PREVIOUS LECTURE:

COMPARING DATA WITH A MODEL: LEAST-SQUARES FITTING

MAXIMUM LIKELIHOOD METHOD: GAUSSIAN DATA

CONFIDENCE LEVELS

OUTLIERS!

TODAY:

"REAL" MAXIMUM LIKELIHOOD METHOD: POISSONIAN DATA

FINDING PERIODICITIES IN DATA

- LOMB-SCARLE DIAGRAMS
- PHASE DISPERSION MINIMISATION
- FOURIER TECHNIQUES

COMPARING TWO DISTRIBUTIONS K-S TEST

OAF2 CHAPTER 6.1 & 6.2 SEE NUM RES CHAPTER 13.8, 14.3, & 14.7

EXAMPLE SIMPLE MONTE CARLO SIMULATION I

EXAMPLE SIMPLE MONTE CARLO SIMULATION II

How often do we have to observe the system when observing at random times to fill each of 10 phase bins?

MAXIMUM LIKELIHOOD METHOD (POISSON NOISE, UNBINNED DATA)

PROBABILITY TO FIND n_i PHOTONS WHEN m_i EXPECTED ACCORDING TO YOUR MODEL

FOR EACH PIXEL *i* in an image $P_i = \frac{m_i^{n_i} e^{-m_i}}{n_i!}$

TOTAL PROBABILITY $L'\equiv\prod_i P_i$

$$\ln L' \equiv \sum_{i} \ln P_{i} = \sum_{i} n_{i} \ln m_{i} - \sum_{i} m_{i} - \sum_{i} \ln n_{i}!$$

MINIMISE
$$\ln L \equiv -2(\sum_i n_i \ln m_i - \sum_i m_i)$$

MAXIMUM LIKELIHOOD METHOD (APPLICATION X-RAY BINARY CIR X-1, A JET PRESENT?)

PART OF A CHANDRA HRC OBSERVATION

MODEL AND SUBSEQUENTLY SUBTRACT PSF

ONLY CLOSE TO THE SOURCE THE ASSUMPTION OF A CONSTANT BACKGROUND

IS VALID

DETECTION OF A CONSTANT BACKGROUND, A, PLUS A SOURCE OF STRENGTH B OF WHICH A FRACTION FALLS ON PIXEL i

$$-0.5\ln L = \sum_{i} n_i \ln(A + Bf_i) - \sum_{i} (A + Bf_i)$$

AGAIN SEARCH FOR THE MINIMUM OF L FOR VARIATIONS IN A AND B

 f_i determined independently in some cases total pixels Z

$$\frac{\partial \ln L}{\partial A} = 0 \Rightarrow \sum_{i} \frac{n_i}{A + Bf_i} - \sum_{i} (1) = \sum_{i} \frac{n_i}{A + Bf_i} - Z = 0$$

 $\frac{\partial \ln L}{\partial B} = 0 \Rightarrow \sum_{i} \frac{n_i f_i}{A + B f_i} - \sum_{i} (f_i) = \sum_{i} \frac{n_i f_i}{A + B f_i} - 1 = 0$

APPLICATION MAXIMUM LIKELIHOOD METHOD X-RAY BINARY CIR X-1

ONE SOURCE SUBTRACTED

PERIOD FINDING I

WHAT IF DATA IS NOT EVENLY SAMPLED

FILL IN GAPS/RESAMPLE?

CHI SQUARED FITTING?

