Lecture 6: Polarimetry 1

Outline

- **Polarized Light in the Universe**
- **2** Fundamentals of Polarized Light
- Descriptions of Polarized Light

Polarized Light in the Universe

Polarization indicates *anisotropy* ⇒ not all directions are equal

Typical anisotropies introduced by

- **•** geometry (not everything is spherically symmetric)
- temperature gradients
- **o** magnetic fields
- **e** electrical fields

Polarized Light from the Big Bang

- Cosmic Microwave Background (CMB) is red-shifted radiation from Big Bang 14×10^9 years ago
- age, geometry, density, of universe from CMB intensity pattern
- **.** first 0.1 seconds from polarization pattern of CMB
- inflation \Rightarrow gravitational waves \Rightarrow polarization signals
- polarization expected at (or below) 10^{-6} of intensity

13.7 billion year old temperature fluctuations from WMAP

Unified Model of Active Galactic Nuclei

Protoplanetary Disk in Scattered Light

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics 2, Lecture 6: Polarimetry 1 4

Solar Magnetic Field Maps from Longitudinal Zeeman Effect

Second Solar Spectrum from Scattering Polarization

Jupiter and Saturn

(courtesy H.M.Schmid and D.Gisler)

Planetary Scattered Light

- Jupiter, Saturn show scattering polarization
- much depends on cloud height
- can be used to study exoplanets
- ExPo development at UU

Other astrophysical applications

- interstellar magnetic field from polarized starlight
- **•** supernova asymmetries
- **•** stellar magnetic fields from Zeeman effect
- **galactic magnetic field from Faraday rotation**

Magnetic Fields of TTauri Stars by Sandra V.Jeffers

Fundamentals of Polarized Light

Electromagnetic Waves in Matter

- *Maxwell's equations* ⇒ electromagnetic waves
- **•** optics: interaction of electromagnetic waves with matter as described by *material equations*
- polarization of electromagnetic waves are integral part of optics

Linear Material Equations

$$
\vec{D} = \epsilon \vec{E}
$$

$$
\vec{B} = \mu \vec{H}
$$

$$
\vec{j} = \sigma \vec{E}
$$

Symbols

- *dielectric constant*
- µ *magnetic permeability*
- σ *electrical conductivity*

Isotropic Media

- isotropic media: ϵ and μ are scalars
- for most materials: $\mu = 1$

Wave Equation in Matter

- **•** static, homogeneous medium with no net charges: $\rho = 0$
- \bullet combine Maxwell, material equations \Rightarrow differential equations for damped (vector) wave

$$
\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} - \frac{4\pi \mu \sigma}{c^2} \frac{\partial \vec{E}}{\partial t} = 0
$$

$$
\nabla^2 \vec{H} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{H}}{\partial t^2} - \frac{4\pi \mu \sigma}{c^2} \frac{\partial \vec{H}}{\partial t} = 0
$$

- damping controlled by conductivity σ
- *E*~ and *H*~ are equivalent ⇒ sufficient to consider *E*~
- \bullet interaction with matter almost always through \vec{E}
- but: at interfaces, boundary conditions for *H*~ are crucial

Plane-Wave Solutions

• Plane Vector Wave ansatz

$$
\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}
$$

 \bar{k} spatially and temporally constant *wave vector*

- \overline{k} normal to surfaces of constant phase
- $|\vec{k}|$ wave number
	- \vec{x} spatial location
	- ω *angular frequency* (2π× frequency)
	- *t* time
- \vec{E}_0 (generally complex) vector independent of time and space
- $\vec{E} = \vec{E}_0 e^{-i\left(\vec{K}\cdot\vec{x}-\omega t\right)}$
- damping if \vec{k} is complex
- **•** real electric field vector given by real part of \vec{E}

Complex Index of Refraction

 \bullet temporal derivatives \Rightarrow Helmholtz equation

$$
\nabla^2 \vec{E} + \frac{\omega^2 \mu}{c^2} \left(\epsilon + i \frac{4 \pi \sigma}{\omega} \right) \vec{E} = 0
$$

