
Today:

Chapter 1.5,1.6 &1.7

Stochastic nature of radiation

Num Res chapter 6.1 & 6.2

Relation of ‘special’ 

functions to Gaussian and 

Poissonian distributions

OAF2 chapter 5.1 & 

Error propagation

OAF2 chapter 5.2



this is also in chapter 6.2 of lena

Bose-Einstein statistics

For each energy bin i there are

ni particles, Zi boxes ! Zi+1 boundaries

of which Zi-1 are “movable”

W (ni) =
(ni + Zi − 1)!
ni!(Zi − 1)!

What is the size of the fluctuations 

in the radiation field?

Particles are distributed in
h3 momentum space boxes

there are Z ∝ 4πp2dpboxes



when considering all energies

W = Π∞i=1W (ni)

N =
∞∑

i=1

ni total number of particles

total number of possible 

distributions

maximise entropy s

hence

S ≡ k ln(W )

d lnW

dni
= 0

i



Remember Taylor expansion:

W (x + ∆x) = W (x) +
dW (x)

dx
∆x +

1
2

d2W (x)
d2x

∆x2

cf. equation 1.28 & 1.37 Lecture notes

Derivation of eq. 1.41 on black board



definitions

occupation fractionnνk

number of photons 

with energy 

ni
i

n(ν) specific photon flux 

(photons per second 

per Hertz)

volume photon 

density (photons per 

second per Hertz 

per unit volume)

N(ν)

n̄i

Zi

N̄(ν)dν = gν n̄νkdν

n̄(ν) = 0.5
c

4π
N̄(ν)AeΩ

radiation powerP (ν) P (ν) = hν n(ν)



∆n2(ν) = nν(1 +
1

exp( hν
kT )− 1

)

Fluctuations in the number of photons per s per Hz

P (ν) = hν n(ν)Power:

Two limits:

Quantum limit

Thermal limit

Planck distribution for photons

∆P 2(ν) = P̄ 2(ν)

1
eε − 1

→ 0 for ε >> 1

hν >> kT

hν << kT

εi = hν

∆n2(ν) = n̄(ν)

P (ν) = kT
1

eε − 1
→ ε for ε << 1

n(ν) =

n(ν) = 1
ε

∆P 2(ν) = (hν)2∆n2(ν)



Difference between thermal and quantum 

limit explains the difference 

between the principles behind/limitations 

of radio and optical/X-ray observations

hν >> kT

hν << kTnote 

error



Stochastic description of radiation in 

the thermal limit
quasi-monochromatic radiation

from a thermal source

Describe electric field by ˜E(t) = ˜E0(t) e2πiν̄t

where ˜E0(t) is the phasor  

 The phasor is described by amplitude 

and phase

| ˜E0(t)|
φ(t)

Gaussian light



Probability density for: 

random variations on time 

scales >> the coherence 

time associated with 

(atomic) transitions

P (φ(t))

P (|E0|(t),φ(t))d|E0|dφ =
E0

2πσ2
e−

E2
0

2σ2 d|E0|dφ

∆I2 = Ī2

again one finds that 

the fluctuations in 

the power flux 

density are:

for I(t) = |Ẽ0(t)|2



Probability density for: 

random variations on time 

scales >> the coherence 

time associated with 

(atomic) transitions

P (φ(t))

P (|E0|(t),φ(t))d|E0|dφ =
E0

2πσ2
e−

E2
0

2σ2 d|E0|dφ

P ( ˜|E0(t)|)
exponential pdf

∆I2 = Ī2

again one finds that 

the fluctuations in 

the power flux 

density are:

for I(t) = |Ẽ0(t)|2



Three different ways to derive the size 

of the fluctuation in the thermal limit

∆P 2(ν) = (kT )2

bose-Einstein

Stochastic description E-M wave

Thermodynamic See Lena Chapter 6.2



Some (computational) math

stirling’s approximation

in code use Gamma Function

Γ(z + 1) = z!

Γ(z + 1) = zΓ(z)

Γ(z) =
∫ ∞

0
tz−1e−tdt

Numerical Recipes Chap 6.1-6.2

lnx! = x lnx− x

Gamma function has a computationally 

simple accurate approximation



Chapt 5.1 & Numerical Recipes Chap 6.1-6.2

Incomplete Gamma Functions:

P (a, x) ≡ γ(a, x)
Γ(a)

≡ 1
Γ(a)

∫ x

0
ta−1e−tdt

Q(a, x) ≡ 1− P (a, x) =
γ(a, x)
Γ(a)

≡ 1
Γ(a)

∫ ∞

x
ta−1e−tdt

Error Functions:

erf(x) =
2√
π

∫ x

0
e−t2dt

erfc(x) =
2√
π

∫ ∞

x
e−t2dt

= P (
1
2
, x2)

= Q(
1
2
, x2)

≡ Γ(a, x)
Γ(a)



Cumulative Distribution 

function

F (x) = P{x ≤ y}

Probability density function 
dF (x)

dx
= f(x)

↪→ Gauss, Poisson,    etcχ2

Gaussian or normal distribution and 

probability density function

f(x) =
1

σ
√

(2π)
exp(−1

2
(x− η)2

σ2
)

F (x, η, σ) = 0.5 + erf
x− η

σ2



Poisson cumulative distribution and 

probability density function 

a

a

a

a

a

a

cumulative distributionprobability density

f(x) =
ak

k!
e−a → (discrete) e−a

∞∑

k=0

ak

k!
δ(x− k)

F (x) = 1− P (a, x) ≡ 1
Γ(a)

∫ ∞

x
e−tta−1dt

P (a, x)



In computer codes dealing with Poisson 

and Gaussian distributions incomplete 

Gamma Functions are used



Error propagation page 99 oaf-2

Main assumption is that the average 

of the function f is well 

represented by the value for f at 

the averages for the variables

f̄ = f(ū, v̄, ..)

Besides noise intrinsic to the s.p. 

noise is added due to the detector, 

background etc.

how to determine the resultant variance

Taylor expansion to first order around the 

average for each variable

fi − f̄ ≈ (ui − ū)
∂f

∂u
+ (vi − v̄)

∂f

∂v
+ ...



remember that the variance

Fill-in the Taylor expansion here

σ2 =
1

N − 1

N∑

i=1

(fi − f̄)2

Assume that the variables are independent

such that their cross product cancel

σ2
f = σ2

u(
∂f

∂u
)2 + σ2

v(
∂f

∂v
)2 + ...

cross products 2σ2
uv

∂f

∂u

∂f

∂v


