Solar Physics 2010: Exercises to Lecture 5 Due Date: 18. May 2010 at 9:00

C.U.Keller

May 11, 2010

1 Polarization Ellipse

Show that at a given point \vec{x} , the time evolution of the electric field vector of an electromagnetic wave in an isotropic medium is described by an ellipse. Hint: Use the plane-wave ansatz,

$$\vec{E}(t) = \vec{E}_0 e^{i\left(k \cdot \vec{x} - \omega t\right)} , \qquad (1)$$

with the polarization described as

$$\vec{E}_0 = E_1 e^{i\delta_1} \vec{e}_x + E_2 e^{i\delta_2} \vec{e}_y.$$
⁽²⁾

 \vec{e}_x and \vec{e}_y are unit vectors in the x and y directions, respectively. The beam propagates along the z-axis. The coefficients E_1 and E_2 are the (real) amplitudes and $\delta_{1,2}$ are the phases.

2 Mueller Matrix

The most general Jones matrix describing the interaction of monochromatic light with matter has eight independent parameters. How many independent parameters does a Mueller matrix have that describes the same interaction of a polarized beam with matter?