≈ 2hν3

c2 e−hν/kT

Rayleigh-Jeans Approximation:

ehν/kT � 1 : Bν(T ) ≈ 2ν2kT
c2
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Absorption Lines in LTE
total optical depth given by continuum and line absorption
coefficients

dτν = dτC + dτl = (1 + ην)dτC

with
ην =

κl(ν)

κC

emergent intensity from before

Iν(τν = 0, µ) =
1
µ

∫ ∞
0

Sν(τν)e
−τν

µ dτν

emergent intensity at disk center (µ = 1) under LTE

Iν(τ = 0, µ = 1) =

∫ ∞
0

(1 + ην)Bνe(−
R τ

0 (1+ην)dτ ′)dτ

τ = τC : continuum optical depth
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Line Absorption Coefficient
line broadening mechanisms:

natural line width (finite lifetime of upper state)
Doppler broadening (random thermal motion)
collisional broadening
Stark effect (H only)
microturbulent velocity

convolution of Lorentz and Gaussian distributions

φ(ν) =
1√
π∆νD

H(a, ν)

with Voigt function

H(a, ν) =
a
π

∫ ∞
−∞

e−y2

(ν − y)2 + a2 dy
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Voigt Function

Voigt function

H(a, ν) =
a
π

∫ ∞
−∞

e−y2

(ν − y)2 + a2 dy

special case: H(a� 1,0) ≈ 1
normalized profile:

∫∞
0 φ(ν)dν = 1

Gaussian dominates in cores, Lorentzian in wings
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Microturbulence and Macroturbulence
convective motions in solar atmospheres on spatial scales smaller
than range of optical depth over which spectral line is formed
add microturbulent fudge factor to Doppler broadening

∆νD ≡
ν0

c

√
2RT

A
+ ξ2

t

convective motions on scales larger than formation range of
spectral lines
convolve complete line profile with Gaussian profile
both macro- and micro-turbulence are not needed anymore in
realistic 3D atmosphere models
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Simple Absorption Line

absorption: transition gives peak in κ = κC + κl = (1 + ην)κC

optical depth: height-invariant κ⇒ linear (1 + ην) τC

source function: same for line and continuum
intensity: Eddington-Barbier (nearly) exact

Courtesy R.J.Rutten
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Simple Emission Line
extinction: transition process gives peak in
κ = κC + κl = (1 + ην)κC

optical depth: height-invariant κ⇒ linear (1 + ην) τC

source function: same for line and continuum
intensity: Eddington-Barbier (nearly) exact

Courtesy R.J.Rutten
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Realistic Absorption Line
extinction: transition peak lower and narrower at larger height
optical depth: near-log-linear inward increase
source function: split for line and continuum
intensity: Eddington-Barbier for
Stotal
ν = (κCSC + κlSl)/(κC + κl) = (SC + ηνSl)/(1 + ην)

Courtesy R.J.Rutten
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