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Variable and Periodic Signals in Astronomy

Examples
variable stars (Cepheids, eclipsing/interacting binaries)
magnetic activity (spots, flares, activity cycles)
exoplanets (Doppler, transients, micro-lensing)
pulsars, neutron star QPO
gravitational lensing
transients (flare stars, novae, supernovae, GRB)
new synoptic telescopes: LSST, Pan-STARRS, VST
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Finding Variability and Periodicity
Problems:

uneven sampling
data gaps, sometimes periodic
variable noise
variability of Earth atmosphere, instrument, detector
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Testing for Constant Signal
N measurements yi with errors σi at times ti
best guess for constant with Gaussian errors

y ≡ amin =

∑N
i=1

yi
σi

2∑N
i=1

1
σi

2

minimizes

χ2 ≡
N∑

i=1

χi
2 ≡

N∑
i=1

(yi − ym)2

σi
2

probability that chi-squared by chance

P(χ2
obs) = gammq((N − 1)/2, χ2

obs/2)

but test is often insufficient
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Counter Example 1
N measurements yi , Gaussian distribution of errors around
constant value with constant error σ
observed chi-squared due to chance
re-order measurements such that yN ≥ yN−1 ≥ . . . y2 ≥ y1

new time series has same chi-squared, but cannot be obtained
by chance
significant increase of yi with time not uncovered by chi-squared
test
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Counter Example 2
same series yi with measurements at equidistant time intervals
ti = i ×∆t
order yi so that higher values are assigned to ti with even i and
lower values to ti with odd i
significant periodicity present in re-ordered data not uncovered
by chi-squared test
if time series is long enough, can uncover significant variability
from other tests
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W UMa (pulsation variable) TV Cas

data obtained by Hipparcos
source is significantly variable (variations large compared to
error bars
due to observing method, data taken at irregular intervals
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Fitting sine-functions: Lomb-Scargle

fit (co)sine curve

Vh = a cos(ωt − φo) = A cosωt + B sinωt

A, B related to a, φo by

a2 = A2 + B2; tanφo =
B
A

fit a, φo, ω ≡ 2π/P by minimizing sum of chi-squares
specialized method developed by Lomb (1967), improved by
Scargle (1982), Horne & Baliunas (1986), and Press & Rybicki
(1989)
see Numerical Recipes, Ch. 13.8
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W UMa TV Cas

Folded Light-Curve

W UMa roughly sinusoidal: Lomb-Scargle works well
note two maxima and minima in each period
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Period Folding

TV Cas: folded light curve very different from sine
Lomb-Scargle may not be optimally efficient in finding period
Stellingwerf (1978, ApJ 224, 953) developed method working for
lightcurves of arbitrary forms
Fold data on trial period to produce folded lightcurve
divide folded lightcurve into M bins
if period is (almost) correct, variance sj

2 inside each bin j ∈ 1,M
is small
if period is wrong, variance in each bin is almost the same as the
total variance
best period has lowest value for

∑M
j=1 sj

2
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False Alarm Probability
probability that result is due to chance
analytic derivation of this probability is difficult
often safest estimate obtained by simulations
N measurements yi at ti
scramble data and apply Lomb-Scargle or Stellingwerf method
scrambled data should not have periodicity
many scrambles⇒ distribution of significances that arises due to
chance, probability that period obtained from actual data is due
to chance
this probability is often called false-alarm probability
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Variability through Kolmogorov-Smirnov (KS) tests
data may be variable without strict periodicity
consider detector exposing for T seconds detecting N photons
M bins of equal length T/(M − 1)

constant source: n = N/(M − 1) photons per bin
test with chi-squared or maximum-likelihood test
loss of information by binning
result depends on the number of bins chosen
Kolmogorov-Smirnov test (KS-test) test avoids these problems
KS test computes probability that two distributions are the same
computes probability that two distributions have been drawn from
the same parent
one-sided KS-test compares theoretical distribution without
errors with observed distribution
two-sided KS-test compares two observed distributions, each of
which has errors
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Kolmogorov-Smirnov Test Example

