Recap lecture 4

 $h\nu << kT$ THERMAL LIMIT $\Delta P^2(\nu) = \bar{P}^2(\nu)$ thermal limit of stochastic radiation processes

Use incomplete gamma function to calculate Poisson and Gauss cumulative distribution function

Propagation of errors under the assumption of independent variables

$$
\bar{f} = f(\bar{u}, \bar{v}, ..)
$$
\n
$$
\sigma_f^2 = \sigma_u^2 (\frac{\partial f}{\partial u})^2 + \sigma_v^2 (\frac{\partial f}{\partial v})^2 + ...
$$

TODAY:

Comparing data with a model: Least-squares fitting, maximum likelihood method: Gaussian data

MONTE CARLO SIMULATIONS

"real" maximum likelihood method: Poissonian data

OAF2 chapter 5.3+5.4 see also Num Res Chapter 15

Compare data with a model

Describe data in terms of a continuous function

COMPARE OBSERVATIONS (DATA) WITH THEORETICAL MODEL PREDICTION

Describe the data in a few parameters

EXAMPLE: CONTINUOUS MODEL THROUGH DISCRETE DATA & MODEL PREDICTION

ATMOSPHERE MODEL X-ray binary in quiescence neutron star

Maximum likelihood: most likely outcome is assumed to be the 'correct' one Method of least squares $dQ_i = P_i dx$ $u_{\mathbf{Y}i} - \mathbf{I}_{i}$ and dQ_{i}
Probability density function $\frac{dQ_{i}}{dx} = P_{i}$ Gauss, Poisson

$$
P(y_i)\Delta y = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{1}{2}\frac{(y_i - y_m)^2}{\sigma_i^2}\right)\Delta y
$$

NOTE: $y_m = \text{MODEL VALUE NOT MEAN HERE}$!

Method of least squares $P \propto \prod_{i=1}^{N} \{ exp[-\frac{1}{2}(\frac{y_i - y_m}{\sigma_i})^2]\}$ $i=1$ $\propto exp[-\frac{1}{2}\sum_{i=1}^{N}(\frac{y_i-y_m}{\sigma_i})^2]\}$ MINIMISE: $\chi^2 \equiv \sum_{i=1}^N (\frac{y_i - y_m}{\sigma_i})^2$

minimisation: root finding problem

1 D:
$$
\frac{\partial}{\partial y_n} \sum_{i=1}^N (\frac{y_i - y_m}{\sigma_i})^2 = 0
$$

MORE ABOUT χ^2

drawn from normal distribution

DISTRIBUTION OF χ_i^2 is a χ^2 distribution

for N measurements described by M variables, there are N-M DEGREES OF FREEDOM (D.O.F.)

PROBABILITY OF OBTAINING A χ^2 as *bad* as or higher by chance observed

$$
P(\chi^2_{obs}) = \text{gamma}(\frac{N-M}{2}, \frac{\chi^2_{obs}}{2})
$$

Best-fitting parameters

An error estimate of the uncertainty of the fitted **PARAMETERS**

A probability that the data is drawn from a parent population described by the model **PARAMETERS** Note that outliers make this probability generally low

Be aware of non-gaussian distributions

Part of U-band image VLT

REMOVE OUTLIERS VIA (sigma) clipping

Sinusoid: chi**2=81.2 for 26 degrees of

Sinusoid: chi**2=580 for 28 degrees of

SINUSOID: CHI**2=12 FOR 27 DEGREES OF

 χ^2 surface

not always this smooth!

Think about what to fit!

$$
y(x) = ae^{bx+c}
$$
 a and c are degenerate

$$
y(x) = ae^{-bx}
$$
 is equal to $log[y(x)] = c - bx$

which is linear in fitting *c* and *b* but the errors are no longer Gaussian

E.g. computer exercise 3

CHANDRA CCD (ACIS) OBSERVATION OF AN X-RAY BINARY

SAME DATA AS BEFORE

VALUE AND POISSON ERRORS

EXAMPLE FROM BEVINGTON & ROBERTSON 1992

Number of Measurements

FITTING A STRAIGHT LINE TO THE DATA

 $y_m(x_i, a, b) = a + bx_i$ MINIMISE χ_i^2 to find best-fitting parameters

determine errors on the best-fitting parameters

$$
\text{remember} \qquad \sigma_f^2 = \sigma_u^2 (\frac{\partial f}{\partial u})^2 + \sigma_v^2 (\frac{\partial f}{\partial v})^2 + \dots
$$