• *dispersion relation* between \vec{k} and ω

$$
\vec{k} \cdot \vec{k} = \frac{\omega^2 \mu}{c^2} \left(\epsilon + i \frac{4\pi \sigma}{\omega} \right)
$$

complex index of refraction

$$
\tilde{n}^2 = \mu \left(\epsilon + i \frac{4\pi \sigma}{\omega} \right), \vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \tilde{n}^2
$$

split into real (*n*: *index of refraction*) and imaginary parts (*k*: *extinction coefficient*)

$$
\tilde{n}=n+ik
$$

Transverse Waves

• plane-wave solution must also fulfill Maxwell's equations

$$
\vec{E}_0\cdot\vec{k}=0,\;\;\vec{H}_0\cdot\vec{k}=0,\;\;\vec{H}_0=\frac{\tilde{n}}{\mu}\frac{\vec{k}}{|\vec{k}|}\times\vec{E}_0
$$

- **•** isotropic media: electric, magnetic field vectors normal to wave vector ⇒ transverse waves
- \vec{E}_0 , \vec{H}_0 , and \vec{k} orthogonal to each other, right-handed vector-triple
- conductive medium \Rightarrow complex $\tilde{n},\,\vec{E}_0$ and \vec{H}_0 out of phase
- \vec{E}_0 and \vec{H}_0 have constant relationship \Rightarrow consider only \vec{E}

Energy Propagation in Isotropic Media

Poynting vector

$$
\vec{S}=\frac{c}{4\pi}\left(\vec{E}\times\vec{H}\right)
$$

- \cdot $|\vec{S}|$: energy through unit area perpendicular to \vec{S} per unit time
- \bullet direction of \vec{S} is direction of energy flow
- **time-averaged Poynting vector given by**

$$
\left\langle \vec{\mathcal{S}}\right\rangle =\frac{c}{8\pi}\text{Re}\left(\vec{E}_{0}\times\vec{H}_{0}^{*}\right)
$$

Re real part of complex expression

- [∗] complex conjugate
- time average

• energy flow parallel to wave vector (in isotropic media)

$$
\left\langle \vec{S}\right\rangle =\frac{c}{8\pi}\frac{\left|\tilde{n}\right|}{\mu}\left|E_{0}\right|^{2}\frac{\vec{k}}{\left|\vec{k}\right|}
$$

Polarization

- P lane Vector Wave ansatz $\vec{E} = \vec{E}_0 e^{i(\vec{k} \cdot \vec{x} \omega t)}$
- spatially, temporally constant vector \vec{E}_0 <u>l</u>ays in plane perpendicular to propagation direction \vec{k}
- represent \vec{E}_0 in 2-D basis, unit vectors \vec{e}_1 and \vec{e}_2 , both perpendicular to $$

$$
\vec{E}_0=E_1\vec{e}_1+E_2\vec{e}_2.
$$

*E*₁, *E*₂: arbitrary complex scalars

- damped plane-wave solution with given $\omega, \, \vec{k}$ has 4 degrees of freedom (two complex scalars)
- additional property is called *polarization*
- many ways to represent these four quantities
- if E_1 and E_2 have identical phases, \vec{E} oscillates in fixed plane

Polarization Ellipse

- \vec{E} (*t*) = $\vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$ $\vec{E}_0 = E_1 e^{i\delta_1} \vec{e}_x + E_2 e^{i\delta_2} \vec{e}_y$ wave vector in *z*-direction
- \vec{e}_x , \vec{e}_y : unit vectors in *x*, *y*
- \bullet *E*₁, *E*₂: (real) amplitudes
- \bullet $\delta_{1,2}$: (real) phases

Polarization Description

- 2 complex scalars not the most useful description
- at given \vec{x} , time evolution of \vec{E} described by *polarization ellipse*
- **e** ellipse described by axes *a*, *b*, orientation ψ

