
Recap lecture 4

Thermal limit
thermal limit of stochastic radiation processes

Use incomplete gamma function to 
calculate Poisson and Gauss 

cumulative distribution function

Propagation of errors
under the assumption of independent variables
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Today:

Comparing data with a model: 
Least-squares fitting, maximum 

likelihood method: Gaussian data

“real” maximum likelihood 
method: Poissonian data

OAF2 chapter 5.3+5.4
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see also Num Res Chapter 15

Monte Carlo simulations
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Compare data with a model

Describe data in terms of a continuous 
function

Compare observations (data) with 
theoretical model prediction 

Describe the data in a few parameters
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X-ray binary in quiescence neutron star 
atmosphere model

Example: continuous model through discrete 
data & model prediction



Method of least squares
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Probability density function 
Gauss, Poisson

Maximum likelihood: most likely 
outcome is assumed to be the 

‘correct’ one

note:       = model value not mean here!
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Method of least squares

minimise:

minimisation: root finding problem

1D:
m
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more about 

drawn from normal distribution

distribution of    is a    distribution

for N measurements described by 
M variables, there are N-M 
Degrees of Freedom (d.o.f.)

Probability of obtaining a certain 

or higher by chance

as bad as 
observed
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fitting provides:

Best-fitting parameters

An error estimate of the 
uncertainty of the fitted 

parameters

A probability that the data is 
drawn from a parent population 

described by the model 
parameters

Note that outliers make this probability 
generally low
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Be aware of non-gaussian distributions

from Num Res page 695



Remove outliers via 
(sigma) clipping

OPTICAL IMAGE

Part of U-band image VLT
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Sinusoid: chi**2=81.2 for 26 degrees of 
freedom

Errors too small



Sinusoid: chi**2=580 for 28 degrees of 
freedom

Model wrong



Sinusoid: chi**2=12 for 27 degrees of 
freedom

Errors too large



χ2 surface

not always this smooth!



a and c

y(x) = ae−bx

y(x) = aebx+c

log[y(x)] = c− bx

Think about what to fit!

are degenerate

E.g. computer exercise 3

is equal to

which is linear in fitting c and b
but the errors are no longer Gaussian
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Chandra CCD (ACIS) observation 
of an X-ray binary
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Same data as before

Gaussian approximation for 
errors but at low counts Gauss 

and Poisson errors differ
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Fitting a straight line to the data

minimise 

&

to find best-fitting parameters 



18

determine errors on the best-fitting parameters 

etc are the different measurement values 

similarly

remember



19

Finally calculate the probability 
of obtaining the 

by chance

for the straight line fit m=2

reduced 

degrees of freedom 

for data fitting:  
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Estimating confidence regions via Monte 
Carlo 

simulations



Monte Carlo 
simulations

1 Replace the observed values by another 
random selected value from the range y+-

sigma

2        Repeat fitting (chi**2 minimisation 
etc)

3 Repeat 1 & 2 N times to build up a 
distribution

in the determined parameters and from 
that determine the mean, variance etc 
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Monte Carlo simulations
Estimating confidence limits

assume that the distribution of  

is close to the probability distribution 

Measurement
one draw from 

the distribution 
of a’s



from Num Res page 685
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Many Monte Carlo methods

Basis: (pseudo) random draws 

Also simulate an 
experiment!

a.o. useful for proposal 
writing

Computer exercise

distribution 
we can determine via Monte Carlo

simulations
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Monte Carlo simulations

calculate distribution of 

by simulating many sets of data and using     
fitting to determine 

from Num Res page 686



Special MC: 
bootstrapping

1 Replace a random number of observed 
values 

by another random selected observed 
value

2  Repeat fitting (chi**2 minimisation etc)

3 Repeat 1 & 2 N times to build up a 
distribution

in the determined parameters and from 
that determine the mean, variance etc 
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bootstrap method and application

X-ray binary V395 Car

from Steeghs & Jonker 2007
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broadening and 
optimal subtraction

Bootstrap determined 
rotational velocity

note reduced 
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bootstrap method: an application



Confidence limits
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single vs. multiple
parameter confidence region

from Num Res page 688



Projections
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from Num Res page 689



probability to find    photons when   
expected

Maximum likelihood method 
(Poisson noise, unbinned data)
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for each pixel  in an image

total probability

minimise
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Detection of a constant background, A, plus a 
source of strength B of which a fraction    

falls on pixel 

again search for the minimum of L for 
variations in A and B

determined independently in some cases
total pixels Z
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Maximum likelihood method 
(application X-ray binary Cir X-1, a 

jet present?)

Chandra HRC observation
model and subsequently subtract PSF

only close to the source the assumption of a constant background
is valid
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application maximum likelihood 
method X-ray binary Cir X-1

+

one source subtracted


