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Chapter 1

Basic Concepts of Optics

The polarization properties of electromagnetic waves is an integral part of optics. As such,
it is useful to review the basic physics upon which polarimetry is based. Electromagnetic
waves are a direct consequence of Maxwell’s equations. The interaction of electromagnetic
waves with matter as described by the material equations is the basis of optics. While
it is possible to derive the properties of waves in anisotropic media of arbitrary electrical
conductivity, it is more instructive to study the special cases that have a direct relation
to most applications in polarimetry. In this chapter, we concentrate on the propagation
of electromagnetic waves in isotropic, homogeneous media.

1.1 Electromagnetic waves in isotropic, homogeneous media

1.1.1 Maxwell and material equations

The basic physical equations on which polarimetry is based are the Maxwell equations
(1.4). Here we look at the macroscopic electrical and magnetic fields, i.e. the fields are av-
eraged over a volume that is large compared to the size of individual atoms and molecules.
However, the volume may still be small with respect to the wavelength of light. The
Maxwell equations are:

∇ ·D = 4πρ, (1.1)

∇×H − 1
c

∂D

∂t
=

4π
c

j, (1.2)

∇×E +
1
c

∂B

∂t
= 0, (1.3)

∇ ·B = 0. (1.4)

In the order of occurence, D is the electric displacement, ρ is the electric charge density,
H is the magnetic field vector, c is the speed of light in vacuum, j is the electric current
density, E is the electric field vector, and B is the magnetic induction. As usual, t is the
time. The first equation describes Coulomb’s law, the second describes Ampère’s law, the
third describes Faraday’s law, and the fourth equation supresses magnetic monopoles.

The first two equations, and therefore D and H describe the interaction of electro-
magnetic fields with matter via electrical charges and currents. The Maxwell equations
are, however, insufficient to describe electromagnetic fields in matter, and we need to add
equations that relate D, H, and j to E and B. In general, these material equations (or
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2 CHAPTER 1. BASIC CONCEPTS OF OPTICS

constitutive equations) are non-linear and time-dependent. Any anisotropy of the medium
is reflected in these relations. It is often useful to write the relations in the following form:

D = E + 4πP ,

B = H + 4πM , (1.5)
j = σE .

P is the electric polarization, M is the magnetic polarization, and sigma is the eletric
conductivity, i.e. Ohm’s law. Media for which σ 6= 0 are called electric conductors. For
metals, σ decreases with temperature, while for semiconductors, σ increases with temper-
ature. Media that have sufficiently small σ are called insulators or dielectrica.

Of course, the matieral equations 1.5 do not make the relation any simpler, but puts
all the complications into P and M . However, writing the relation in this way has
some advantages: ferroelectric and ferromagnetic materials have non-vanishing P and M ,
respectively, even in the absence of external fields.

External electric and magnetic fields can introduce internal electric and magnetic dipole
(and higher order multipole) fields in matter, which are, to first order, linear in the electric
and magnetic fields, respectively. The material equations 1.5 can then also be written as

D = εE ,

B = µH , (1.6)
j = σE .

ε is the dielectric constant and µ is the magnetic permeability. For anisotropic media, these
two scalars need to be replaced with the corresponding tensors of rank 2. Note that the
isotropy of a medium can be broken by the anisotropy of the material itself (e.g. crystals)
or by external fields (e.g. Kerr effect).

For sufficiently large field strengths, the relations between D,H and E,B become non-
linear, e.g. D also depends on the product of components of E. Such strong fields can
be generated with focusing lasers or strong external fields. This is the area of non-linear
optics, which is outside the scope of this book.

For vacuum, both scalars ε and µ are unity. For air, they are almost unity. For most
materials, µ is almost unity, but for magnetic materials, it significantly deviates from
unity.