$$
\sigma_a^2 = \sum_{i=1}^N [\sigma_i^2 \frac{\partial a}{\partial y_i}]^2
$$

 $\partial u\,\&\,\partial v$ etc are the different measurement values y_i

Finally, **EXAMPLE 7HE PROBABILITY OF OBTAINING THE**
$$
\chi^2
$$

\n**BY CHANCE**

\n $P(\chi^2_{obs}) = \text{gamma}(\frac{N - M}{2}, \frac{\chi^2_{obs}}{2})$

\nFOR THE STRAIGHT LINE FIT M=2

\n $\nu = N - M$ DEGREES OF FREEDOM

\nREDUCED χ^2_{ν}

\n $\chi^2_{\nu} \equiv \frac{\chi^2}{\nu}$

\nFOR DATA FITTING: $\chi^2_{\nu} \sim 1$ $\chi^2 \approx \nu$

\n $\sigma_{\chi^2} = \sqrt{2\nu}$

VALUE AND POISSON ERRORS

EXAMPLE FROM BEVINGTON & ROBERTSON 1992

ESTIMATING CONFIDENCE REGIONS VIA MONTE **CARLO**

MONTE CARLO simulations

1 Replace the observed values by another random selected value from the range y+- **SIGMA**

REPEAT FITTING (CHI**2 MINIMISATION ETC)

3 Repeat 1 & 2 N times to build up a **DISTRIBUTION** in the determined parameters and from THAT DETERMINE THE MEAN, VARIANCE ETC

ESTIMATING CONFIDENCE LIMITS

MONTE CARLO SIMULATIONS

assume that the distribution of

 $a_i - a_0$

is close to the probability distribution

$$
a_i-a_{true}
$$

$a_i - a_0$ DISTRIBUTION WE CAN DETERMINE VIA MONTE CARLO simulations

MANY MONTE CARLO METHODS

Basis: (pseudo) random draws

Also simulate an EXPERIMENT! a.o. useful for proposal WRITING Computer exercise

MONTE CARLO SIMULATIONS

CALCULATE DISTRIBUTION OF $a_i - a_0$

by simulating many sets of data and using χ^2 FITTING TO DETERMINE a_i

Special MC: bootstrapping

1 Replace a random number of observed values by another random selected observed value

2 Repeat fitting (chi**2 minimisation etc)

3 Repeat 1 & 2 N times to build up a **DISTRIBUTION** in the determined parameters and from THAT DETERMINE THE MEAN, VARIANCE ETC

bootstrap method and application

X-ray binary V395 Car

broadening and optimal subtraction

bootstrap method: an application

CONFIDENCE LIMITS

single vs. multiple parameter confidence region

from Num Res page 688

PROJECTIONS

FROM NUM RES PAGE 689

MAXIMUM LIKELIHOOD METHOD (POISSON NOISE, UNBINNED DATA)
\nPROBABILITY TO FIND
$$
n_i
$$
 PHOTONS WHICH
\n
$$
m_i
$$
 EXPECTED
\nFOR EACH PIXEL i IN AN IMAGE $P_i = \frac{m_i^{n_i}e^{-m_i}}{n_i!}$
\nTOTAL PROBABILITY $L' \equiv \prod_i P_i$
\n
$$
\ln L' \equiv \sum_i \ln P_i = \sum_i n_i \ln m_i - \sum_i m_i - \sum_i \ln n_i!
$$

\nMINIMISE
$$
\ln L \equiv -2(\sum_i n_i \ln m_i - \sum_i m_i)
$$

DETECTION OF A CONSTANT BACKGROUND, A, PLUS A SOURCE OF STRENGTH B OF WHICH A FRACTION f_i $FALLS ON PIXELI$

$$
-0.5\ln L = \sum_{i} n_i \ln(A + Bf_i) - \sum_{i} (A + Bf_i)
$$

again search for the minimum of L for variations in A and B

determined independently in some cases total pixels Z

$$
\frac{\partial \ln L}{\partial A} = 0 \Rightarrow \sum_{i} \frac{n_i}{A + B f_i} - \sum_{i} (1) = \sum_{i} \frac{n_i}{A + B f_i} - Z = 0
$$

$$
\frac{\partial \ln L}{\partial B} = 0 \Rightarrow \sum_{i} \frac{n_i f_i}{A + B f_i} - \sum_{i} (f_i) = \sum_{i} \frac{n_i f_i}{A + B f_i} - 1 = 0
$$

І.

І.

Maximum likelihood method (application X-ray binary Cir X-1, a JET PRESENT?)

CHANDRA HRC OBSERVATION

model and subsequently subtract PSF

only close to the source the assumption of a constant background

is valid

application maximum likelihood method X-ray binary Cir X-1

one source subtracted