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REMEMBER TAYLOR EXPANSION:
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DEFINITIONS

;, NUMBER OF PHOTONS
WITH ENERGY ?

ﬁ.
Ny, OCCUPATION FRACTION 77’
1

N(v) VOLUME PHOTON N(v)dv = g,ny, dv
DENSITY (PHOTONS PER
SECOND PER HERTZ
PER UNIT VOLUME)

n(V) SPECIFIC PHOTON FLUX
(PHOTONS PER SECOND
PER HERTZ)

P(v) RADIATION POWER



PLANCK DISTRIBUTION FOR PHOTONS ¢€; = hv

FLUCTUATIONS IN THE NUMBER OF PHOTONS PER S PER HZ

“(v) =n | 1
An(0) =1+ )

PoweRr: P(v) = hv n(v) AP2(v) = (hv)*An2(v)

TWO LIMITS:
hv >> kT QUANTUM LIMIT

1

>0 fore >>1 An?(v) = n(v)

THERMAL LIMIT AP2(v) = P?(v)

L fore << 1 Pv)=KkT




RENCE BETWEEN THERMAL AND QUANTUM
LIMIT EXPLAINS THE DIFFERENC]
ETWEEN THE PRINCIPLES BEHIND/LIMITATIONS
OF RADIO AND OPTICAL/X-RAY OBSERVATIONS

-

10— — : uv. )
Visibl
hv >> k13001 PP

]014

Quantum
10'3 noise

Infrared

Sub
millimetric

1012

10! Millimetric

Frequency v |Hz|
Wavelength A

|

|

|

I

I |

| Thermal
1010 | noise

!

|

I

|

|

hy << kT

NOTE /:"'
7

ERROR

Radiofrequencies

102 10° 10*
Temperature [K]




RADIATION IN

STOCHASTIC DESCRIPTION OF

THE THERMAL LIMIT

QUASI-MONOCHROMATIC RADIATION
FROM A THERMAL SOURCE

| |
GAUSSIAN LIGHT

Amplitude

~

\
DESCRIBE ELECTRIC FIELD BY EZ ) — Eo(?f) plmvt

WHERE FEy(t) IS THE PHASOR

THE PHASOR IS DESCRIBED BY AMPLITUDE |Fy(?)]
AND PHASE ¢(t)
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THREE DIFFERENT WAYS TO D]
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—RMODYNAMIC See Lena Chapter 6.2




SOME (COMPUTATIONAL) MATH

STIRLING’S APPROXIMATION

nz!l =aolhax —x

IN CODE USE GAMMA FUNCTION

[(z+1) = 2!

['(z4+1) = 2['(2)

['(2) / t*~tetdt
0

GAMMA FUNCTION HAS A COMPUTATIONALLY
SIMPLE ACCURATE APPROXIMATION

NUMERICAL RECIPES CHAP 6.1-6.2




CHAPT 5.1 & NUMERICAL RECIPES CHAP 6.1-6.2

INCOMPLETE GAMMA FUNCTIONS:
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P(a,z) = (@, z) = )/o t*tetdt
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ERROR FUNCTIONS:

ert(@ f/ o

erfc(x / _t dt
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CUMULATIVE DISTRIBUTION F(g)
FUNCTION

PROBABILITY DENSITY FUNCTION

2
—— GAuUss, POISSON, X

GAUSSIAN OR NORMAL DISTRIBUTION AND
PROBABILITY DENSITY FUNCTION
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POISSON CUMULATIVE DISTRIBUTION AND
PROBABILITY DENSITY FUNCTION
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IN COMPUT!

AND GAUSSIAN DISTRIBUTIONS INCOMPLETE
GAMMA FUNCTIONS ARE USED

=R COD

=S DI

EALING WITH POISSON




ERROR PROPAGATION race 99 oar-2

BESIDES NOISE INTRINSIC TO THE S.P.
NOISE IS ADDED DUE TO THE DETECTOR,
BACKGROUND ETC.

- HOW TO DETERMINE THE RESULTANT VARIANCE

MAIN ASSUMPTION IS THAT THE AVERAGE
OF THE FUNCTION F IS WELL
REPRESENTED BY THE VALUE FOR F AT
THE AVERAGES FOR THE VARIABLES

f = f(u,nv,..

TAYLOR EXPANSION TO FIRST ORDER AROUND THE
AVERAGE FOR EACH VARIABLE




REMEMBER THAT THE VARIANCE
N

1 2
N_lz(fi—f)

]

FILL-IN THE TAYLOR EXPANSION HER

ASSUME THAT THE VARIABLES ARE INDEPENDENT
SUCH THAT THEIR CROSS PRODUCT CANCEL
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