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Polarized Light in the Universe
Polarization indicates anisotropy⇒ not all directions are equal

Typical anisotropies introduced by
geometry (not everything is spherically symmetric)
temperature gradients
magnetic fields
electrical fields
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Polarized Light from the Big Bang

Cosmic Microwave Background (CMB) is red-shifted radiation
from Big Bang 14× 109 years ago
age, geometry, density, of universe from CMB intensity pattern
first 0.1 seconds from polarization pattern of CMB
inflation⇒ gravitational waves⇒ polarization signals
polarization expected at (or below) 10−6 of intensity

13.7 billion year old temperature fluctuations from WMAP
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Unified Model of Active Galactic Nuclei
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Protoplanetary Disk in Scattered Light

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics 2, Lecture 6: Polarimetry 1 4



Solar Magnetic Field Maps from Longitudinal Zeeman Effect
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Second Solar Spectrum from Scattering Polarization
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Jupiter and Saturn

(courtesy H.M.Schmid and D.Gisler)

Planetary Scattered Light

Jupiter, Saturn show scattering
polarization
much depends on cloud height
can be used to study exoplanets
ExPo development at UU
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Other astrophysical applications
interstellar magnetic field from polarized starlight
supernova asymmetries
stellar magnetic fields from Zeeman effect
galactic magnetic field from Faraday rotation

Magnetic Fields of TTauri Stars by Sandra V.Jeffers
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Fundamentals of Polarized Light

Electromagnetic Waves in Matter
Maxwell’s equations⇒ electromagnetic waves
optics: interaction of electromagnetic waves with matter as
described by material equations
polarization of electromagnetic waves are integral part of optics

Maxwell’s Equations in Matter

∇ · ~D = 4πρ

∇× ~H − 1
c
∂~D
∂t

=
4π
c
~j

∇× ~E +
1
c
∂~B
∂t

= 0

∇ · ~B = 0

Symbols
~D electric displacement
ρ electric charge density
~H magnetic field
c speed of light in vacuum
~j electric current density
~E electric field
~B magnetic induction
t time
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Linear Material Equations

~D = ε~E
~B = µ~H
~j = σ~E

Symbols
ε dielectric constant
µ magnetic permeability
σ electrical conductivity

Isotropic Media
isotropic media: ε and µ are scalars
for most materials: µ = 1
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Wave Equation in Matter
static, homogeneous medium with no net charges: ρ = 0
combine Maxwell, material equations⇒ differential equations for
damped (vector) wave

∇2~E − µε

c2
∂2~E
∂t2 −

4πµσ
c2

∂~E
∂t

= 0

∇2~H − µε

c2
∂2~H
∂t2 −

4πµσ
c2

∂~H
∂t

= 0

damping controlled by conductivity σ
~E and ~H are equivalent⇒ sufficient to consider ~E
interaction with matter almost always through ~E
but: at interfaces, boundary conditions for ~H are crucial
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Plane-Wave Solutions
Plane Vector Wave ansatz

~E = ~E0ei(~k ·~x−ωt)

~k spatially and temporally constant wave vector
~k normal to surfaces of constant phase
|~k | wave number
~x spatial location
ω angular frequency (2π× frequency)
t time

~E0 (generally complex) vector independent of time and space

could also use ~E = ~E0e−i(~k ·~x−ωt)

damping if ~k is complex
real electric field vector given by real part of ~E
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Complex Index of Refraction
temporal derivatives⇒ Helmholtz equation

∇2~E +
ω2µ

c2

(
ε+ i

4πσ
ω

)
~E = 0

dispersion relation between ~k and ω

~k · ~k =
ω2µ

c2

(
ε+ i

4πσ
ω

)
complex index of refraction

ñ2 = µ

(
ε+ i

4πσ
ω

)
, ~k · ~k =

ω2

c2 ñ2

split into real (n: index of refraction) and imaginary parts (k :
extinction coefficient)

ñ = n + ik

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics 2, Lecture 6: Polarimetry 1 13



