Lecture 7: Spectral Line Diagnostics 1

Outline

- **1** Motivation
- **2** Radiative Transfer Equation
- **3 ITE Line Formation**
- Statistical Equilibrium

The Visible Solar Spectrum

N.A.Sharp, NOAO/NSO/Kitt Peak FTS/AURA/NSF

- elemental and molecular compositions (abundances)
-
- velocity fields: rotation, convection, turbulence, gravity
-

- elemental and molecular compositions (abundances)
- atmospheric properties: temperature, pressure, density \bullet
- velocity fields: rotation, convection, turbulence, gravity
-

- elemental and molecular compositions (abundances)
- atmospheric properties: temperature, pressure, density
- velocity fields: rotation, convection, turbulence, gravity

- elemental and molecular compositions (abundances)
- **•** atmospheric properties: temperature, pressure, density
- velocity fields: rotation, convection, turbulence, gravity
- magnetic and electrical fields \bullet

White-Light

Courtesy of Big Bear Solar Observatory

Calcium II K

Courtesy of Big Bear Solar Observatory

Courtesy of Learmonth Solar Observatory

HeI 1083.0 nm

Courtesy of National Solar Observatory

HeII 304 Å

Courtesy of SOHO/EIT consortium

FeXII 195 Å

Courtesy of SOHO/EIT consortium

Courtesy of Yohkoh mission

Radio at 1.7 cm

Courtesy of Nobeyama Radio Observatory

Solar Spectrum from X-rays to UV

Local Emission I+dl εo ds

e local emission by volume: $dI_{\nu} = \epsilon_{\nu}d\mathbf{s}$

- ν light frequency
- *I*^ν intensity
- d*I*^ν change in intensity
- d*s* infinitesimal path length
	- *s geometrical path length* along the beam
- ϵ_{ν} *emission coefficient* (by volume)

```
e local emission by mass: dI_{\nu} = \epsilon_{\nu} \rho d\mathbf{s}
```
Local Emission I+dl εo ds

e local emission by volume: $dI_{\nu} = \epsilon_{\nu}d\mathbf{s}$

- ν light frequency
- *I*^ν intensity
- d*I*^ν change in intensity
- d*s* infinitesimal path length
	- *s geometrical path length* along the beam
- ϵ_{ν} *emission coefficient* (by volume)
- **e** local emission by mass: $dI_{\nu} = \epsilon_{\nu} \rho d\mathbf{s}$
	- $ρ$ density
	- ^ν *emission coefficient* (by mass)

- local absorption by volume: $dI_{\nu} = -\sigma_{\nu}nl_{\nu}ds = -\alpha_{\nu}l_{\nu}ds$
	- d*I*^ν change in intensity
		- *I*^ν intensity
	- d*s* infinitesimal path length
	- σ^ν *cross-section* per particle
		- *n absorber density* in particles per volume
	- $\alpha_{\nu} = \sigma_{\nu} n$ extinction coefficient
- **o** local absorption by mass: $dI_v = -\kappa_v \rho I_v ds$
	- -

• local absorption by volume: $dI_{\nu} = -\sigma_{\nu}nl_{\nu}ds = -\alpha_{\nu}l_{\nu}ds$

- d*I*^ν change in intensity
	- *I*^ν intensity
- d*s* infinitesimal path length
- σ^ν *cross-section* per particle
	- *n absorber density* in particles per volume
- $\alpha_{\nu} = \sigma_{\nu} n$ extinction coefficient
- \bullet local absorption by mass: $dI_{\nu} = -\kappa_{\nu} \rho I_{\nu} d\mathbf{s}$
	- κ^ν *absorption coefficient*
		- ρ density

Optical Depth

- local absorption by mass: $dI_{\nu}(s) = -\kappa_{\nu}(s)\rho(s)I_{\nu}(s)ds$
- \bullet dividing by intensity $I_{\nu}(s)$

$$
\frac{\mathrm{d}I_{\nu}(\boldsymbol{\mathcal{S}})}{I_{\nu}(\boldsymbol{\mathcal{S}})} = \mathrm{d}(\ln I_{\nu}(\boldsymbol{\mathcal{S}})) = -\kappa_{\nu}(\boldsymbol{\mathcal{S}})\rho(\boldsymbol{\mathcal{S}})\mathrm{d}\boldsymbol{\mathcal{S}} = -\mathrm{d}\tau_{\nu}
$$

optical depth

$$
\tau_\nu(\bm{s}) = \int_0^{\bm{s}} \kappa_\nu(\bm{s}') \rho(\bm{s}') \mathrm{d} \bm{s}'
$$

