RECAP LECTURE 4

THERMAL LIMIT OF STOCHASTIC RADIATION PROCESSES
:> hv << kT THERMAL LIMIT AP2(y) = }32(;/)

—— >  USE INCOMPLETE GAMMA FUNCTION TO
CALCULATE POISSON AND GAUSS
CUMULATIVE DISTRIBUTION FUNCTION

:{> PROPAGATION OF ERRORS
UNDER THE ASSUMPTION OF INDEPENDENT VARIABLES
f=f(u,v,.)
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TODAY:

COMPARING DATA WITH A MODE

LEAST-SQUARES F

[TING, MAXIMUM

LIKELIHOOD METHOD: GAUSSIAN DATA

MONTE CARLO SIMULATIONS

“REAL” MAXIMUM LIKELIHOOD
METHOD: POISSONIAN DATA

OAF2 CHAPTE

R 5.3+5.4

SEE ALSO NUM REsSs CHAPTER 15




COMPA

RE DATA WITH A MO

DEL

DESCRIBE DATA IN TERMS OF A CONTINUOUS

FUNCTION

COMPARE OBSERVATIONS (DATA) WITH
THEORETICAL MODEL PREDICTION

DESCRIBE THE DATA IN A FEW PARAMETERS




EXAMPLE: CONTINUOUS MODEL THROUGH DISCRETE
DATA & MODEL PREDICTION

Data and folded model

ii

Normalised counts/sec/keV
1073

0.5 2
\_ Channel energy (keV)

X-RAY BINARY IN QUIESCENCE NEUTRON
ATMOSPHL—:RE MODEL




MAXIMUM LIKELIHOOD: MOST LIKELY
OUTCOME IS ASSUMED TO BE THE
‘CORRECT’ ONE

METHOD OF LEAST SQUARES
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PROBABILITY DENSITY FUNCTION — = F;

dx
—— GAUSS, POISSON
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NOTE:: Ym= MODEL VALUE NOT MEAN HERE!




METHOD OF LEAST SQUA
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DRAWN

2
MORE ABOUT X

FROM NORMAL DISTRIBUTION

DISTRIBUTION OFX? IS A X° DISTRIBUTION

FOR N MEASU
M VARIABLES, THE

DEG

REES OF F

PROBABE

REMENTS DESCRIBED E
RE ARE N-M

REEDOM (

ILITY OF OBTAINING

OR HIGHER BY CHANCE

P(ngs) — ga'mmq(

D.O.F.)

A x° as bad as
observed

N—-M ngs
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 Xobs)




2
X FITTING P

BEST-FITTING PA

RAMETE

ROVIDES:

AN ERROR ESTIMATE OF THE

UNCERTAINTY OF THE FITTED

PA

RAMETE

RS

A PROBABILITY THAT THE DATA IS

DESCRIBED E

PA

RAMETE

RAWN FROM A PARENT POPULATION
Y THE MODEL

RS

NOTE THAT OUTLIERS MAKE THIS PROBABILITY
GENERALLY LOW
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BE AWARE OF NON-GAUSSIAN UTIONS

-

narrow
// central peak

tail of

/ “outliers

\

——— robust straight-line fit

/
FROM NUM RES PAGE 695




PART OF U-BAND IMAGE VLT

REMOVE OUTLIERS VIA
(SIGMA) CLIPPING




SINUSOID: CHI**2=81.2 FOR 26 DEGREES OF
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SINUSOID: CHI**2=580 FOR 28 DEGREES OF
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SINUSOID: CHI**2=12 FOR 27 DEGREES OF
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not always this smooth!




Think about what to fit!

bx-+c

y(x) = ae a and c are degenerate

~ s equal to logly(z)] = ¢ — bx

y(z) = ae

which 1s linear 1n fitting ¢ and b
but the errors are no longer Gaussian

E.g. computer exercise 3




RA CCD (ACIS) OBSERVATION

OF AN X-RAY BINARY




SAME DATA AS E

data

—
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counts keV-'
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Energy (keV)

win=-2007 22 25 )

GAUSSIAN APPROXIMATION FOR
RRORS BUT AT LOW COUNTS GAUSS
AND POISSON ERRORS DIFFER




VALUE AND POISSON ERRORS

Number of Mecasurements

o... ‘ '0
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EXAMPLE FROM BEVINGTON & ROBERTSON 1882




FITTING A STRAIGHT LINE TO THE

Ym(xi,a,b) = a + bx;

2
MINIMISE X; TO FIND BEST-FITTING PARAMETERS

O3 | (vima=bziy2 >

>




DETERMINE ERRORS ON THE BEST-FITTING PARAMETERS

of \»
L)t o2(

Of \2
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FINALLY CALCULATE THE PROE

