Lecture 14: Variability and Periodicity

@ Variable and Periodic Signals in Astronomy
@ Lomb-Scarle diagrams

@ Phase dispersion minimisation

@ Kolmogorov-Smirnov tests

@ Fourier Analysis
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Variable and Periodic Signals in Astronomy

@ variable stars (Cepheids, eclipsing/interacting binaries)
@ magnetic activity (spots, flares, activity cycles)

@ exoplanets (Doppler, transients, micro-lensing)

@ pulsars, neutron star QPO

@ gravitational lensing

@ transients (flare stars, novae, supernovae, GRB)

@ new synoptic telescopes: LSST, Pan-STARRS, VST
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Finding Variability and Periodicity

Problems:
@ uneven sampling
@ data gaps, sometimes periodic
@ variable noise
@ variability of Earth atmosphere, instrument, detector
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Testing for Constant Signal

@ N measurements y; with errors o; at times {;
@ best guess for constant with Gaussian errors

Yi
i=1 g2
A
0',‘2

@ minimizes

2 o 2 (Vi — Ym)?
=D xP=E) T
i=1 !

i=1
@ probability that chi-squared by chance
P(x5ps) = gamma((N —1)/2, x5ps/2)

@ but test is often insufficient
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Counter Example 1

@ N measurements y;, Gaussian distribution of errors around
constant value with constant error o

@ observed chi-squared due to chance
@ re-order measurements such that yy > yn—1 > ... Y2 > y1

@ new time series has same chi-squared, but cannot be obtained
by chance

@ significant increase of y; with time not uncovered by chi-squared
test
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Counter Example 2

@ same series y; with measurements at equidistant time intervals
b =1ix At

@ order y; so that higher values are assigned to f; with even i and
lower values to t; with odd /

@ significant periodicity present in re-ordered data not uncovered
by chi-squared test

@ if time series is long enough, can uncover significant variability
from other tests
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W UMa (pulsation variable)
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@ data obtained by Hipparcos

@ source is significantly variable (variations large compared to
error bars

@ due to observing method, data taken at irregular intervals
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Fitting sine-functions: Lomb-Scargle
@ fit (co)sine curve

Vi, = acos(wt — ¢o) = Acoswt + Bsinwt

@ A, Brelated to a, ¢, by

& = A + B, tangbo:g

@ fit a, ¢o, w = 27/ P by minimizing sum of chi-squares

@ specialized method developed by Lomb (1967), improved by
Scargle (1982), Horne & Baliunas (1986), and Press & Rybicki
(1989)

@ see Numerical Recipes, Ch.13.8
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Folded Light-Curve

@ W UMa roughly sinusoidal: Lomb-Scargle works well
@ note two maxima and minima in each period
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Period Folding

@ TV Cas: folded light curve very different from sine
@ Lomb-Scargle may not be optimally efficient in finding period

@ Stellingwerf (1978, ApJ 224, 953) developed method working for
lightcurves of arbitrary forms

@ Fold data on trial period to produce folded lightcurve
@ divide folded lightcurve into M bins

e if period is (almost) correct, variance s;? inside each binj € 1, M
is small

@ if period is wrong, variance in each bin is almost the same as the
total variance

@ best period has lowest value for E}‘L s?
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False Alarm Probability

@ probability that result is due to chance

@ analytic derivation of this probability is difficult

often safest estimate obtained by simulations

N measurements y; at ¢;

scramble data and apply Lomb-Scargle or Stellingwerf method
scrambled data should not have periodicity

many scrambles = distribution of significances that arises due to
chance, probability that period obtained from actual data is due
to chance

this probability is often called false-alarm probability
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Variability through Kolmogorov-Smirnov (KS) tests
data may be variable without strict periodicity

consider detector exposing for T seconds detecting N photons
M bins of equal length T/(M — 1)

constant source: n= N/(M — 1) photons per bin

test with chi-squared or maximume-likelihood test

loss of information by binning

result depends on the number of bins chosen
Kolmogorov-Smirnov test (KS-test) test avoids these problems
KS test computes probability that two distributions are the same

computes probability that two distributions have been drawn from
the same parent

@ one-sided KS-test compares theoretical distribution without
errors with observed distribution

@ two-sided KS-test compares two observed distributions, each of
which has errors
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Kolmogorov-Smirnov Test Example

- P

@ number of photons from constant source increase linearly with
time

@ normalize total number N of detected photons to 1

@ theoretical expectation: normalized number of photons N(< t)
arriving before time t increases linearly with f from QO atf=0to 1
att=T
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Kolmogorov-Smirnov Test Example (continued)

a

e

el

N(<t)/N

bl ]
o 05 1

@ observed distribution is a histogram which starts at 0 for t = 0,
and increases with 1/N at each time t;,i € 1, N that a photon
arrives

@ determine largest difference d between theoretical curve and
observed curve

@ KS-test gives probability that a difference d or larger arises in a
sample of N photons due to chance

@ KS-test takes into account that for large N one expects any d
arising due to chance to be smaller than in a small sample
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Fourier transforms

Introduction

@ periodic signal “builds up” with time

@ discover periodic signal in long time series, even if signal is small
with respect to noise level

