PROJECT MANAGEMENT FOR SCIENTISTS

RISK MANAGEMENT

CHRISTOPH U. KELLER

LEIDEN OBSERVATORY KELLER@STRW.LEIDENUNIV.NL

OUTLINE

- Project Risks
- Risk Analysis
- Risk Mitigation

RISKS IN PROJECTS

- *Risk* = any uncertainty in project
- Not everything will go according to plan
- Risks and their mitigation part of project plan
- Ask: "What could go wrong in this project?"
- Important even for small projects
- *Risk Management* = systematic, disciplined approach to increase likelihood of project success
- "project management = risk management"

RISK MANAGEMENT

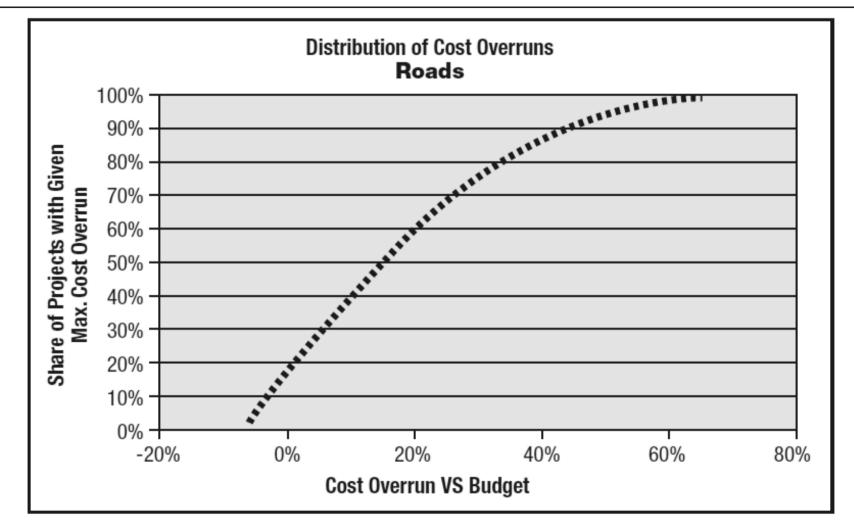
- Be ready for the unexpected
- *known risks:* be prepared
- *unknown risks:* realize that they will occur, reserve contingency to deal with them
- Insurance companies:
 - Risk management is main business
 - Prepare for uncertain event
 - Reduce uncertainty, impact

QUESTIONS TO ASK

- Requirements well understood and documented?
- Cost and time estimates detailed or top-down?
- How likely is scope to change?
- Dedicated resources or part-time basis?
- Key resources assigned or being lost to other projects?
- Will deadlines be pushed out?
- Will sponsor and stakeholders be responsive, meet milestones?
- Will there be technical problems?
- Optimism of single-point estimates addressed?

PATH CONVERGENCE

- WBS element has >1 predecessors
- Often due to merging of activities or parallel tasks
- Joint probability that one predecessor is late is much higher than for single predecessor
- 2 predecessors with 50% change of being late
- Chance for delay is 75%

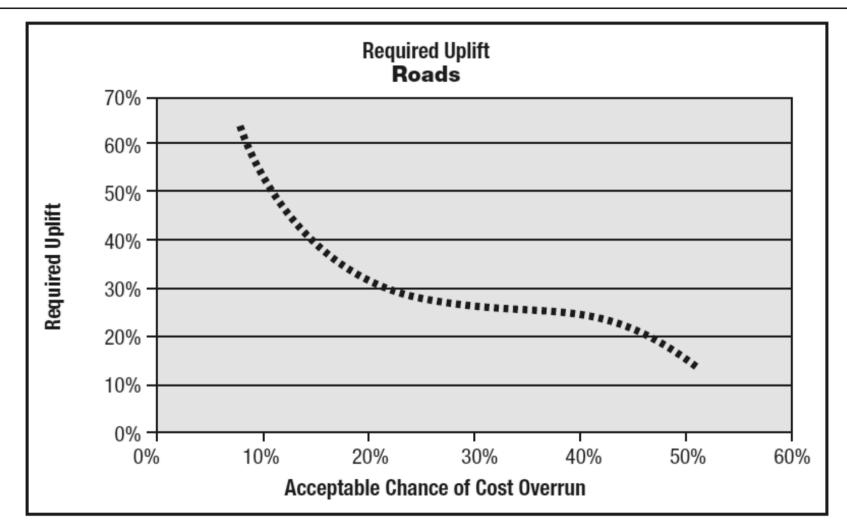

SCIENTIFIC PROJECT RISKS

- Fuzzy requirements
- Scope creep
- Technical difficulties
- Underestimated budget, resource requirements
- Insufficient funding commitments