• integration of both sides from 0 to s_0 of d (ln $I_\nu(s)$) = $-d\tau_\nu$ gives

$$
\ln I_{\nu}(s) - \ln I_{\nu}(0) = \ln \frac{I_{\nu}(s)}{I_{\nu}(0)} = -\tau_{\nu}(s)
$$

intensity as a function of optical depth \bullet

$$
I_{\nu}(s)=I_{\nu}(0)e^{-\tau_{\nu}(s)}
$$

Radiative Transfer Equation

• local emission and absorption by mass:

$$
dI_{\nu}(s) = \epsilon_{\nu}(s)\rho(s)ds
$$

$$
dI_{\nu}(s) = -\kappa_{\nu}(s)\rho(s)I_{\nu}(s)ds
$$

o optical depth at frequency $ν$

$$
d\tau_{\nu}=-\kappa_{\nu}\rho dr
$$

•
$$
\mathrm{d}s = \mathrm{d}r/\mu
$$
 with $\mu = \cos \theta$

• radiative transfer equation

$$
\mu \frac{\mathrm{d}l_{\nu}}{\mathrm{d}\tau_{\nu}} = l_{\nu} - \frac{\epsilon_{\nu}}{\kappa_{\nu}} = l_{\nu} - S_{\nu}
$$

S^ν *source function*

Emergent Intensity

• radiative transfer equation

$$
\mu \frac{\mathrm{d} I_{\nu}}{\mathrm{d} \tau_{\nu}} = I_{\nu} - \mathcal{S}_{\nu}
$$

o formal solution

$$
I_{\nu}(\tau_{\nu},\mu) = I_{\nu}(\tau_{0\nu},\mu)e^{-(\tau_{0\nu}-\tau_{\nu})/\mu} + \frac{1}{\mu}\int_{\tau_{\nu}}^{\tau_{0\nu}} S_{\nu}(\tau_{\nu}')e^{-\frac{\tau_{\nu}'-\tau_{\nu}}{\mu}}d\tau_{\nu}'
$$

e emergent intensity by integration from $\tau_{\nu} = 0$ to $\tau_{0\nu} = \infty$

$$
I_{\nu}(\tau_{\nu}=0,\mu)=\frac{1}{\mu}\int_0^{\infty}S_{\nu}(\tau_{\nu})e^{\frac{-\tau_{\nu}}{\mu}}\mathrm{d}\tau_{\nu}
$$

• calculate emergent intensity from model atmosphere \bullet derive source function from $I_{\nu}(\mu)$

Solution for Constant Source Function

• radiative transfer equation for $\mu = 1$, leaving out subscript ν

$$
\frac{\mathrm{d}I}{\mathrm{d}\tau}=I-S
$$

• with *S* constant along path and $I(\tau = 0) = I_0$, forml solution simplifies to

$$
I=I_0e^{-\tau}+S\left(1-e^{-\tau}\right)
$$

• with no incoming light, i.e. $I_0 = 0$

$$
I=S\left(1-e^{-\tau}\right)
$$

Optically Thick and Thin

- intensity for constant source function: $I = S(1 e^{-\tau})$
- $\tau \ll 1$: *optically thin* ($e^x = 1 + x x^2/2 + ...$)

$$
I=\tau S
$$

τ 1: *optically (very) thick*

 $I = S$

black body radiation in LTE independent of κ_{ν}

Eddington-Barbier Relation

e emergent intensity

$$
I_{\nu}(\tau_{\nu}=0,\mu)=\frac{1}{\mu}\int_0^{\infty}S_{\nu}(\tau_{\nu})e^{\frac{-\tau_{\nu}}{\mu}}d\tau_{\nu}
$$

• assume
$$
S_{\nu}(\tau_{\nu}) = a_{\nu} + b_{\nu}\tau_{\nu}
$$

e emergent intensity

$$
I_{\nu}(\tau_{\nu}=0,\mu)=a_{\nu}+b_{\nu}\mu=S_{\nu}(\tau_{\nu}=\mu)
$$

e emergent flux through integration over solid angle

$$
\pi F_{\nu}=\pi(a_{\nu}+\frac{2}{3}b_{\nu})=\pi S_{\nu}(\tau_{\nu}=\frac{2}{3})
$$

Thermodynamic Equilibrium

- *thermal equilibrium*: single temperature *T* describes thermodynamic state everywhere
- ionization according to Saha equations for same *T*
- excitation according to Boltzmann equations for same *T*
- radiation field is homogeneous, isotropic black-body according to Kirchhoff-Planck equation for same *T*

$$
B_\nu(\mathcal{T})=\frac{2h\nu^3}{c^2}\frac{1}{e^{\frac{h\nu}{k\mathcal{T}}}-1}
$$

- temperature gradients are not allowed!
- unrealistic for stellar atmosphere

Local Thermodynamic Equilibrium

- concept of *local thermodynamic equilibrium* (LTE) where single temperature *T* is sufficient to locally describe gas and radiation field
- as a consequence of the Kirchhoff law:

$$
\mathcal{S}_\nu = B_\nu(\mathcal{T})
$$

- LTE: thermalization length must be smaller than length scale of temperature change
- **•** thermalization: particle/photon looses its identity in distribution
- assumption of LTE depends on spectral lines
- **•** rule of thumb: continuum in visible and infrared, weak lines, and wings of stronger lines are formed in LTE, but not line cores and strong spectral lines
- \bullet LTE: absorption in a single line \Rightarrow black-body emission

non-LTE

- non-LTE (NLTE) often when radiative processes are rare, i.e. photons travel large distances from areas where temperature is different
- **•** single temperature is inadequate to describe radiation field, ionization stages, and atomic levels
- in most cases electrons are still Maxwell-distributed with *electron temperature T^e* because of frequent collisions
- but population of atomic levels depends on radiative processes, which may be rare; levels described by *statistical equations*