1.1.2 Wave equation

In a static, homogeneous medium (vanishing spatial and temporal derivatives of ε, µ, and
σ) that has no (net) charge density (ρ = 0), Maxwell’s equations 1.4 can be combined
with the latter form of the material equations 1.6 to

∇2E − µε

c2

∂2E

∂t2
− 4πµσ

c2

∂E

∂t
= 0, (1.7)

which is the classical differential equation for a damped wave. The assumption of van-
ishing charge density (ρ = 0) is justified for any good conductor by the fact that the
relaxation time for the charge density is much shorter than the inverse frequency of the
electromagnetic wave.
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The magnetic field vector H obeys the equivalent damped wave equation

∇2H − µε

c2

∂2H

∂t2
− 4πµσ

c2

∂H

∂t
= 0, (1.8)

The electric and magnetic field vector are therefore completely equivalent. However, in
almost all materials relevant for polarimetry, the fundamental interaction between light
and matter occurs through the magnetic field, which is the reason why we will often only
consider the electric field vector, E. Nevertheless, the magnetic field vector H is also
important, in particular when considering interfaces between different media. The bound-
ary conditions that apply to the magnetic field vector at these interfaces has considerable
consequences for the transmission and reflection at such interfaces.

The magnitude of the damping term ∂E
∂t in Eq. 1.7 is controlled by the finite conduc-

tivity σ. For non-conducting media (σ = 0), the wave is not attenuated by the medium.
Finite conductivity (σ > 0) implies conversion of energy in the electromagnetic wave into
thermal energy via Joule heating. The latter is proportional to the conductivity and the
electrical field squared. Good conductors such as metals therefore are extremely good
absorbers. As we shall see, along with the absorption goes a high reflectivity, which makes
metals good mirros and therefore useful in optics.

1.1.3 Plane-wave solutions to the wave equation

The wave equation can be solved by making the following damped plane-wave ansatz

E = E0e
i(k·x−ωt) (1.9)

where the spatially and temporally constant wave vector k is normal to the surfaces of
constant phase and its magnitude is the wave number. x is the spatial location, ω is
the angular frequency, and t is the time. E0 is a (generally complex) vector independent
of time and space. The damping is made possible by allowing the wave vector k to be
complex. A complex E is, of course, not realistic, which implies that the real field vector
is given by the real part of the right hand side of Eq. 1.9.

We have made a crucial choice in this plane wave ansatz, which will carry on throughout
the rest of the book. An equally valid ansatz would be the one with the opposite sign
of the phase term, i.e. E′ = E0e

−i(k·x−ωt). The only important part is the fact that the
spatial term k · x and the temporal term ωt have opposite signs. While one is free to
choose one of the two forms, it is absolutely crucial to consistently use the same definition
since this influences the signs of many equations to come, and in particular the sign of
phase differences. Too many books on optics do not consistenly use the same definition
of a plane wave, which has led to considerable confusion. In the following, I will always
use the form shown in Eq. 1.9 and indicate when this choice has an influence on other
equations, which should facilitate the comparison with equations in books that use the
alternate plane wave ansatz. The sign convention used here is in agreement with the usual
definition of plane waves in quantum mechanics as well as the books by Jackson and Born
and Wolf.

When using the plane-wave ansatz in Eq. 1.9, it is useful to list the influence of the
various vector operators and derivatives on these plane waves. They are summarized in
the following relations

∇ ·E = ik ·E (1.10)
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∇×E = ik ×E (1.11)
∂

∂t
E = −iωE (1.12)

∂2

∂t2
E = −ω2E (1.13)

By carrying out the temporal derivatives in 1.7 using this plane-wave ansatz, one
obtains

∇2E +
ω2µ

c2

(
ε+ i

4πσ
ω

)
E = 0, (1.14)

which is the Helmholtz wave equation. Of course, our ansatz is also a solution of this
equation. In general, ε, µ, and even σ depend on the angular frequency ω.

In order for our ansatz to solve Eq. 1.14, the dispersion relation relating k2 to the
angular frequency ω by

k · k =
ω2µ

c2

(
ε+ i

4πσ
ω

)
(1.15)

must hold.
By defining the complex index of refraction ñ by

ñ2 = µ

(
ε+ i

4πσ
ω

)
, (1.16)

one obtains

k · k =
ω2

c2
ñ2 . (1.17)

It is customary to split the complex index of refraction into purely real and imaginary
parts, i.e.

ñ = n (1 + iκ) = n+ ik, (1.18)

where n is the (real) index of refraction. κ and k have many names, and the same names
have been used for either quanitities by different authors. In the following, we will call κ
the attenuation index and k the extinction coefficient. To avoid confusion, the length of the
wave vector will always be written in the form |k|, and k is reserved for the imaginary part
of the complex index of refraction. Either form of writing the complex index of refraction
simplifies some of the equations in the following. For consistency, however, we will always
use the form ñ = n + ik. When using the alternate form of the plane-wave ansatz, the
sign of the imaginary part of the complex index of refraction changes, i.e. ñ′ = n− ik.