REFERENCE CLASS FORECASTING

- Based on theories of decision-making under uncertainty (Kahneman, Nobel prize in economics 2002)
- Comparison of project with actual performance of comparable projects (*reference class*)
 - 1. Identify reference class: past, similar projects; broad enough to be statistically meaningful, narrow enough to be comparable with specific project
 - 2. Establish probability distribution for reference class; requires credible, empirical data for sufficient number of projects to draw statistically meaningful conclusions
 - 3. Compare specific project with reference class distribution to forecast most likely outcome

ACTUAL COST OVERRUNS



Source: Flyvbjerg database on large-scale infrastructure projects.

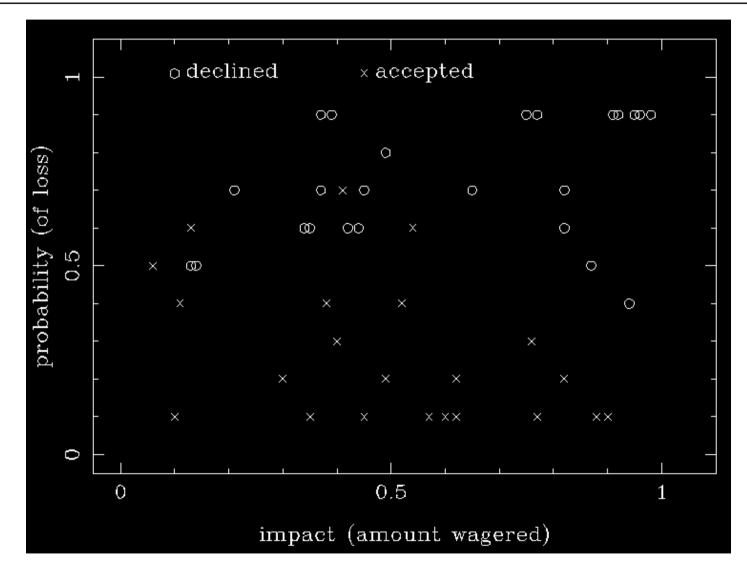
Flyvbjerg 2006

Project Management for Scientists 2015: Risk Management

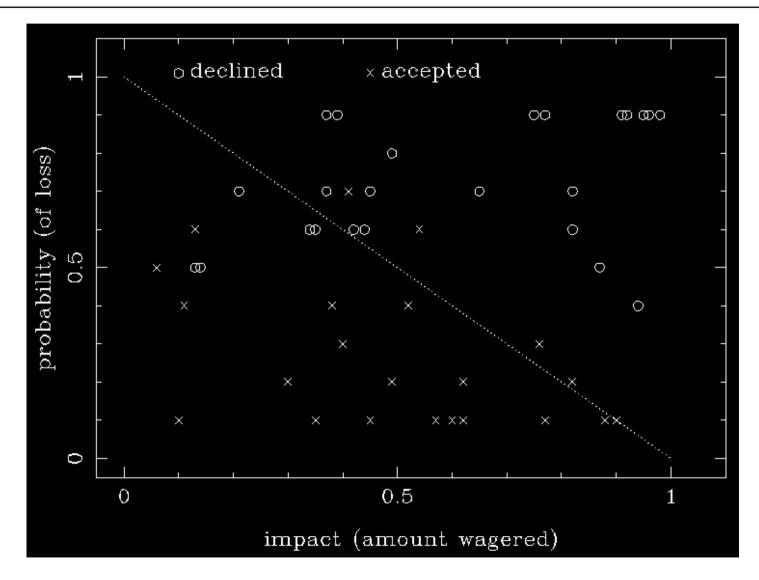
UPLIFT

Source: Flyvbjerg database on large-scale infrastructure projects.

