Lecture 4: The Sun as a Star

Outline

- The Sun among the Stars
- Internal Structure
- Second Evolution
- Neutrinos

The Sun among the Stars

An Artist's Impression

trace.lmsal.com/POD/NAS2002_otherimages.html

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Solar Physics: The Sun as a Star

anzwers.org/free/universe/hr.html

Hertzsprung-Russell Diagram

- surface temperature *T*_{eff} (spectral class) vs. luminosity (absolute magnitude)
- *T*_{eff}: black-body temperature with equivalent luminosity
- luminosity \neq irradiance
- luminosity requires distance information
- contains radius information (see exercises)
- evolution as path in HR diagram

Magnetic Activity

The 11-Year Solar Cycle

trace.lmsal.com/POD/NAS2002_otherimages.html

If the Sun had no magnetic field, it would be as uninteresting as many astronomers think it is.

R.B.Leighton: unpublished remark (ca. 1965)

Solar Physics: The Sun as a Star

Spots and Faculae

Magnetogram

Faculae at High Spatial Resolution

Irradiance and Sunspots

The Solar (not so) Constant

- correlation between irradiance and magnetic activity
- sunspots only temporarily reduce irradiance
- faculae more than compensate sunspot deficit
- solar constant varies by about 0.1%

Stellar Irradiance vs. Magnetic Variations

Radick et al. 1998

Doppler Imaging

www.astro.uu.se/~oleg/structures.html

- quickly rotating stars
- many spectra per rotation period
- fit with 'spotted' star model
- also possible for polarized spectra

Zeeman Doppler Imaging

www.ast.obs-mip.fr/users/donati/map.html

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Solar Physics: The Sun as a Star

ϵ Eri with (Utrecht-Designed) HARPS Polarimeter

The Basic Physics

- equilibrium between gas pressure and gravity
- equation of state: $P(T, \rho)$
- boundary conditions
- energy "production"
- energy transport by radiation, opacity
- energy transport by convection
- thermal and element diffusion

Mechanical Equilibrium

- hydrostatic equilibrium of star with radius R and mass M
 - Mass *M_r* within radius *r*:

$$\frac{\partial M_r}{\partial r} = 4\pi r^2 \rho$$

- boundary condition $M_r(r=0)=0$
- pressure gradient

$$\frac{\partial P}{\partial r} = -\frac{GM_r}{r^2}\rho$$

- pressure as restoring force \Rightarrow dynamic mechanical time scale $t_{\rm dyn} = \frac{1}{\sqrt{G\rho}} \approx 1$ hour
- pressure at center from integration of pressure gradient

$$P(0)-P(R)=G\int_0^Rrac{M_r
ho}{r^2}drpprox Grac{M^2}{R^4}$$

assumptions: $P(R) = 0, \ M_r = M, \rho = \frac{M}{(4\pi/3)R^3}$

Central Temperature

- radiation pressure not important ⇒ total pressure = gas pressure
- ideal gas equation of state

$$P = P_g = kNT = rac{k}{\mu m_H}
ho T$$

- mean molecular weight $\mu \approx$ 0.5 for Sun (only H)
- pressure at center from previous slide

$${\it P}={\it P}_{0}pprox Grac{M^{2}}{R^{4}}$$

• $T_0 \approx 10^7 \text{ K} (T_0 = 1.55 \times 10^7 \text{ K})$

Energy Transport Mechanisms: Radiation

- Electromagnetic radiation
 - photons could leave Sun in 2.5 s
 - but opacity is so high that they are absorbed very quickly
 - time scale about 10⁷ years

$$t \approx \frac{E_{\text{thermal}}}{L}$$

- (see exercises on how to calculate E_{thermal})
- details require radiative transfer and knowledge of opacities
- By the way ...
 - Conduction can be neglected in the solar interior, but not in more massive stars
 - Neutrinos are not reabsorbed in stellar interior

Energy Transport Mechanisms: Convection

- more effective than radiation for large temperature gradients (convective instability, Schwarzschild criterion)
- rise velocity in Sun about 1 km/s
- time scales: minutes to days depending on the size of the convective motion
- mixing of solar convection zone within 1 month
- Lithium-'Problem': $\begin{array}{ccc} T > 2.0 \cdot 10^6 \text{ K}: & \text{Li}^6 + \text{H}^1 \Rightarrow \text{He}^4 + \text{He}^3 \\ T > 2.4 \cdot 10^6 \text{ K}: & \text{Li}^7 + \text{H}^1 \Rightarrow 2 \text{ He}^4 \end{array}$
- Sun: no Li⁶, but Li⁷, depth about 200000 km
- convection increases depth of convection zone
- convection in other stars
 - for small $T_{\rm eff}$ convection in deeper layers
 - O to A: no outer convection zone
 - F to M: outer convection zone
 - high-mass stars: convection in core

Energy Production

Nuclear Fusion

- Core: 25% of radius, 1.5% of volume, 50% of mass
- Binding energy per nucleon \Rightarrow fusion and fission

csep10.phys.utk.edu/astr162/lect/energy/bindingE.html

- Why do stars not explode like hydrogen bombs?
- Do fusion reactors on Earth simulate stars?