number of photons from constant source increase linearly with
time
normalize total number N of detected photons to 1
theoretical expectation: normalized number of photons N(< t)
arriving before time t increases linearly with t from 0 at t = 0 to 1
at t = T
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Kolmogorov-Smirnov Test Example (continued)

observed distribution is a histogram which starts at 0 for t = 0,
and increases with 1/N at each time ti , i ∈ 1,N that a photon
arrives
determine largest difference d between theoretical curve and
observed curve
KS-test gives probability that a difference d or larger arises in a
sample of N photons due to chance
KS-test takes into account that for large N one expects any d
arising due to chance to be smaller than in a small sample
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Fourier transforms

Introduction
periodic signal “builds up” with time
discover periodic signal in long time series, even if signal is small
with respect to noise level
best for un-interrupted series at equidistant intervals
data gaps lead to spurious periodicities
can remove spurious periodicities (‘cleaning’)
continuous and discrete Fourier transforms
observations⇒ only discrete transform
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Continuous Fourier Transform
continuous transform a(ν) of signal x(t)

a(ν) =

∫ ∞
−∞

x(t)ei2πνtdt for −∞ < ν <∞

reverse transform

x(t) =

∫ ∞
−∞

a(ν)e−i2πνtdν rmfor −∞ < t <∞

therefore Parseval theorem∫ ∞
−∞

x(t)2dt =

∫ ∞
−∞

a(ν)2dν

occasionally written with the cyclic frequency ω ≡ 2πν
write ei2πνt as cos(2πνt) + i sin(2πνt)⇒ Fourier transform gives
the correlation between the time series x(t) and a sine or cosine
function, in terms of amplitude and phase at each frequency ν.
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Discrete Fourier Transform
series of measurements x(tk ) ≡ xk taken at times tk
tk ≡ kT/N, T is total time for N measurements
time step δt = T/N
discrete Fourier transform defined at N frequencies νj , for
j = −N/2, . . . ,N/2− 1, frequency step δν = 1/T
discrete versions of continuous transforms

aj =
N−1∑
k=0

xkei2πjk/N j = −N
2
,−N

2
+ 1, . . .

N
2
− 2,

N
2
− 1

xk =
1
N

N/2−1∑
j=−N/2

aje−i2πjk/N k = 0,1,2, . . . ,N − 1
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Discrete Fourier Transform (continued)
discrete Parseval theorem

N−1∑
k=0

|xk |2 =
1
N

N/2−1∑
j=−N/2

|aj |2

occasionally also in terms of cyclic frequencies ωj ≡ 2πνj

1/N-normalization is matter of convention
other conventions: 1/N-term in forward transform or 1/

√
N-term

in both forward and backward transforms
in general: both x and a are complex numbers
xj real⇒ a−j = aj

∗

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics 2, Lecture 14: Variability and Periodicity 18



Nyquist and DC Frequencies

highest frequency is νN/2 = 0.5N/T (Nyquist frequency)
with a−N/2 = aN/2:

a−N/2 =
N−1∑
k=0

xke−iπk =
N−1∑
k=0

xk (−1)k = aN/2

may list the amplitude at the Nyquist frequency either at the
positive or negative end of the series of aj

amplitude at zero frequency is the total number of photons:

ao =
N−1∑
k=0

xk ≡ Ntot
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Parseval’s Theorem
Parseval’s theorem: express variance of signal in terms of
Fourier amplitudes aj :

N−1∑
k=0

(xk − x)2 =
N−1∑
k=0

xk
2 − 1

N

(
N−1∑
k=0

xk

)2

=
1
N

N/2−1∑
j=−N/2

|aj |2 −
1
N

ao
2

discrete Fourier transform converts N measurements xk into N/2
complex Fourier amplitudes aj = a−j