Transverse Waves

plane-wave solution must also fulfill Maxwell’s equations

~E0 · ~k = 0, ~H0 · ~k = 0, ~H0 =
ñ
µ

~k

|~k |
× ~E0

isotropic media: electric, magnetic field vectors normal to wave
vector⇒ transverse waves
~E0, ~H0, and ~k orthogonal to each other, right-handed vector-triple
conductive medium⇒ complex ñ, ~E0 and ~H0 out of phase
~E0 and ~H0 have constant relationship⇒ consider only ~E
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Energy Propagation in Isotropic Media
Poynting vector

~S =
c

4π

(
~E × ~H

)
|~S|: energy through unit area perpendicular to ~S per unit time
direction of ~S is direction of energy flow
time-averaged Poynting vector given by〈

~S
〉

=
c

8π
Re
(
~E0 × ~H∗0

)
Re real part of complex expression
∗ complex conjugate
〈.〉 time average

energy flow parallel to wave vector (in isotropic media)

〈
~S
〉

=
c

8π
|ñ|
µ
|E0|2

~k

|~k |
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Polarization

Plane Vector Wave ansatz ~E = ~E0ei(~k ·~x−ωt)

spatially, temporally constant vector ~E0 lays in plane
perpendicular to propagation direction ~k
represent ~E0 in 2-D basis, unit vectors ~e1 and ~e2, both
perpendicular to ~k

~E0 = E1~e1 + E2~e2.

E1, E2: arbitrary complex scalars
damped plane-wave solution with given ω, ~k has 4 degrees of
freedom (two complex scalars)
additional property is called polarization
many ways to represent these four quantities
if E1 and E2 have identical phases, ~E oscillates in fixed plane
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Polarization Ellipse

Polarization Ellipse Polarization

~E (t) = ~E0ei(~k ·~x−ωt)

~E0 = E1eiδ1~ex + E2eiδ2~ey

wave vector in z-direction
~ex , ~ey : unit vectors in x , y
E1, E2: (real) amplitudes
δ1,2: (real) phases

Polarization Description
2 complex scalars not the most useful description
at given ~x , time evolution of ~E described by polarization ellipse
ellipse described by axes a, b, orientation ψ
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Jones Formalism

Jones Vectors

~E0 = Ex~ex + Ey~ey

beam in z-direction
~ex , ~ey unit vectors in x , y -direction
complex scalars Ex ,y

Jones vector
~e =

(
Ex
Ey

)
phase difference between Ex , Ey multiple of π, electric field vector
oscillates in a fixed plane⇒ linear polarization
phase difference ±π

2 ⇒ circular polarization
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Summing and Measuring Jones Vectors

~E0 = Ex~ex + Ey~ey

~e =

(
Ex
Ey

)

Maxwell’s equations linear⇒ sum of two solutions again a
solution
Jones vector of sum of two waves = sum of Jones vectors of
individual waves if wave vectors ~k the same
addition of Jones vectors: coherent superposition of waves
elements of Jones vectors are not observed directly
observables always depend on products of elements of Jones
vectors, i.e. intensity

I = ~e · ~e∗ = exe∗x + eye∗y

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics 2, Lecture 6: Polarimetry 1 20



Jones matrices
influence of medium on polarization described by 2× 2 complex
Jones matrix J

~e′ = J~e =

(
J11 J12
J21 J22

)
~e

assumes that medium not affected by polarization state
different media 1 to N in order of wave direction⇒ combined
influence described by

J = JNJN−1 · · · J2J1

order of matrices in product is crucial
Jones calculus describes coherent superposition of polarized light
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Linear Polarization

horizontal:
(

1
0

)
vertical:

(
0
1

)
45◦: 1√

2

(
1
1

)

Circular Polarization

left: 1√
2

(
1
i

)
right: 1√

2

(
1
−i

)

Notes on Jones Formalism
Jones formalism operates on amplitudes, not intensities
coherent superposition important for coherent light (lasers,
interference effects)
Jones formalism describes 100% polarized light
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Quasi-Monochromatic Light
monochromatic light: purely theoretical concept
monochromatic light wave always fully polarized
real life: light includes range of wavelengths⇒
quasi-monochromatic light
quasi-monochromatic: superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in narrow
range δλ around central wavelength λ0