Hydrogen to Helium Fusion

- all four fundamental forces are crucial
 - gravitation (Newton, General Relativity)
 - electromagnetism (Maxwell, Standard Model)
 - weak interaction (Standard Model)
 - strong interaction (QuantumChromoDynamics, QCD)
- electrostatic repulsion of protons has to be overcome for strong interaction to dominate
- probability in solar interior: classically 10⁻⁴³⁰ per s per proton
- but only 10⁵⁷ protons in the Sun
- quantenmechanical tunneling increases probability to 10⁻¹⁸ per second (Gamow Peak)
- p-p process
- CNO (Bethe-Weizäcker) cycle (about 1% of solar energy output)

Proton-Proton (p-p) Process in Detail

Evolution of the Sun

Numerical Models

- include all relevant physics including rotation
- start with chemically homogeneous star with current solar mass
- solve partial differential equations (PDE) for each time step
- adjust abundances after each time step
- have to produce currently observed Sun
 - age
 - Iuminosity
 - radius
 - surface composition
 - helioseismic frequencies)
- adjustments for initial conditions:
 - initial helium content ($\approx 25\%$)
 - convective properties (mixing length parameter I)

The Standard Solar Model

- numerical model based on most plausible assumptions and best available physical input
- spherically symmetric
- all parameters only depend on radial distance from center
- internal rotation assumed to be sufficiently slow
- internal magnetic fields assumed to be sufficiently weak
- element abundance: $X + Y + Y_3 + Z = 1$
 - X: hydrogen abundance
 - Y: helium abundance
 - Y₃: helium 3 abundance
 - $Z \approx 0.02$ everything else, normally constant

The Past Sun

- current age: 4.57×10^9 years (22 times around galaxy center)
 - well known from meteorite studies
 - measure abundance of radioactive ⁸⁷Rb (4.8 · 10¹⁰ years half-life) and daughter product ⁸⁷Sr relative to constant ⁸⁶Sr
- collapse of interstellar cloud when Jeans criterion is satisfied

$$\frac{Gm_c}{r} > \frac{RT}{\mu}$$

- removal of angular momentum and magnetic field (not well understood)
- slow contraction on Kelvin-Helmholtz time-scale

$$t_{\rm KH} = \frac{Gm^2}{rL}$$

Very Young Sun

- 70% of current luminosity
- 125 K colder surface
- 13% smaller
- very active chromosphere and corona
- strong solar wind
- rotation period only 9 days
- how could life on Earth start and survive?

www.astro.uva.nl/demo/sun/leven.htm

The Future of the Sun

- B 50% of available H in core used up (now)
- C all H in core used up, H fusion in shell, 40% larger, twice as bright
- D 1.5×10⁹ years later 3 times normal size, temperature 4300 degrees; 0.25×10⁹ years later, 100 times larger, 500 times more luminous
- E critical core temperature, all He fuses into C, explosion throws out $\frac{1}{3}$ of solar mass into space, planetary nebula and white dwarf (2000 kg/cm³)

Neutrinos

ELEMENTARY PARTICLES eptons Three Generations of Matter C Fermilab 95-75

www.fnal.gov/pub/presspass/vismedia/gallery/graphics.htm

Basic Properties

- Neutrino (ν) predicted around 1930 by Wolfgang Pauli to save energy conservation for certain radiactive decays
- first neutrino detection published in 1956
- 6 different kinds: ν_e, ν_μ, ν_τ and their anti-particles ν
 _e, ν
 _μ, ν
 _τ
- no electrical charge, almost massless, propagate at almost the speed of light, have only weak interaction
- could penetrate one light year of lead without problems

Solar Neutrinos

- no direct electromagnetic radiation from solar interior
- luminosity, age of the Sun $(4.5 \times 10^9 \text{ years}) \Rightarrow$ nuclear fusion
- knowledge of stellar interiors largely based on model calculations
- helioseismology measures sound speed as function of depth
- neutrinos from solar core are the only direct measurement
- ν_e are produced in fusion reactions, leave the Sun within 2.3 s
- on Earth each cm² is penetrated every second by 4.10^{10} solar ν_e
- *v*-telescope makes *v*-images of the solar core
- weak interaction only, ν hard to detect \Rightarrow very large detectors