The plane-wave ansatz must not only fulfill the wave equation, but it must also fulfill
all of Maxwell’s equations. For ∇ ·E = 0 and ∇ ·B = 0 to hold requires that

E0 · k = 0, (1.19)
H0 · k = 0. (1.20)

The electric and magnetic field vectors of electromagnetic waves in isotropic media are
therefore perpendicular to the wave vector, i.e. we deal with purely transverse waves.

The other two Maxwell equations imply

H0 =
ñ

µ
s×E0 , (1.21)
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where s is a unit vector in the direction of k, i.e.

k = |k| s . (1.22)

E0, H0, and k are therefore orthogonal to each other and form a right-handed vector-
triple. E0 and H0 only have the same phase if the the index of refraction of the medium,
ñ, is a purely real quantity, i.e. the medium is not conductive. In a conductive medium
with a complex ñ, E0 and H0 are out of phase. Finally, E0 and H0 have a constant
relationship, which makes it possible to only consider one of the two fields.

1.1.4 Energy propagation and the Poynting vector

The flow of energy density associated with an electromagnetic field is given by the Poynting
vector S,

S =
c

4π
(E ×H) . (1.23)

The magnitude of the Poynting vector is the amount of energy that flows through a unit
area perpendicular to S within one time unit. Its direction is the direction of the energy
flow.

For a plane-wave with complex amplitudes, the time-averaged Poynting vector is given
by

〈S〉 =
c

8π
Re (E0 ×H∗

0) , (1.24)

where Re indicates the real part of a complex expression, ∗ indicates the complex conjugate,
and 〈.〉 indicates the time average. For a monochromatic wave as considered here, it is
sufficient to average over one period of the wave to obtain the time average. The additional
factor 1

2 comes from the time average of the harmonic wave amplitude (
〈
sin2

〉
= 1

2 . Using
the relation between H0 and E0 in Eq. 1.21, we can write the time-averaged Poynting
vector as

〈S〉 =
c

8π
|ñ|
µ
|E0|2 s . (1.25)

The Poynting vector is therefore parallel to the wave vector. However, this is only true
for homogeneous, isotropic media and does not hold for arbitrary media.

The time-averaged energy density in a unit volume for a plane wave is given by

〈u〉 =
|ñ|2

8πµ
|E0|2 . (1.26)

Dividing the length of the Poynting vector by the energy density provides the velocity of
the energy density flow, which is given by

v =
c

|ñ|
, (1.27)

which is the well-known result that electromagnetic waves propagate at the speed of light,
which is reduced by a factor |ñ| in a medium as compared to the speed of light in vacuum.
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1.2 Polarization

As we have seen above, the spatially and temporally constant vector E0 lays in a plane
perpendicular to the propagation direction s. It therefore makes sene to represent E0 in
a two-dimensional basis with unit vectors e1 and e2, both of which are perpendicular to
the propagation direction s

E0 = E1e1 + E2e2. (1.28)

E1 and E2 are arbitrary complex scalars.
For a damped plane-wave solution of the wave equation 1.7 with a given angular

frequency ω and a given direction of the wave vectors, we have four degrees of freedom
(two complex scalars) in terms of the exact form of the wave. This additional property is
called polarization. There are many ways to represent these four quantities. For the rest
of this chapter it is sufficient to realize that if the phases of E1 and E2 are identical, the
electric field vector will oscillate in a fixed plane, the orientation of which is such that its
normal is perpendicular to k and determined by the ratio of the amplitudes of E1 and E2.

One could equally well define the polarization of light by using an equivalent decom-
position of the magnetic field vector as compared to the electric field vector used above.
The reason to prefer the electric field vector is due to the fact that the interaction of light
with electrons is dominated by the electric field of the electromagnetic wave as compared
to the magnetic field.