CHI SQUARED SAME BUT DATA CLEARLY DIFFERENT IN TERMS OF VARIABILITY

PERIOD FINDING I

UNEVENLY SAMPLED DATA: LOMB-SCARGLE

$$\begin{array}{ll} \text{MEAN } \bar{h} = \frac{1}{N} \sum_{i} h_{i} & \text{variance } \sigma^{2} = \frac{1}{N-1} \sum_{i} (h_{i} - \bar{h})^{2} \\ \text{Least-squares fitting of} \\ h_{i} = A \cos(\omega t_{i}) + B \sin(\omega t_{i}) \\ & \text{to the data} \end{array}$$

-1

$$P_{N}(\omega) \equiv \frac{1}{2\sigma^{2}} \left\{ \frac{\left[\sum_{j} (h_{j} - \bar{h}) \cos \omega(t_{j} - \tau)\right]^{2}}{\sum_{j} \cos^{2} \omega(t_{j} - \tau)} + \frac{\left[\sum_{j} (h_{j} - \bar{h}) \sin \omega(t_{j} - \tau)\right]^{2}}{\sum_{j} \sin^{2} \omega(t_{j} - \tau)} \right\}$$

SPECTRAL POWER AS A FUNCTION
OF FREQUENCY $\boldsymbol{\omega}$
 $\tau \text{ CONSTANT=} \tan(2\omega\tau) = \frac{\sum_{j} \sin 2\omega t_{j}}{\sum_{j} \cos 2\omega t_{j}}$

PERIOD FINDING I (continued) NORMALISED LOMB-SCARGLE PERIODOGRAMS

100 DATA POINTS

NUM RES PAGE 571: FREQ > NYQUIST FREQ IF POINTS WERE EVENLY DISTRIBUTED!

PERIOD FINDING II PHASE-DISPERSION MINIMISATION: PDM FOLD DATA GIVEN A TRIAL PERIOD IN M BINS CALCULATE THE VARIANCE IN EACH BIN

LARGE VARIANCE

NOT THE RIGHT PERIOD

$$s_k^2 = rac{1}{N-1} \sum_{j=1}^{n_k} (x_j - ar{x})^2$$
 variance in one sample

STELLINGWERF 1978, APJ, 224, 953

HERE INDEPENDENT BINS, COULD ALSO HAVE "SLIDING WINDOW" BINS, EACH DATA POINT IN MORE THAN 1 BIN

LIGHT CURVE AND FOLDED LIGHT CURVE

PDM (CONTINUED)

$$s^2 = rac{\sum_{k=1}^M (n_k-1) s_k^2}{\sum_{k=1}^M n_k - M}$$
 variance in the samples $heta = rac{\sigma^2}{s^2}$ wrong period $\Theta pprox 1$

VARIANCE IN THE SAMPLES=VARIANCE IN THE DATA

"RIGHT" PERIOD $\Theta \ll 1$

SCRAMBLE DATA IN A MONTE CARLO SIMULATION TO CALCULATE SIGNIFICANCES ECLIPSING SU UMA STAR: DV URSAE MAJORIS

EXAMPLE USE OF PDM

SU UMA ARTIST IMPRESSION

DATA CAN BE VARIABLE BUT NOT PERIODIC

EXAMPLE: COMPARE CUMULATIVE DISTRIBUTION FIE WITH MODEL OF A CONSTANT

COMPARING A DISTRIBUTION WITH A THEORETICAL DISTRI OR TWO DISTRIBUTIONS

KOLMOGOROV-SMIRNOV TEST:

K-S TEST

AN ADVANTAGE OF USING K-S STATISTIC

THE DISTRIBUTION CAN BE CALCULATED IN THE CASE OF THE NULL-HYPOTHESIS (DATA SETS FROM SAME DISTRI/DATA DRAWN FROM THEORETICAL CURVE)

EXAMPLE K-S TEST

DISTRIBUTION OF NEUTRON STARS AND BLACK HOLE X-RAY BINARIES IN OUR GALAXY

JONKER & NELEMANS 2004

PROBABILITY THAT BHS AND NSS FROM THE SAME DISTRIBUTION

37%, D=0.19

90%, D=0.12

2D K-S TEST

DISTRIBUTION OF NEUTRON STARS AND BLACK HOLE X-RAY BINARIES IN OUR GALAXY

2D K-S TEST

$$r = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})}\sqrt{\sum_{i} (y_i - \bar{y})}}$$

R=CORRELATION COEFFICIENT