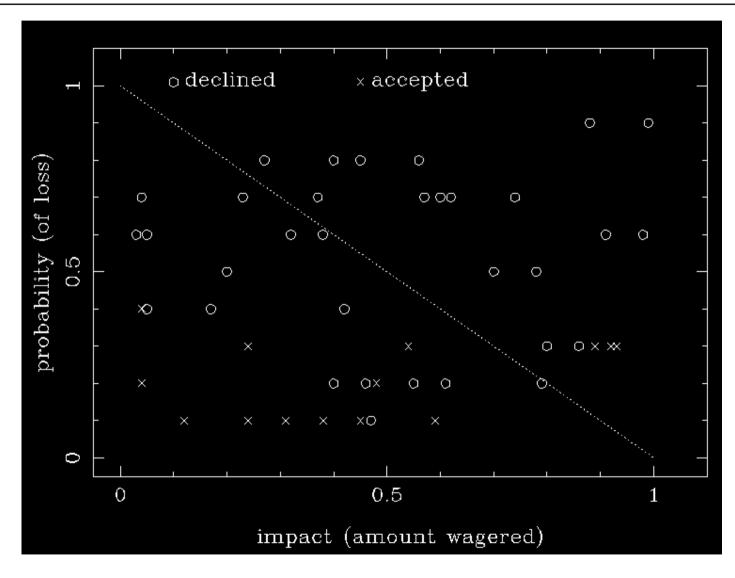
Flyvbjerg 2006


RISK MANAGEMENT FRAMEWORK

- Risks defined by 3 variables
 - **Event** that disrupts project
 - **Probability** that event will happen
 - **Impact** that event will have on project
- 1. Identify events by asking "what if ... ?"
- 2. Analyze probability and potential impact of events and prioritize (high, moderate, low risks)
- 3. Mitigate (reduce) high and moderate risk events
- 4. Ignore low risk events


RISK IDENTIFICATION

- Requires skill, experience, knowledge of project management techniques
- Ask stakeholders (brainstorming)
 - No analysis, responses, mitigation etc.
 - Combine similar risks and sort
 - Remove unlikely risks
- Interview individuals with list of questions
- "Anything that can go wrong will go wrong"
- Learn from past, similar projects
- Consider schedule and budget risks


INTUITIVE RISK ANALYSIS

INTUITIVE RISK ANALYSIS

INTUITIVE RISK ANALYSIS

RISK ANALYSIS

- Assign numerical value to probability of occurrence (high = high probability of occurrence)
- Assign numerical value to impact of event on project (high = high cost/schedule/science impact)
- Probability, impact should be assessed by group
- Draw values on 2-D graph, work from top right
- Or multiply 2 values, work top down

RISK ANALYSIS EXAMPLE

risk	likelihood	impact	rank
spectrograph design not working	6	8	48
calibration not precise enough	3	10	30
influence of temperature variations on FLC	6	5	30
pointing too critical	4	7	28
degradation of liquid crystal components	8	3	24
alignment too critical	3	7	21
camera read-out too slow	3	5	15
stiffness requirements too critical	3	3	9

- <u>Avoid</u>: don't do it! (don't get anything)
- <u>Accept</u>: do you feel lucky? (consequences < cure)
- <u>Mitigate</u>: take action to reduce probability and / or impact (plan B, contingency)
- <u>Transfer</u>: have another party share or take over the risk (insurance)
- Continuous risk (reduction) control

RISK MITIGATION

- Reduce impact, probability, or both
- If probability cannot be reduced:
 - Reduce negative impact
 - Monitor risk (detect in due time, trigger implementation of planned actions)
 - Plan alternative (contingency plan: money set aside, etc.)
- If impact cannot be reduced:
 - Reduce probability
 - Phased development
 - Prototyping

RISK MITIGATION EXAMPLE

risk	likeli hood	impact	rank	mitigation
spectrograph design	6	8	48	 learn from experts reduce spectral resolution at edges of spectral range
calibration not precise enough	3	10	30	 test on prototype more manual calibrations
influence of temperature variations on FLC	6	5	30	 test on prototype thermal measurements thermal isolation thermal control
pointing too critical	4	7	28	- improve hardware/software
degradation of liquid crystal components	8	3	24	 regular checks spare parts
alignment too critical	3	7	21	 alignment plan high priority use tapered fibers use precision translation stages
camera read-out too slow	3	5	15	- accept reduced polarimetric sensitivity
stiffness requirements too critical	3	3	9	- move spectrograph to fixed position