Jones Formalism

Jones Vectors

$$
\vec{E}_0 = E_x \vec{e}_x + E_y \vec{e}_y
$$

- **o** beam in z-direction
- \vec{e}_x , \vec{e}_y unit vectors in *x*, *y*-direction
- \bullet complex scalars $E_{X,Y}$
- Jones vector

$$
\vec{e} = \left(\begin{array}{c} E_x \\ E_y \end{array}\right)
$$

- **•** phase difference between E_x , E_y multiple of π , electric field vector oscillates in a fixed plane ⇒ *linear polarization*
- phase difference $\pm \frac{\pi}{2} \Rightarrow$ *circular polarization*

Summing and Measuring Jones Vectors

$$
\vec{E}_0 = E_x \vec{e}_x + E_y \vec{e}_y
$$

$$
\vec{e} = \begin{pmatrix} E_x \\ E_y \end{pmatrix}
$$

- Maxwell's equations linear \Rightarrow sum of two solutions again a solution
- \bullet Jones vector of sum of two waves $=$ sum of Jones vectors of individual waves if wave vectors \vec{k} the same
- **•** addition of Jones vectors: *coherent* superposition of waves
- elements of Jones vectors are not observed directly
- observables always depend on products of elements of Jones vectors, i.e. intensity

$$
I = \vec{e} \cdot \vec{e}^* = e_x e_x^* + e_y e_y^*
$$

Jones matrices

• influence of medium on polarization described by 2×2 complex *Jones matrix* J

$$
\vec{e}^\prime = J \vec{e} = \left(\begin{array}{cc} J_{11} & J_{12} \\ J_{21} & J_{22} \end{array}\right) \vec{e}
$$

- assumes that medium not affected by polarization state
- different media 1 to *N* in order of wave direction ⇒ combined influence described by

$$
J=J_NJ_{N-1}\cdots J_2J_1
$$

- order of matrices in product is crucial
- Jones calculus describes coherent superposition of polarized light

Linear Polarization
o horizontal: $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
o vertical: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
o 45°: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Circular Polarization

\n\n- left:
$$
\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}
$$
\n- right: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$
\n

Notes on Jones Formalism

- Jones formalism operates on amplitudes, not intensities
- coherent superposition important for coherent light (lasers, interference effects)
- Jones formalism describes 100% polarized light

Quasi-Monochromatic Light

- **•** monochromatic light: purely theoretical concept
- **•** monochromatic light wave always fully polarized
- real life: light includes range of wavelengths \Rightarrow *quasi-monochromatic light*
- **•** quasi-monochromatic: superposition of mutually incoherent monochromatic light beams whose wavelengths vary in narrow range $\delta\lambda$ around central wavelength λ_0

$$
\frac{\delta\lambda}{\lambda}\ll 1
$$

- **•** measurement of quasi-monochromatic light: integral over measurement time *t^m*
- **•** amplitude, phase (slow) functions of time for given spatial location
- *slow*: variations occur on time scales much longer than the mean period of the wave

Polarization of Quasi-Monochromatic Light

e electric field vector for quasi-monochromatic plane wave is sum of electric field vectors of all monochromatic beams

$$
\vec{E}\left(t\right)=\vec{E}_{0}\left(t\right)e^{i\left(\vec{k}\cdot\vec{x}-\omega t\right)}
$$

- **•** can write this way because $\delta \lambda \ll \lambda_0$
- measured intensity of quasi-monochromatic beam

$$
\langle \vec{E}_x \vec{E}_x^* \rangle + \langle \vec{E}_y \vec{E}_y^* \rangle = \lim_{t_m \to \infty} \frac{1}{t_m} \int_{-t_m/2}^{t_m/2} \vec{E}_x(t) \vec{E}_x^*(t) + \vec{E}_y(t) \vec{E}_y^*(t) dt
$$