OF OBTAINING THE X2
BY CHANCE

2
N-M XObS)
2 ),
FOR THE STRAIGHT LINE FIT M=2

P(Xgps) = gammq(

v=N-—-M DEGREES OF FREE

REDUCED X2

2 2
DATA FITTING: X, ~1 X =V

0'X2 — \/21/




VALUE AND POISSON ERRORS
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EXAMPLE FROM BEVINGTON & ROBERTSON 1882

ESTIMATING CONFIDENCE REGIONS VIA MONTE
CARLO




MONTE CARLO
SIMULATIONS

1 REPLACE THE OBSERVED VALUES BY ANOTHER
RANDOM SELECTED VALUE FROM THE RANGE Y+-
SIGMA

REPEAT FITTING (CHI**2 MINIMISATION
ETC)

3 REPEAT 1 & 2 N TIMES TO BUILD UP A
DISTRIBUTION
IN THE DETERMINED PARAMETERS AND FROM
THAT DETERMINE THE MEAN, VARIANCE ETC




ESTIMATING CONFIDENCE LIMITS

MONTE CARLO SIMULATIONS
A

fitted

—
actual data set : parameters a
a0 O

MEASUREMENT

hypothetical ONE DRAW FROM

true parametera THE DISTRIBUTION
" OF A’S

hypothetical
data set

hypothetical |
data set

\FROM NUM RES PAGE 685 ‘ . y

ASSUME THAT THE DISTRIBUTION OF
a; — Qg
IS CLOSE TO THE PROBABILITY DISTRIBUTION
A; — Qtrye
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(; — Qg DISTRIBUTION
WE CAN DETERMINE VIA MONTE CARLO
SIMULATIONS

MANY MONTE CARLO METHODS

BASIS: (PSEUDO) RANDOM DRAWS

ALSO SIMULATE AN
EXPERIMENT!
A.O. USEFUL FOR PROPOSAL
WRITING
COMPUTER EXERCISE




MONTE CARLO SIMULATIONS

Monte Carlo

synthetic |4 | parameters
data set 1 > P Ko
I

synthetic
data set 2

actual fitted

data set X parameters
a9

synthetic
data set 3

synthetic
data set 4

kFROM NUM RES PAGE 686

CALCULATE DISTRIBUTION OF G; — Qg

BY SIMULAT211\IG MANY SETS OF DATA AND USING
X FITTING TO DETERMINE a;
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SPECIAL MC:
BOOTSTRAPPING

1 REPLACE A RANDOM NUMBER OF OBSERVED
VALUES
BY ANOTHER RANDOM SELECTED OBSERVED
VALUE

2 REPEAT FITTING (CHI**2 MINIMISATION ETC)

3 REPEAT 1 & 2 N TIMES TO BUILD UP A
DISTRIBUTION
IN THE DETERMINED PARAMETERS AND FROM
THAT DETERMINE THE MEAN, VARIANCE ETC




OOTSTRAP METHOD AND APPLICATION

X-RAY BINARY V395 CAR

v39S Car / HD99322

intensity

i W

| 1 |

6120 6140

Wavelength (R)

26 FROM STEEGHS & JONKER 2007



vsini (km/s)

2
NOTE REDUCED Xy

OOTSTRAP DETERMINED
ROTATIONAL VELOCITY

BROADENING AND
OPTIMAL SUBTRACTION




AN APPLICATION
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CONFIDENCE LIMITS

SINGLE VS. MULTIPLE
PARAMETER CONFIDENCE REGION

(s) _
A2~ Aoy

68% confidence
iterval on a,

68% confidence region
on a; and a» jointly

8% confidence interval on a»

(s) _
a1~ Aoy

/
FROM NUM RES PAGE 688




PROJECTIONS
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MAXIMUM LIKELIHOOD METHOD
(POISSON NOISE, UNBINNED DATA)

PROBABILITY TO FIND ; PHOTONS WHEN

FOR EACH PIXEL¢IN AN IMAGE P; =

TOTAL PROBABILITY L' = HPZ'

InL = ZlnP

MINIMISE InL = —2( anlnmz Zmz




DETECTION OF A CONSTANT BACKGROUND, A, PLUS A
SOURCE OF STRENGTH B OF WHICH A FRACTION f;
FALLS ON PIXEL ?

—0.5InL =) n;In(A+ Bf;) - » (A+ Bf;)
) )
AGAIN SEARCH FOR THE MINIMUM OF L FOR
VARIATIONS IN A AND B

DETERMINED INDEPENDENTLY IN SOME CASES
TOTAL PIXELS Z

Oln L n; B n;
OA :O:>ZZ,:A+Bf,,; ;(1)_;A+Bfi Z

8lnL n; [ B " Ji
0=2 4y sy, 2= 2 4 By,




MAXIMUM LIKELIHOOD METHOD

(APPLICATION X-RAY BINARY CIR X-1, A
JET PRESENT?)

CHANDRA HRC OBSERVATION
MODEL AND SUBSEQUENTLY SUBTRACT PSF

ONLY CLOSE TO THE SOURCE THE ASSUMPTION OF A CONSTANT BACKGROUND
IS VALID
33




APPLICATION MAXIMUM LIKELIHOOD
METHOD X-RAY BINARY CIR X-1
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ONE SOURCE SUBTRACTED