δλ

λ
� 1

measurement of quasi-monochromatic light: integral over
measurement time tm
amplitude, phase (slow) functions of time for given spatial location
slow: variations occur on time scales much longer than the mean
period of the wave
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Polarization of Quasi-Monochromatic Light

electric field vector for quasi-monochromatic plane wave is sum of
electric field vectors of all monochromatic beams

~E (t) = ~E0 (t) ei(~k ·~x−ωt)

can write this way because δλ� λ0

measured intensity of quasi-monochromatic beam〈
~Ex ~E∗x

〉
+
〈
~Ey ~E∗y

〉
= lim

tm−>∞

1
tm

∫ tm/2

−tm/2

~Ex (t)~E∗x (t) + ~Ey (t)~E∗y (t)dt

〈· · · 〉: averaging over measurement time tm
measured intensity independent of time
quasi-monochromatic: frequency-dependent material properties
(e.g. index of refraction) are constant within ∆λ
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Polychromatic Light or White Light

wavelength range comparable to wavelength ( δλλ ∼ 1)
incoherent sum of quasi-monochromatic beams that have large
variations in wavelength
cannot write electric field vector in a plane-wave form
must take into account frequency-dependent material
characteristics
intensity of polychromatic light is given by sum of intensities of
constituting quasi-monochromatic beams

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics 2, Lecture 6: Polarimetry 1 26



Stokes and Mueller Formalisms

Stokes Vector
formalism to describe polarization of quasi-monochromatic light
directly related to measurable intensities
Stokes vector fulfills these requirements

~I =


I
Q
U
V

 =


ExE∗x + EyE∗y
ExE∗x − EyE∗y
ExE∗y + EyE∗x

i
(
ExE∗y − EyE∗x

)
 =


E2

1 + E2
2

E2
1 − E2

2
2E1E2 cos δ
2E1E2 sin δ


Jones vector elements Ex ,y , real amplitudes E1,2, phase
difference δ = δ2 − δ1

I2 ≥ Q2 + U2 + V 2
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Stokes Vector Interpretation

~I =


I
Q
U
V

 =


intensity

linear 0◦ − linear 90◦

linear 45◦ − linear 135◦

circular left− right


degree of polarization

P =

√
Q2 + U2 + V 2

I

1 for fully polarized light, 0 for unpolarized light
summing of Stokes vectors = incoherent adding of
quasi-monochromatic light waves
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Linear Polarization

horizontal:


1
−1
0
0



vertical:


1
1
0
0



45◦:


1
0
1
0



Circular Polarization

left:


1
0
0
1



right:


1
0
0
−1
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Mueller Matrices
4× 4 real Mueller matrices describe (linear) transformation
between Stokes vectors when passing through or reflecting from
media

~I′ = M~I ,

M =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44


N optical elements, combined Mueller matrix is

M′ = MNMN−1 · · ·M2M1
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Vertical Linear Polarizer

Mpol (θ) =
1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



Horizontal Linear Polarizer

Mpol (θ) =
1
2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


Mueller Matrix for Ideal Linear Polarizer at Angle θ

Mpol (θ) =
1
2


1 cos 2θ sin 2θ 0

cos 2θ cos2 2θ sin 2θ cos 2θ 0
sin 2θ sin 2θ cos 2θ sin2 2θ 0

0 0 0 0
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Poincaré Sphere

Relation to Stokes Vector
fully polarized light:
I2 = Q2 + U2 + V 2

for I2 = 1: sphere in Q, U, V
coordinate system
point on Poincaré sphere
represents particular state
of polarization
graphical representation of
fully polarized light
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Poincaré Sphere Interpretation

polarizer is a point on the Poincaré sphere
transmitted intensity: cos2(l/2), l is arch length of great circle
between incoming polarization and polarizer on Poincaré sphere
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