Neutrinos from p-p process

nobelprize.org/physics/articles/fusion/sun_pp-chain.html

Neutrinos from p-p process

nobelprize.org/physics/articles/fusion/sun_pp-chain.html

Neutrinos from p-p process

nobelprize.org/physics/articles/fusion/sun_pp-chain.html

Neutrino Observations

www.bnl.gov/bnlweb/raydavis/pictures.htm

The First Neutrino Experiment

- 1970-2001, South Dakota, USA
- 1600 m deep to shield cosmic radiation
- 400'000 I of liquid tetrachloroethylene (C₂Cl₄)

•
$$\nu_{\rm e}$$
 + ³⁷Cl \Rightarrow ³⁷Ar + e⁻

- gaseous ³⁷Ar extracted every 100 days, counted single atoms
- expected 1.5 Argon atoms per day, observed 0.5 ⇒ Solar Neutrino Problem
- Nobel prize in physics 2002 for Raymond Davis

Observations using Gallium

- can measure all neutrino energies, not just high-energy neutrinos
- Soviet–American–Gallium–Experiment (SAGE), Baksan (Kaukasus):
 - 60 Tonnen Gallium
 - ⁷¹Ga + $\nu_e \Rightarrow$ ⁷¹Ge + e⁻
 - gaseous Germanium is blown out of liquid Gallium
 - measures about 50% of expected neutrino flux
- GALLEX in Gran Sasso tunnel near Rom:
 - 30 tons of Gallium for 10 million Euros
 - half of the yearly world production
 - measures about 50% of expected neutrino flux

neutrino.kek.jp/figures.html

antwrp.gsfc.nasa.gov/apod/ap971028.html

Kamiokande Detectors in Kamioka, Japan

• Kamiokande II with 2000 tons of water, confirms results by Davis

•
$$\mathbf{e}^- + \nu_{\mathbf{e}} \Rightarrow \mathbf{e}^- + \nu_{\mathbf{e}}$$

- sees Cerenkov-radiation of scattered electrons
- measures direction, confirms solar origin
- measures exact arrival time, detected neutrinos from SN 1987A
- Super-Kamiokande has 50,000 tons of water

Sudbury Neutrino Observatory

www.sno.phy.queensu.ca/sno/images/

Observations using Heavy Water

- 1000 tons of D₂O (on loan) in Ontario, Canada
- measures direction and energy since 1999
- $d + \nu_e \Rightarrow p + p + e^-$
- $e^- + \nu_x \Rightarrow e^- + \nu_x$
- d + $\nu \Rightarrow$ n + p + ν
- third reaction has equal detection probability for all three kinds of neutrinos
- total number of neutrinos corresponds to expected ν_e flux

Solar Neutrino Spectrum

www.sns.ias.edu/ jnb/SNviewgraphs

Solar Physics: The Sun as a Star

The Problem

The Data

Observations and Standard Models Disagree

- Wrong standard solar model? But helioseismology excludes non-standard solar core models
- Wrong standard model of particle physics? But neutrinos might have mass

Neutrino Propagation in Vacuum

- Neutrino flavors ν_{e} , ν_{μ} , ν_{τ} 'good' states for interactions
- Neutrino masses ν_1 , ν_2 , ν_3 'good' states for propagation
- flavor eigenstates \neq mass eigenstates
- probability to detect muon neutrino from initial electron neutrino after a certain time t is

$$\left|\left\langle
u_{\mu} |
u_{\mathrm{e}} \right
angle \right|^{2}(t) = \sin^{2} 2 heta \sin^{2} \left(t rac{m_{1}^{2} - m_{2}^{2}}{4
ho}
ight)$$

- still 90% of the solar electron neutrinos would make it to Earth without being mixed
- cannot explain the solar neutrino problem

Neutrino Oscillations in Matter

- Mikheyev–Smirnov–Wolfenstein effect
- interaction with matter: ν_e and e^- can interact through W⁻ or Z⁰, ν_{μ} and ν_{τ} can only interact with e^- through Z⁰
- most neutrinos from Sun will pass through resonance density region inside the Sun
- even very small mixing angles and mass differences can make most $\nu_{\rm e}$ into ν_{μ}
- all solar data and also reactor experiments deliver consistent combinations of mixing angle and difference of squared masses