Black-Body Radiation

Planck:

Planck function

 1.0×10^{4} 1.5×10^{4} 2.0×10^{4} 2.5×10^{4} wavelength (Angstrom) Courtesy R.J.Rutten

 \mathbf{o}

 5.0×10^{3}

Black-Body Approximations

Planck:

$$
B_{\nu}(T)=\frac{2h\nu^3}{c^2}\frac{1}{e^{h\nu/kT}-1}
$$

• Wien Approximation:

$$
e^{h\nu/kT}\gg 1:B_{\nu}(T)\approx \frac{2h\nu^3}{c^2}e^{-h\nu/kT}
$$

• Rayleigh-Jeans Approximation:

$$
e^{h\nu/kT}\ll 1:B_{\nu}(T)\approx \frac{2\nu^2kT}{c^2}
$$

Absorption Lines in LTE

• total optical depth given by continuum and line absorption coefficients

$$
d\tau_{\nu} = d\tau_C + d\tau_I = (1 + \eta_{\nu})d\tau_C
$$

o with

$$
\eta_{\nu} = \frac{\kappa_{\mathit{I}}(\nu)}{\kappa_{\mathit{C}}}
$$

• emergent intensity from before

$$
I_{\nu}(\tau_{\nu}=0,\mu)=\frac{1}{\mu}\int_0^{\infty}S_{\nu}(\tau_{\nu})e^{\frac{-\tau_{\nu}}{\mu}}\mathrm{d}\tau_{\nu}
$$

e emergent intensity at disk center ($\mu = 1$) under LTE

$$
I_{\nu}(\tau=0,\mu=1)=\int_{0}^{\infty}(1+\eta_{\nu})B_{\nu}e^{(-\int_{0}^{\tau}(1+\eta_{\nu})d\tau')}d\tau
$$

 $\tau = \tau_C$: continuum optical depth

Line Absorption Coefficient

- line broadening mechanisms:
	- natural line width (finite lifetime of upper state)
	- Doppler broadening (random thermal motion) \bullet
	- collisional broadening
	- Stark effect (H only)
	- microturbulent velocity
- **convolution of Lorentz and Gaussian distributions**

$$
\phi(\nu)=\frac{1}{\sqrt{\pi}\Delta\nu_D}H(a,\nu)
$$

with Voigt function

$$
H(a,\nu)=\frac{a}{\pi}\int_{-\infty}^{\infty}\frac{e^{-y^2}}{(\nu-y)^2+a^2}dy
$$

Voigt Function

• Voigt function

$$
H(a,\nu)=\frac{a}{\pi}\int_{-\infty}^{\infty}\frac{e^{-y^2}}{(\nu-y)^2+a^2}dy
$$

- special case: $H(a \ll 1, 0) \approx 1$
- normalized profile: $\int_0^\infty \phi(\nu) d\nu = 1$
- Gaussian dominates in cores, Lorentzian in wings

Microturbulence and Macroturbulence

- convective motions in solar atmospheres on spatial scales smaller than range of optical depth over which spectral line is formed
- add microturbulent fudge factor to Doppler broadening

$$
\Delta \nu_{\rm D} \equiv \frac{\nu_0}{c}\sqrt{\frac{2RT}{A}+\xi_{\rm t}^2}
$$

- **•** convective motions on scales larger than formation range of spectral lines
- **•** convolve complete line profile with Gaussian profile
- both macro- and micro-turbulence are not needed anymore in realistic 3D atmosphere models

Simple Absorption Line

- absorption: transition gives peak in $\kappa = \kappa_C + \kappa_I = (1 + \eta_{\nu}) \kappa_C$
- o optical depth: height-invariant $\kappa \Rightarrow$ linear $(1 + \eta_{\nu}) \tau_C$
- source function: same for line and continuum
- intensity: Eddington-Barbier (nearly) exact

Simple Emission Line

- extinction: transition process gives peak in $\kappa = \kappa_C + \kappa_l = (1 + \eta_\nu) \kappa_C$
- o optical depth: height-invariant $\kappa \Rightarrow$ linear $(1 + \eta_{\nu}) \tau_C$
- source function: same for line and continuum
- intensity: Eddington-Barbier (nearly) exact

Realistic Absorption Line

- **Extinction: transition peak lower and narrower at larger height**
- optical depth: near-log-linear inward increase
- source function: split for line and continuum
- intensity: Eddington-Barbier for

 $\mathcal{S}_{\nu}^{\text{total}} = (\kappa_{\mathcal{C}}\mathcal{S}_{\mathcal{C}} + \kappa_{\mathcal{I}}\mathcal{S}_{\mathcal{I}})/(\kappa_{\mathcal{C}} + \kappa_{\mathcal{I}}) = (\mathcal{S}_{\mathcal{C}} + \eta_{\nu}\mathcal{S}_{\mathcal{I}})/(1 + \eta_{\nu})$