∗

each Fourier amplitude has amplitude and phase

aj = |aj |eiφj

if the N measurements are uncorrelated, the N numbers
(amplitudes and phases) associated with the N/2 Fourier
amplitudes are uncorrelated as well
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Correlations in Real and Fourier Spaces
N−1∑
k=0

sinωjk = 0,
N−1∑
k=0

cosωjk = 0 (j 6= 0)

N−1∑
k=0

cosωjk cosωmk =


N/2, j = m 6= 0 or N/2
N, j = m = 0 orN/2
0, j 6= m

N−1∑
k=0

cosωjk sinωmk = 0

N−1∑
k=0

sinωjk sinωmk =

{
N/2, j = m 6= 0 or N/2
0, otherwise
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Period Searching with Fourier Transform

phase often less important than period
period search often based on power of Fourier coefficients
defined as a series of N/2 numbers Pj

Pj ≡
2
ao
|aj |2 =

2
Ntot
|aj |2 j = 0,1,2, . . . ,

N
2

series Pj is called the power spectrum
does not contain information on phases
normalization of power spectrum is convention
Fourier coefficients aj follow super-position theorem
Fourier power spectrum coefficients Pj do not: aj Fourier
amplitude of xk , bj Fourier amplitude of yk

Fourier amplitude cj of zk = xk + yk given by cj = aj + bj

power spectrum of zk is |cj |2 = |aj + bj |2 6= |aj |2 + |bj |2

difference being due to correlation term ajbj
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Variance and Fourier Transform
Only if xk and yk are not correlated, then the power of the
combined signal may be approximated with the sum of the
powers of the separate signals.
variance expressed in terms of powers

N−1∑
k=0

(xk − x)2 =
Ntot

N

N/2−1∑
j=1

Pj +
1
2

PN/2


In characterizing the variation of a signal one also uses the
fractional root-mean-square variation,

r ≡

√
1
N
∑

k (xk − x)2

x
=

√∑N/2−1
j=1 Pj + 0.5PN/2

Ntot
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From continuous to discrete
measurements xk taken between t = 0 and t = T at equidistant
times tk .
describe as continuous time series x(t) multiplied with window
function

w(t) =

{
1, 0 ≤ t < T
0, otherwise

}
and then multipled with sampling function (’Dirac comb’)

s(t) =
∞∑

k=−∞
δ(t − kT

N
)
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From continuous to discrete (continued)

a(ν) is continuous Fourier transform of x(t)
W (ν) and S(ν) Fourier transforms of w(t) and s(t)
then

|W (ν)|2 ≡
∣∣∣∣∫ ∞
−∞

w(t)e−i2πνtdt
∣∣∣∣2 =

∣∣∣∣sin(πνT )

πν

∣∣∣∣2 = |T sinc(πνT )|2

Fourier transform of a window function is (the absolute value of)
a sinc-function, and

S(ν) =

∫ ∞
−∞

s(t)e−i2πνtdt =
N
T

∞∑
m=−∞

δ

(
ν −m

N
T

)
Fourier Transform of Dirac comb is also a Dirac comb
all these transforms are symmetric around ν = 0 by definition
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From continuous to discrete (continued)
Fourier Transform of product is convolution of Fourier Transforms
convolution of a(ν) and b(ν) is

a(ν) ∗ b(ν) ≡
∫ ∞
−∞

a(ν ′)b(ν − ν ′)dν ′

x(t)w(t): window function w(t) convolves each component with
a sinc-function
widening dν inversely proportional to length of time series:
dν = 1/T .
[x(t)w(t)]s(t): multiplication of signal by Dirac comb
corresponds to convolution of its transform with Dirac comb, i.e.
by an infinite repeat of the convolution.
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From continuous to discrete (continued)

from continuous a(ν) to discontinuous ad (ν):

ad (ν) ≡ a(ν) ∗W (ν) ∗ S(ν) =
∫∞
−∞ x(t)w(t)s(t)dt

=
∫∞
−∞ x(t)