@ best for un-interrupted series at equidistant intervals
@ data gaps lead to spurious periodicities

@ can remove spurious periodicities (‘cleaning’)

@ continuous and discrete Fourier transforms

@ observations = only discrete transform
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Continuous Fourier Transform

@ continuous transform a(v) of signal x(t)
a(v) = /oo x(t)e?™tdt  for — oo < v <
@ reverse transform
x(t) = /OO a(v)e ?™'dy  rmfor — oo <t < oo
@ therefore Parseval theorem
/OO x(t)2dt = /OO a(v)Pdv

@ occasionally written with the cyclic frequency w = 27v

@ write €2 as cos(2znvt) + isin(2nvt) = Fourier transform gives
the correlation between the time series x(t) and a sine or cosine
function, in terms of amplitude and phase at each frequency v.
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Discrete Fourier Transform

@ series of measurements x(fx) = xi taken at times

@ Iy = kT/N, T is total time for N measurements
@ time step 6t = T/N

@ discrete Fourier transform defined at N frequencies v;, for
j=-N/2,...,N/2 —1, frequency step ov =1/T
@ discrete versions of continuous transforms

N—-1
o , N N N N
aj: E Xkelzmk/N ] =—= —*4—1,*—2,5—1
k=0

27 2 2
N/2—1
xk:% > ae PN k=012 N-1
j=—N/2
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Discrete Fourier Transform (continued)
@ discrete Parseval theorem

N—1 1 N/2—1
ShalP=5 > laP
k=0 j=—N/2

occasionally also in terms of cyclic frequencies w; = 27,
1/N-normalization is matter of convention

other conventions: 1/N-term in forward transform or 1/v/N-term
in both forward and backward transforms

in general: both x and a are complex numbers

xjreal = a_; = a;
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Nyquist and DC Frequencies

@ highest frequency is vy/2 = 0.5N/T (Nyquist frequency)
@ with a_nj2 = anyz-

N1 N1
anp=> xke ™ =" x(-1)=anp
k=0 k=0

@ may list the amplitude at the Nyquist frequency either at the
positive or negative end of the series of g;

@ amplitude at zero frequency is the total number of photons:

N—1
ao = Z Xk = Niot
k=0
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Parseval’s Theorem

@ Parseval’'s theorem: express variance of signal in terms of
Fourier amplitudes a;:

N—1 N—1 (N 2 q N2t 1
Z(Xk_y)ZZZXKZ_N Zxk =N Z ‘aj‘z_ﬁaoz
k=0 k=0 k=0 j=—N/2

@ discrete Fourier transform converts N measurements xj into N/2
complex Fourier amplitudes a; = a_;*

@ each Fourier amplitude has amplitude and phase
a; = |aje"

e if the N measurements are uncorrelated, the N numbers
(amplitudes and phases) associated with the N/2 Fourier
amplitudes are uncorrelated as well
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Correlations in Real and Fourier Spaces

N—1 N—1
> sinwik =0, > coswik =0 (j#0)
k=0 k=0

N—1 N/2, j=m#0 or N/2
ZCOSwjkCOSwmk: N, j=m=0 orN/2
k=0 0, j#£m

N—1

coswjk sinwmk = 0

k=0
= N/2, j=m#0 or N/2
Z Sinwfk sinwmk = { 0, , jot;erwise

k=0
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Period Searching with Fourier Transform
@ phase often less important than period

@ period search often based on power of Fourier coefficients
@ defined as a series of N/2 numbers P;

|2

2 .
P'Ef|af|2:7|aj|2 j=0,12,...,
ao ot

series P; is called the power spectrum

does not contain information on phases
normalization of power spectrum is convention
Fourier coefficients a; follow super-position theorem

Fourier power spectrum coefficients P; do not: a; Fourier
amplitude of xk, b; Fourier amplitude of yx

@ Fourier amplitude ¢; of zx = xx + yx given by ¢; = a; + b;
@ power spectrum of z is |¢j|? = |a; + bj|? # |aj| + |b;|?
@ difference being due to correlation term a;b;
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Variance and Fourier Transform

@ Only if x, and yx are not correlated, then the power of the
combined signal may be approximated with the sum of the
powers of the separate signals.

@ variance expressed in terms of powers

N—1 N (N2 1
Z(Xk—y)zz% > Pj+5Pny2
k=0 j=1

@ In characterizing the variation of a signal one also uses the
fractional root-mean-square variation,
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From continuous to discrete

@ measurements x; taken between t = 0 and t = T at equidistant
times .

@ describe as continuous time series x(t) multiplied with window

function
1, 0<t<T
w(t) = { 0 . }

otherwise

@ and then multipled with sampling function ('Dirac comb’)

Zét——

k=—oc0
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From continuous to discrete (continued)
@ a(v) is continuous Fourier transform of x(t)
@ W(v) and S(v) Fourier transforms of w(t) and s(t)
@ then

2 | sin(mvT)

TV

2
‘ = | Tsinc(7v T)|?

