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1 A collapsing molecular cloud

The gravitational potential energy eG of a mass m at a distance r from a mass M equals

eG = −GmM

r
, (1)

with G the gravitational constant.

a. Derive the following formula that describes the gravitational potential energy, EG, of a uniform, spherical
cloud of density ρ and radius R:

EG = −3
5

GM2

R
(2)

b. Derive the formula for the Jeans mass, MJ, of this cloud:

MJ =
(

5kT

Gµ

)3/2 (
3

4πρ

)1/2

, (3)

with µ the average molecular mass in the cloud. Hints: if the mass of a cloud equals its Jeans mass, its gravita-
tional potential energy EG equals (minus) twice its kinetic energy, EK. Assume the cloud’s kinetic energy equals
its thermal energy, thus EK = (3/2)NkT , with N the total number of molecules in the cloud, k Boltzmann’s
constant, and T the temperature of the cloud.

c. Show that if the cloud collapses isothermally, it becomes more unstable as it shrinks.

2 Orbiting a planet

A satellite or ring particle that orbits a planet experiences gravitational attraction from both the planet and
the star. The maximum orbital distance of such a satellite is given by the radius RH of the so-called Hill sphere,
which can be approximated as follows

RH ≈
(

mp

ms

)1/3

a, (4)

with ms and mp the masses of the star and the planet, and a the planet’s orbital distance. Here, we assume
circular orbits.

a. Derive Equation 4. Hint: assume that at the edge of the Hill sphere, the velocity of the satellite due to the
attraction of the star equals its velocity due to the attraction of the planet.
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b. Calculate the radius of the Earth’s Hill sphere.

c. How does this compare to the orbital distance of the moon?

d. Due to tidal effects, the distance between the moon and the Earth is increasing. Calculate the orbital period
of the moon just before it is lost to the Earth.

3 Bonus exercise: Building planetesimals

During the early stages of planet formation, planetesimals can grow through runaway or oligarchic growth. This
rapid growth will cease when a planetary embryo has consumed most of the planetsimals within its gravitational
reach. Planetsimals that come within about 4 times the planetary embyro’s Hill sphere will eventually come
close enough to the planetary embryo during one of their orbits that they may be accreted.

The mass of a planetary embryo orbiting its star at a distance r, which has accreted all of the planetsimals
within an annulus of width 2∆r is (Eq. 12.27 from Planetary Sciences)

Mp =
∫ r+∆r

r−∆r

2πr′σρ(r′)dr′ ≈ 4πr∆rσρ(r), (5)

with σρ(r) the disk’s surface density at distance r.

Setting ∆r = 4RH, we obtain the isolation mass, Mi, which is the largest mass to which a planetary embryo
can grow by runaway accretion.

a. Using the expression for RH from Eq. 4, derive an expression for Mi of a planetesimal orbiting a star with
mass ms at a distance r.

b. Assuming a solar mass star ( 2×1033 g), and a disk surface density that varies as σρ = 10 r−1 g cm−2, with
r the distance to the star in AU, calculate Mi at distances of 1 and 5 AU, using the expression derived under
a. How do these masses compare to the actual masses of the Earth and Jupiter?

c. Repeat the calculation at 5 AU with a surface density that is twice as large (to account for condensed ices
on the dust particles). How does this mass compare to the actual mass of Jupiter?
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