1.3 Quasi-monochromatic light

Monochromatic light as considered in the previous sections is a theoretical concept that
has no equivalent in nature. This is true even for lasers that have clearly defined wave-
lengths. Laser lines have a very narrow distribution of wavelengths, but they are not
monochromatic. By definition, monochromatic light is always fully polarized. Due to
Heisenberg’s uncertainty principle, monochromatic light implies infinite measuring times,
which is unrealistic.

Light found in real life therefore needs to be expressed in terms of light that includes
a range of wavelengths, even though this range can be very narrow, as is the case with
lasers. This is called quasi-monochromatic light, since its properties are very similar to
monochromatic light.

Quasi-monochromatic light can be described as a superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in a narrow range δλ around a central
wavelength λ0. Narrow in the present context is defined as

δλ

λ
<< 1 . (1.29)

The coherence time ∆t is then given by

∆t =
λ2

0

cδλ
. (1.30)

For all practical purposes discussed in this book, the coherence time is much shorter than
the typical speed with which common detectors work.

A measurement involving quasi-monochromatic light can then be written as the integral
over the measurement time tm. Since by definition, tm >> ∆t, it is customary to determine
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the limit of the integral when tm goes to infinity. One can show that this limit exists for
all practical purposes (see Born and Wolf for some mathematical details).

A quasi-monochromatic plane wave can be written in the same way as a monochromatic
plane wave with the difference that the amplitude and phase are (slow) functions of the
time for a given spatial location. Slow in this context means that variations occur on time
scales much longer than the mean period of the wave, 2π

ω . The electric field vector for a
quasi-monochromatic plane wave is the sum of electric field vectors of all monochromatic
beams and is therefore given by

E (t) = E0 (t) ei(k·x−ωt) . (1.31)

The reason for being able to write this is in the form is due to the fact that the range of
wavelengths is small compared to the wavelength itself. This notation is, of course, only
valid within the coherence length ∆t

c .
The measured intensity of a quasi-monochromatic beam can then be expressed as

〈ExE
∗
x〉+

〈
EyE

∗
y

〉
= lim

tm−>∞

1
tm

∫ tm/2

−tm/2
Ex(t)E∗x(t) + Ey(t)E∗y(t)dt , (1.32)

where 〈· · ·〉 indicates the averaging over the measurement time tm. Obviously, the mea-
sured intensity is independent of time.

Quasi-monochromatic also implies that frequency-dependent material properties such
as the index of refraction can be assumed to be constant within the wavelength range ∆λ.

1.4 Polychromatic light or white light

When the wavelength range of light is comparable to its wavelength, i.e. δλ
λ ∼ 1, then we

call this polychromatic light. Polychromatic light can be thought of as the (incoherent)
sum of quasi-monochromatic beams that have large variations in wavelength. For such a
broad wavelength range, we cannot write the electric field vector in a plane-wave form,
and we have to explicitely take into account frequency-dependent meterial characteristics.
Nevertheless, the intensity of polychromatic light is given by the sum of intensities of the
constituting quasi-monochromatic beams since the (time-averaged) cross-products vanish
because we assume incoherent superpositions.



Chapter 2

Description of Polarized Light

As we have seen in Chapter 1, the polarization of an electromagnetic wave can be expressed
with two complex scalars. While this provides a very general description of polarized light,
it is not always the most useful notation. Over the years, various other descriptions of
the polarization have been developed, each having its particular advantages and disad-
vantages. This chapter presents the most common descriptions and discuss their range of
applications.

2.1 Polarization Ellipse

We can write the plane-wave equation 1.9 in the form

E (t) = E0e
i(k·x−ωt) (2.1)

with
E0 = E1e

iδ1ex + E2e
iδ2ey. (2.2)

ex and ey are unit vectors in the x and y directions, respectively. The beam propagates
along the z-axis. The coefficients E1 and E2 are the (real) amplitudes and δ1,2 are the
phases. At a given point x, the time evolution of the electric field vector is described by
an ellipse. Equation 2.1 describes two equations, one for each of the x and y components
of the electrical field vector,Ex(t) and Ey(t), respectively. These are the real parts of the
x and y components of Eq. 2.1. The two equations can be combined to obtain(

Ex (t)
E1

)2

+
(
Ey (t)
E2

)2

− 2
(
Ex (t)
E1

)(
Ey (t)
E2

)
cos δ = sin2 δ , (2.3)

where δ = δ1− δ2 (see e.g. Born and Wolf for the derivation). Figure 2.1 shows the ellipse
with the various parameters used here.