W) = ‘ / w(t)e 2™t

@ Fourier transform of a window function is (the absolute value of)
a sinc-function, and

o - N & N
_ —i2nvt ¢ _
S(v) = /_OO s(t)e dt = T m_E_OO(S <1/ mT>

@ Fourier Transform of Dirac comb is also a Dirac comb
@ all these transforms are symmetric around v = 0 by definition
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From continuous to discrete (continued)
@ Fourier Transform of product is convolution of Fourier Transforms
@ convolution of a(v) and b(v) is

a(v) = b(v) = / a(V)b(v —v)dv/
@ x(fH)w(t): window function w(t) convolves each component with
a sinc-function

@ widening dv inversely proportional to length of time series:
dv=1/T.

@ [x(t)w(t)]s(t): multiplication of signal by Dirac comb
corresponds to convolution of its transform with Dirac comb, i.e.
by an infinite repeat of the convolution.
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From continuous to discrete (continued)
@ from continuous a(v) to discontinuous ay(v):

ag(v) = a(v) = W(v)  S(v) = [Z x(t)w(t)s(t)at

o x(t) R0 6 (t = A7) e2mtdt = oR00 x () &2

@ finite length of time series = broadening of Fourier transform
with width dv = 1/ T with sidelobes

@ discreteness of sampling causes aliasing (reflection of periods
beyond Nyquist frequency into range 0, v 2)

@ sample often integration over finite exposure time
@ convolution of time series x(t) with window function

b(t)_{ N/T, - <t<

0, otherwise
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From continuous to discrete (continued)

@ Fourier transform ay(v) is multiplied with Fourier transform of
b(t)
sintvT/N
Blv) = 7T /N

@ at frequency zero, B(0) = 1, at the Nyquist frequency
B(vnj2 = T/(2N)) = 2/7, and at double the Nyquist frequency
B(v=N/T)=0.

@ frequencies beyond Nyquist frequency are aliased into window
(0, vny2) with reduced amplitude

@ integration of the exposure time corresponds to an averaging

over a time interval T/N, and this reduces the variations at
frequencies near N/ T
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Power Spectra

@ time series x(t) consists of uncorrelated noise and signal

Pj = Pj,noise + Pj,signal

@ power P; ;. Often approximately follows chi-squared distribution
with 2 degrees of freedom

@ normalization of powers ensures that power of Poissonian noise
is exactly distributed as the chi-squares with two degrees of
freedom

@ probability of finding a power P; ... larger than an observed
value P;:

Q(P;) = gammg(0.5 * 2,0.5P;)

@ standard deviation of noise power equal to their mean value:
op=P;=2.

@ fairly high values of P; are possible du to chance
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Power Spectra (continued)
@ reduce noise of power spectrum by averaging:
@ method 1: bin the power spectrum

@ method 2: divide time series into M subseries and average their
power spectra

@ loss of frequency resolution in both cases
@ but binned/averaged power spectrum is less noisy

@ chi-squared distribution of power spectrum divided into M
intervals, and in which W successive powers in each spectrum
are averaged, is given by the chi-squared distribution with 2MW
degrees of freedom, scaled by 1/(MW)

@ average of distribution is 2, variance 4/(MW)
@ probability that binned/averaged power > observed power P;y,:

Q(P;», = gammqg(0.5[2MW], 0.5[MWP;])

o for sufficiently large MW this approaches the Gauss function
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Detecting and quantifying a signal

@ can decide whether at given frequency observed signal exceeds
noise level significantly, for any significance level

@ 90% significance = first compute P; for which Q = 0.1

@ in words: probability which is exceeded by chance in only 10% of
the cases

@ check whether the observed power is bigger than this P;

@ decided on frequency before we did the statistics, i.e. if we first
select one single frequency v;

@ good for known period, e.g. orbital period of a binary, or pulse
period of pulsar

@ in general: searching for a period, i.e. we do not know which
frequency is important = apply recipe many times, once for each
frequency

@ corresponds to many trials, and thus our probability level has te
be set accordingly
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Unknown Frequency and Amplitude

@ consider one frequency, Pjeect has probability 1 — ¢ not to be
due to chance

@ try Nyiais frequencies

@ probability that the value Pyt is N0t due to chance af any of
these frequencies is given by (1 — ¢')Neas  which for small ¢
equals 1 — Niiais€'-

@ probability that value Pyt IS due to chance at any of these
frequencies is given by € = Nyjais€’.

@ if we wish to set an overall chance of ¢, we must take the chance
per trial as €' = ¢/ Ngiars, i.€.

, €

Ntrials

€

= gammq(0.5[2MW], 0.5]MWPyctect])
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Upper Limit

@ observed power P;;, higher than detection power Py for given
chance ¢

@ observed power is sum of noise power and signal power
/
P; signat > Pjp — Pjnoise (1 —¢€) confidence

@ no observed power exceeds detection level = upper limit

@ determine level Peyceed, €XCeeded by noise alone with high
probability (1 — §), from

1 — 6 = gammqg(0.5[2MW], 0.5][MWPexceed))
@ highest observed power P« = upper limit Py. to power is

P UL — P, max — ! exceed

@ if there were signal power higher than Py, the highest observed
power would be higher than P, with a (1 — ) probability
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