∑N−1
k=0 δ

(
t − kT

N

)
ei2πνtdt =

∑N−1
k=0 x

( kT
N

)
ei2πνkT/N(1)

finite length of time series⇒ broadening of Fourier transform
with width dν = 1/T with sidelobes
discreteness of sampling causes aliasing (reflection of periods
beyond Nyquist frequency into range 0, νN/2)
sample often integration over finite exposure time
convolution of time series x(t) with window function

b(t) =

{
N/T , − T

2N < t < T
2N

0, otherwise
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From continuous to discrete (continued)

Fourier transform ad (ν) is multiplied with Fourier transform of
b(t)

B(ν) =
sinπνT/N
πνT/N

at frequency zero, B(0) = 1, at the Nyquist frequency
B(νN/2 = T/(2N)) = 2/π, and at double the Nyquist frequency
B(ν = N/T ) = 0.
frequencies beyond Nyquist frequency are aliased into window
(0, νN/2) with reduced amplitude
integration of the exposure time corresponds to an averaging
over a time interval T/N, and this reduces the variations at
frequencies near N/T
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Power Spectra

time series x(t) consists of uncorrelated noise and signal

Pj = Pj,noise + Pj,signal

power Pj,noise often approximately follows chi-squared distribution
with 2 degrees of freedom
normalization of powers ensures that power of Poissonian noise
is exactly distributed as the chi-squares with two degrees of
freedom
probability of finding a power Pj,noise larger than an observed
value Pj :

Q(Pj) = gammq(0.5 ∗ 2,0.5Pj)

standard deviation of noise power equal to their mean value:
σP = Pj = 2.
fairly high values of Pj are possible du to chance
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Power Spectra (continued)
reduce noise of power spectrum by averaging:
method 1: bin the power spectrum
method 2: divide time series into M subseries and average their
power spectra
loss of frequency resolution in both cases
but binned/averaged power spectrum is less noisy
chi-squared distribution of power spectrum divided into M
intervals, and in which W successive powers in each spectrum
are averaged, is given by the chi-squared distribution with 2MW
degrees of freedom, scaled by 1/(MW )

average of distribution is 2, variance 4/(MW )

probability that binned/averaged power > observed power Pj,b:

Q(Pj,b = gammq(0.5[2MW ],0.5[MWPj,b])

for sufficiently large MW this approaches the Gauss function
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Detecting and quantifying a signal

can decide whether at given frequency observed signal exceeds
noise level significantly, for any significance level
90% significance⇒ first compute Pj for which Q = 0.1
in words: probability which is exceeded by chance in only 10% of
the cases
check whether the observed power is bigger than this Pj

decided on frequency before we did the statistics, i.e. if we first
select one single frequency νj

good for known period, e.g. orbital period of a binary, or pulse
period of pulsar
in general: searching for a period, i.e. we do not know which
frequency is important⇒ apply recipe many times, once for each
frequency
corresponds to many trials, and thus our probability level has te
be set accordingly
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Unknown Frequency and Amplitude

consider one frequency, Pdetect has probability 1− ε′ not to be
due to chance
try Ntrials frequencies
probability that the value Pdetect is not due to chance at any of
these frequencies is given by (1− ε′)Ntrials , which for small ε′

equals 1− Ntrialsε
′.

probability that value Pdetect is due to chance at any of these
frequencies is given by ε = Ntrialsε

′.
if we wish to set an overall chance of ε, we must take the chance
per trial as ε′ = ε/Ntrials, i.e.

ε′ =
ε

Ntrials
= gammq(0.5[2MW ],0.5[MWPdetect])
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Upper Limit
observed power Pj,b higher than detection power Pdetect for given
chance ε′

observed power is sum of noise power and signal power

Pj,signal > Pj,b − Pj,noise (1− ε′) confidence

no observed power exceeds detection level⇒ upper limit
determine level Pexceed, exceeded by noise alone with high
probability (1− δ), from

1− δ = gammq(0.5[2MW ],0.5[MWPexceed])

highest observed power Pmax ⇒ upper limit PUL to power is

PUL = Pmax − Pexceed

if there were signal power higher than PUL, the highest observed
power would be higher than Pmax with a (1− δ) probability
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