The three parameters E1, E2, and δ are related to the major axis 2a, the minor axis
2b, and the orinentation ψ of the major axis with respect to the positive x-axis by the
relations

a2 + b2 = E2
1 + E2

2 (2.4)
tan 2ψ = tan 2α cos δ (2.5)
sin 2χ = sin 2α sin δ , (2.6)

8
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Figure 2.1: The polarization ellipse that describes the time evolution of the electric field
vector at a fixed location in space. a and b are the major and minor semi-axes, ψ is
the orientation of the ellipse, and E1, 2 are the amplitudes in the x and y directions
respectively.

where the ellipticity is given by the ratio of the axes of the ellipse,

tanχ = ± b
a
. (2.7)

The two signs indicate the direction in which the electric field vector describes the ellipse,
either clockwise or counter-clockwise. α is given by

tanα =
E2

E1
. (2.8)

For an ellipticity of 0, we have linear polarization with an orientation of ψ with respect
to the positive x-axis, while for b

a = 1 we have circularly polarized light. For this case it
becomes evident that we need both signs of the ratio. Otherwise it would be impossible to
distinguish between the two senses of circular polarization since all the other parameters
are identical for left- and right-circular polarization.

2.2 Jones formalism

2.2.1 Jones vector

The Jones formalism is most closely related to the description given in Chapter 1. There we
had the following equation for the spatially and temporally invariant complex amplitude
of the electric field vector:

E0 = E1e1 + E2e2. (2.9)

At that point we only specified that e1 and e2 are basis vectors in a plane perpendicular
to the direction of propagation. In principle, the vectors could be complex. For the Jones
formalism, we use unit vectors along the x and y axes as basis vectors. We then combine
the two associated complex scalars Ex and Ey into a complex vector of length 2. If the



10 CHAPTER 2. DESCRIPTION OF POLARIZED LIGHT

electromagnetic wave travels along the z-axis, the Jones vector describing the polarization
of this wave contains the complex amplitude electrical field in the form

e =

(
Ex
Ey

)
. (2.10)

The most intuitive way to understand the Jones vector is obtained by separating each
vector component into an amplitude and a phase factor. The amplitudes can then be
interpreted as the amplitude of the electric field vector projected onto the x and y di-
rections, respectively. The phase difference between the x and y components represents
the (constant) phase difference between the two electric field components. This phase
difference is a crucial property that directly influences the type of polarization. If the
two components have a phase difference that is a multiple of π, the electric field vector
oscillates in a fixed plane. If the phase difference is ±π

2 , we have circularly polarized light.
We are left with one more phase factor, which describes the absolute phase of the wave
with respect to a given coordinate system. At the wavelengths discussed in this book,
we only measure intensities, and the absolute phase is therefore not important. However,
when superposing (adding) Jones vectors, one needs to keep track of the relative phases
of the various vectors. In almost all cases, adding a constant phase to all vectors involved
does not change observable effects. In many cases, it is therefore practical to set one of
the phases or the sum of the phases to zero.

Since the wave equation derived from Maxwell’s equations is linear, the sum of two
solutions is again a solution. When considering two waves of the same angular frequency ω
and the direction of propagation, the Jones vector of the sum is the sum of Jones vectors
of the individual waves. The addition of Jones vectors therefore describes a coherent
superposition of waves, and it inherently assumes that the waves have the same frequency
and direction of propagation. it can be shown that is still is a good approximation as long
as the directions of propagations are almost but not exactly the same.

Elements of Jones vectors, i.e. the complex electric field amplitudes are not observed
directly by detectors in the wavelength range considered here. Therefore, observables
always depend on products of the elements of Jones vectors such as the intensity I of the
wave,

I = e · e∗ = exe
∗
x + eye

∗
y, (2.11)

where ∗ indicates the complex transpose operation. Similar to the phase issue, it is rare
that we deal with absolute intensities, which is why the Jones vectors are often normalized
to unit intensity. However, when adding Jones vectors, it is crucial to keep their relative
amplitudes.