- $\langle \cdots \rangle$: averaging over measurement time t_m
- **•** measured intensity independent of time
- **o** quasi-monochromatic: frequency-dependent material properties (e.g. index of refraction) are constant within $\Delta\lambda$

Polychromatic Light or White Light

- wavelength range comparable to wavelength ($\frac{\delta \lambda}{\lambda} \sim$ 1)
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
- **•** cannot write electric field vector in a plane-wave form
- **•** must take into account frequency-dependent material characteristics
- intensity of polychromatic light is given by sum of intensities of constituting quasi-monochromatic beams

Stokes and Mueller Formalisms

Stokes Vector

- **•** formalism to describe polarization of quasi-monochromatic light
- **•** directly related to measurable intensities
- Stokes vector fulfills these requirements

$$
\vec{l} = \left(\begin{array}{c} l \\ Q \\ U \\ V \end{array}\right) = \left(\begin{array}{c} E_x E_x^* + E_y E_y^* \\ E_x E_x^* - E_y E_y^* \\ E_x E_y^* + E_y E_x^* \\ i \left(E_x E_y^* - E_y E_x^*\right)\end{array}\right) = \left(\begin{array}{c} E_1^2 + E_2^2 \\ E_1^2 - E_2^2 \\ 2E_1 E_2 \cos \delta \\ 2E_1 E_2 \sin \delta \end{array}\right)
$$

Jones vector elements $E_{X,Y}$, real amplitudes $E_{1,2}$, phase difference $\delta = \delta_2 - \delta_1$

$$
I^2\geq Q^2+U^2+V^2
$$

Stokes Vector Interpretation

$$
\vec{l} = \begin{pmatrix} l \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} intensity \\ linear 0^{\circ} - linear 90^{\circ} \\ linear 45^{\circ} - linear 135^{\circ} \\ circular left - right \end{pmatrix}
$$

degree of polarization

$$
P=\frac{\sqrt{Q^2+U^2+V^2}}{I}
$$

1 for fully polarized light, 0 for unpolarized light

summing of Stokes vectors = *incoherent* adding of quasi-monochromatic light waves

Mueller Matrices

 \bullet 4 \times 4 real Mueller matrices describe (linear) transformation between Stokes vectors when passing through or reflecting from media

$$
\vec{I}'=M\vec{I}\,,
$$

$$
M = \left(\begin{array}{cccc} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{array}\right)
$$

• *N* optical elements, combined Mueller matrix is

$$
M'=M_{\textstyle\mathcal N} M_{\textstyle\mathcal N-1}\cdots M_2 M_1
$$

Vertical Linear Polarizer

$$
M_{pol}(\theta) = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

Horizontal Linear Polarizer

$$
M_{pol}\left(\theta\right)=\frac{1}{2}\left(\begin{array}{cccc}1&-1&0&0\\-1&1&0&0\\0&0&0&0\\0&0&0&0\end{array}\right)
$$

Mueller Matrix for Ideal Linear Polarizer at Angle θ

$$
\mathsf{M}_{pol}\left(\theta\right)=\frac{1}{2}\left(\begin{array}{ccc}1&\cos2\theta&\sin2\theta&0\\ \cos2\theta&\cos^{2}2\theta&\sin2\theta\cos2\theta&0\\ \sin2\theta&\sin2\theta\cos2\theta&\sin^{2}2\theta&0\\ 0&0&0&0\end{array}\right)
$$

Poincaré Sphere

Relation to Stokes Vector

- **•** fully polarized light: $I^2 = Q^2 + U^2 + V^2$
- for *I* ² = 1: sphere in *Q*, *U*, *V* coordinate system
- **o** point on Poincaré sphere represents particular state of polarization
- graphical representation of fully polarized light

Poincaré Sphere Interpretation

- polarizer is a point on the Poincaré sphere
- transmitted intensity: cos²(//2), *l* is arch length of great circle between incoming polarization and polarizer on Poincaré sphere