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1 A collapsing molecular cloud

The gravitational potential energy eG of a mass m at a distance r from a mass M equals

eG = −GmM

r
, (1)

with G the gravitational constant.

a. Derive the formula that describes the gravitational potential energy, EG, of a uniform, spherical cloud of
density ρ and radius R:

EG = −3
5

GM2

R
(2)

b. Derive the formula for the Jeans mass, MJ, of this cloud:

MJ =
(

5kT

Gm

)3/2 (
3

4πρ

)1/2

, (3)

with m the average molecular mass in the cloud. Hints: if the mass of a cloud equals its Jeans mass, its
gravitational potential energy EG equals twice its kinetic energy, EK. Assume the cloud’s kinetic energy equals
its thermal energy, thus EK = 3/2NkT , with N the total number of molecules in the cloud, k Boltzmann’s
constant, and T the temperature of the cloud.

c. Show that if the cloud collapses isothermally, it becomes more unstable as it shrinks.

d. Show that if the cloud retains the gravitational energy of its collapse as heat (it is thus not radiated away),
it becomes more stable as it shrinks.

2 Orbiting a planet

A satellite or ring particle that orbits a planet experiences gravitational attraction from both the planet and
the star. The maximum orbital distance of such a satellite is given by the radius RH of the so-called Hill sphere,
which can be approximated by

RH =
(

mp

3(ms + mp)

)1/3

a ≈
(

mp

ms

)1/3

a, (4)

with ms and mp the masses of the star and the planet, and a the planet’s orbital distance. Here, we assume
circular orbits.

a. Derive the right-hand side of Equation 4.
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b. Calculate the radius of the Earth’s Hill sphere.

c. How does this compare to the orbital distance of the moon?

d. Due to tidal effects, the distance between the moon and the Earth is increasing. Calculate the orbital period
of the moon just before it is lost to the Earth.

e. Which planet in the Solar System has the largest Hill radius?

3 Building planetesimals

During the early stages of planet formation, planetesimals can grow through runaway or oligarchic growth. This
rapid growth will cease when a planetary embryo has consumed most of the planetsimals within its gravitational
reach. Planetsimals within 4 times the planetary embyro’s Hill sphere eventually will come close enough to the
planetary embryo during one of their orbits that they may be accreted.

The mass of a planetary embryo orbiting its star at a distance r, which has accreted all of the planetsimals
within an annulus of width 2∆r is (Eq. 12.27 from Planetary Sciences)

Mp =
∫ r+∆r

r−∆r

2πr′σρ(r′)dr′ ≈ 4πr∆rσρ(r), (5)

with σρ(r) the disk’s surface density at distance r.

Setting ∆r = 4RH, we obtain the isolation mass, Mi, which is the largest mass to which a planetary embryo
can grow by runaway accretion.

a. Using the expression for RH from Eq. 4, derive an expression for Mi (in grams) of a planetesimal orbiting a
star with mass ms.

b. Assuming a solar mass star, and a disk surface density that varies as σρ = 10 r−1 g cm−2, with r the
distance to the star in AU, calculate Mi at distances of 1 and 5 AU.

c. Repeat the calculations at 5 AU with a surface density that is twice as large (to account for condensed ices
on the dust particles).

4 Bonus exercise: The evolving composition of the planets

The chemical composition of solar system planets is a strong function of their distance from the sun. This is
largely because when a chemical is vaporized, it is not available for constructing the solid body of a planet. Solar
system materials are often categorized as either ’gas’, ’ice’ or ’rock’, based on their volatility. It is reasonable to
assume that planets retain most of their ’rocky’ materials, but lose some ’ices’ and ’gases’ during their evolution.

Table 1 shows the real or estimated rock masses of the solar system planets in Earth masses. Table 2 shows
the cosmic abundances, by number, of the most common elements. We’ll assume that they represent the original
abundances in the solar system, and that they were well-mixed throughout the solar nebula. Assume all of the
O, Mg, Si and Fe go into silicate rocks (use Mg2SiO4, Fe2SiO4, and SiO2, for simplicity) and that the remaining
O, C, and N, go into H2O, CH4, and NH3 (ices).

a. Calculate cosmic ice/rock, He/rock and H/rock mass fractions in Earth masses and use these to fill in the
next 3 columns of Table 1 (by approximation!).

b. Look up the current planetary masses and fill these in in the last column of Table 2. Comment on the
differences between the original and current masses.
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Table 1:
Body Rock mass Ice mass Gas mass Total original mass Total current mass

Terrestrial planets 2
Jupiter 10
Saturn 10
Uranus 3
Neptune 3
Totals 28

Table 2:

Atom Abundance
H 1
He 8 ×10−2

O 7 ×10−4

C 4 ×10−4

N 1 ×10−4

Mg 4 ×10−5

Si 4 ×10−5

Fe 3 ×10−5

c. Sum up the original masses and the current masses, and express the two totals in solar masses. What was
the (estimated) mass of the solar nebula? How much mass was lost? Where, do you think, it has it gone?
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