Let us look at some examples of normalized Jones vectors whose absolute phase is
neglected. Light that is linearly polarized in the x-direction e0 (subscript 0 for horizontal)
is represented by

e0 =

(
1
0

)
, (2.12)

and similarly, light polarized in the y-direction e90 (subscript 90 for 90◦ or vertical) is
represented by

e90 =

(
0
1

)
, (2.13)
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and light polarized at +45◦ is represented by

e+45 =
1√
2

(
1
1

)
, (2.14)

Finally, left and right circularly polarized light are represented by

el =
1√
2

(
1
−i

)
(2.15)

and

er =
1√
2

(
1

+i

)
. (2.16)

Using the Jones vectors, we can create circularly polarized light of unit intensity by
adding a horizontally and a vertically linearly polarized wave, each having an intensity of
1
2 (corresponding to an amplitude of 1√

2
:

1√
2

(
1
0

)
+

1√
2

(
0
ei
π
2

)
=

1√
2

(
1

+i

)
= er. (2.17)

Here we have made use of the fact that eiφ = cosφ+ i sinφ.

2.2.2 Jones matrix

The influence of a medium on the polarization property of an electromagnetic wave can
be described by a 2 by 2 complex matrix J, the Jones matrix. If the original Jones vector
is e, the Jones vector after passing the medium is given by

e′ = Je =

(
J11 J12

J21 J22

)
e . (2.18)

It is important to realize that this makes the assumption that the propoeries of the medium
are not affected by the polarization state of the wave passing through it, i.e. this is valid
in the area of linear optics.

The simplest form for a Jones matrix is the case of vacuum, i.e.

Jvacuum =

(
1 0
0 1

)
. (2.19)

If a medium only changes the overall phase of the wave (e.g. a phase aberration in the
Earth’s atmosphere) by φ, the Jones matrix is described as

J =

(
eiφ 0
0 eiφ

)
. (2.20)

Such a matrix does not change the phase difference between the two Jones vector com-
ponents, and therefore does not influence the polarization of the passing wave. Another
simple Jones matrix is the one for a horizontal linear polarizer:

J =

(
1 0
0 0

)
. (2.21)
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It is easy to verify that an arbitrarily polarized wave will be transformed into a horizontally
linearly polarized wave. Of course, a vertically polarized wave will not be transmitted at
all. We will introduce more complicated Jones matrices in Part II where we discuss various
optical elements that affect the state of polarization.

When a wave successively passes through N different media (numbered 1 to N in order
of the wave passing through them), the combined influence of all media on the polarization
of the wave as indicated by the Jones matrix J is described by the product of the individual
Jones matrices Ji, i.e.

J = JNJN−1 · · · J2J1 (2.22)

The order of the matrices in the product is crucial because Jones matrices do not commute
in general (J1J2 6= J2J1).

Often we know the Jones matrix of a medium acting on a polarized wave. If we want
to know the Jones matrix of the medium at a different angle, we can make use of the
following relation:

J′ = R(−α)JR(α) , (2.23)

where the rotation matrix R is given by

R =

(
cos θ sin θ
− sin θ cos θ

)
. (2.24)

This is easy to derive when considering the transformation of a Jones vector under rotation
around the z-axis (recall that the electric field vector only has x and y components).

The Jones calculus is the adequate way to describe the coherent superposition of polar-
ized light because it operates on amplitudes rather than on intensities. Coherent superposi-
tion is important when considereing coherent light such as produced by lasers, interference
effects, and the influence of optical aberrations on polarization. However, Jones vectors
and matrices can only describe 100% polarized light because a monochromatic wave is
always 100% polarized.

2.3 Stokes parameters, vectors, and Mueller matrices

2.3.1 Stokes vector

“... the Stokes parameters are simple linear combinations of correlations that may exist
between two mutually orthogonal components of the electric vector perpendicular to the
direction of propagation of a fluctuating electromagnetic plane wave.” (Wolf 2003).

The Stokes vector is similar to the density matrix formalism discussed above in that
it describes averages of quantities related to the electric field vector. The components of
the Stokes vector are measurable quantities, and Stokes vectors transform linearly when
passing through a medium.

The four components of a Stokes vector I have been indicated with various characters:

I =


I
Q
U
V

 =


I
M
C
S

 =


s0

s1

s2

s3

 =


I1

I2

I3

I4

 , (2.25)

where the first form is used in many modern texts dealing with Stokes parameters, the
second form can be found in some of the older texts (e.g. Perrin 1942), while the last two
forms are useful when applying methods of linear algebra to Stokes vectors.
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In terms of our plane wave descriptions using real or complex amplitudes, the Stokes
vector has the following forms:

I =


ExE

∗
x + EyE

∗
y

ExE
∗
x − EyE∗y

ExE
∗
y + EyE

∗
x

i
(
ExE

∗
y − EyE∗x

)
 =


E2

1 + E2
2

E2
1 − E2

2

2E1E2 cos δ
2E1E2 sin δ

 (2.26)

where Ex,y are the complex amplitudes of the electric field vector, E1,2 are the (real)
amplitudes of the electric field vector in the x and y axes, and δ is the phase difference
between the two components. The components of the Stokes vector are therefore real and
obey the following inequality:

I2 ≥ Q2 + U2 + V 2 . (2.27)

For completely polarized light, the equality holds. Otherwise, polarized light obeys the
inequality. It makes therefore sense to define the degree of polarization as

P =
√
Q2 + U2 + V 2

I
, (2.28)

which is 1 for fully polarized light, and 0 for unpolarized light.
Addition of Stokes vectors corresponds to incoherently adding two beams, i.e. the two

beams are uncorrelated in terms of amplitudes and phases.

2.3.2 Mueller matrices

Mueller matrices describe the (linear) transformation between Stokes vectors associated
with optical elements and surfaces, i.e.

I ′ = MI , (2.29)

Mueller matrices have the following form:

M =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 . (2.30)

When a beam of light passes through N optical elements, each described by a Mueller
matrix Mi, the combined Mueller matrix M′ of the whole assembly is given by

M′ = MNMN−1 · · ·M2M1 (2.31)

Note the reversed order of the Mueller matrices as compared to the order in which the
light passes through the optical elements. This order is important since Mueller matrices
do not commute in general.

Rotation of elements described by Mueller matrices are given by

M′ = R(−α)MR(α) , (2.32)
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where α is the rotation angle and the rotation matrix R is given by

R (α) =


1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1

 . (2.33)

Since Stokes vectors and Mueller matrices operate on intensities and their differences,
i.e. incoherent superpositions of light, they are not adequate to describe interference nor
diffraction effects. However, they are ideally suited to describe partially polarized and
unpolarized light.

2.4 Poincaré Sphere

Since a Stokes vector for a fully polarized beam obeys the following relationsship

I2 = Q2 + U2 + V 2 , (2.34)

we can think of this as the equation describing a sphere in cartesian coordinates labeled
Q, U , and V . Without loss of generality, one can assume unit intensity, which makes the
sphere have a radius of 1. A Stokes vector for a fully polarized beam then corresponds to a
point on the sphere’s surface. Points within the surface can be thought of as representing
partially polarized light. This is the Poincaré sphere as first described by Henri Poincaré
in 1892 in his book on the mathematical theory of light (Poincaré 1892).

Figure 2.2: Points on the Poincaré sphere correspond to polarization states that are fully
polarized. The Poincaré sphere is a graphical representation of fully polarized light.

The influence of optical elements on polarized light that do not change the degree
of polarization can then be described by transformations on the sphere’s surface, i.e.
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rotations around an axis that goes through the center of the sphere, which are largely
exercies in spherical geometry. The Poincaré sphere has been used extensively in the past,
in particular before the Mueller matrix approach was established. However, the advent
of computers that can easily deal with large sets of Mueller matrices has rendered the
Poincaré sphere formalism rather unimportant. However, it sometimes offers unique ways
to understand certain issues such as the operation of achromatic retarders.

The plane defined by the Q and U axes defines the equator. Purely linearly polarized
light is therefore represented by a point on the equator. Since Q and U are 90◦ apart
on the Poincaré sphere, but in real space Q becomes U by a 45◦ rotation, the location
of a linearly polarized beam with an orientation of its plane of polarization at angle θ is
then represented by a point on the equator at ‘longitude’ 2θ, where the zero or Greenwich
longitude is defined by a purely linearly polarized beam with only Stokes Q. Circularly
polarized light is located at the poles of the sphere. Apart from this special locations,
other locations on the sphere represent elliptically polarized light.


