TODAY:

CHAPTER 1.5,1.6 &1.7 STOCHASTIC NATURE OF RADIATION

Relation of 'special' functions to Gaussian and Poissonian distributions OAF2 chapter 5.1 & Num Res chapter 6.1 & 6.2

ERROR PROPAGATION OAF2 CHAPTER 5.2

WHAT IS THE SIZE OF THE FLUCTUATIONS IN THE RADIATION FIELD? **BOSE-EINSTEIN STATISTICS** Particles are distributed in h^3 momentum space boxes there are $Z \propto 4\pi p^2 dp$ boxes FOR EACH ENERGY BIN I THERE ARE N_1 PARTICLES, Z_1 BOXES = Z_1+1 BOUNDARIES OF WHICH Z_1 -1 ARE "MOVABLE"

$$W(n_i) = \frac{(n_i + Z_i - 1)!}{n_i!(Z_i - 1)!}$$

THIS IS ALSO IN CHAPTER 6.2 OF LENA

WHEN CONSIDERING ALL ENERGIES ℓ $N = \sum_{i=1}^{\infty} n_i$ total number of particles

 $W = \prod_{i=1}^{\infty} W(n_i)$ TOTAL NUMBER OF POSSIBLE DISTRIBUTIONS

$S \equiv k \ln(W)$ MAXIMISE ENTROPY S HENCE

$$\frac{d\ln W}{dn_i} = 0$$

REMEMBER TAYLOR EXPANSION:

$$W(x + \Delta x) = W(x) + \frac{dW(x)}{dx}\Delta x + \frac{1}{2}\frac{d^2W(x)}{d^2x}\Delta x^2$$

CF. EQUATION 1.28 & 1.37 LECTURE NOTES

DERIVATION OF EQ. 1.41 ON BLACK BOARD

DEFINITIONS n_i number of photons with energy i $n_{ u_k}$ occupation fraction $\bar{N}(u)$ volume photon $\bar{N}(u)$ density (photons per

SECOND PER HERTZ

PER UNIT VOLUME)

$$\bar{N}(\nu)d\nu = g_{\nu}n_{\nu_k}^-d\nu$$

 $\frac{\bar{n_i}}{Z_i}$

n(
u) specific photon flux (photons per second per Hertz) $ar{n}(
u) = 0.5 rac{c}{4\pi} ar{N}(
u) A_e \Omega$

 $\overline{P}(\nu)$ radiation power $\overline{P}(\nu) = h\nu\,\overline{n}(\nu)$

PLANCK DISTRIBUTION FOR PHOTONS $\epsilon_i = h\nu$

FLUCTUATIONS IN THE NUMBER OF PHOTONS PER S PER HZ

$$\Delta n^2(\nu) = n_\nu \left(1 + \frac{1}{exp(\frac{h\nu}{kT}) - 1}\right)$$

POWER:
$$P(\nu) = h\nu \ n(\nu)$$
 $\overline{\Delta P^2}(\nu) = (h\nu)^2 \overline{\Delta n^2}(\nu)$

TWO LIMITS:

h
u >> kT Quantum limit

$$n(\nu) = \frac{1}{e^{\epsilon} - 1} \to 0 \text{ for } \epsilon >> 1 \qquad \overline{\Delta n^2}(\nu) = \overline{n}(\nu)$$

$$\begin{split} & \frac{h\nu << kT}{n(\nu) = \frac{1}{e^{\epsilon} - 1}} \to \frac{1}{\epsilon} \text{ for } \epsilon << 1 \qquad \overline{\Delta P^2}(\nu) = \bar{P}^2(\nu) \\ & \overline{P}(\nu) = kT \end{split}$$

DIFFERENCE BETWEEN THERMAL AND QUANTUM LIMIT EXPLAINS THE DIFFERENCE BETWEEN THE PRINCIPLES BEHIND/LIMITATIONS OF RADIO AND OPTICAL/X-RAY OBSERVATIONS

STOCHASTIC DESCRIPTION OF RADIATION IN THE THERMAL LIMIT QUASI-MONOCHROMATIC RADIATION

FROM A THERMAL SOURCE

DESCRIBE ELECTRIC FIELD BY $\tilde{E(t)} = E_0(t) e^{2\pi i \bar{\nu} t}$ WHERE $\tilde{E_0(t)}$ is the phasor The phasor is described by amplitude $|\tilde{E_0(t)}|$ AND PHASE $\phi(t)$

RANDOM VARIATIONS ON TIME SCALES >> THE COHERENCE TIME ASSOCIATED WITH (ATOMIC) TRANSITIONS

 $P(|E_0|(t), \phi(t))d|E_0|d\phi = \frac{E_0}{2\pi\sigma^2}e^{-\frac{E_0^2}{2\sigma^2}}d|E_0|d\phi$ PROBABILITY DENSITY FOR: $for I(t) = |\tilde{E}_0(t)|^2$ AGAIN ONE FINDS THAT THE FLUCTUATIONS IN THE POWER FLUX DENSITY ARE: $\overline{\Delta I^2} = \overline{I}^2$

RANDOM VARIATIONS ON TIME SCALES >> THE COHERENCE TIME ASSOCIATED WITH (ATOMIC) TRANSITIONS

 $P(|E_0|(t), \phi(t))d|E_0|d\phi = \frac{E_0}{2\pi\sigma^2}e^{-\frac{E_0^2}{2\sigma^2}}d|E_0|d\phi$ PROBABILITY DENSITY FOR: $f(|\tilde{E}_0(t)|) = |\tilde{E}_0(t)|^2$ AGAIN ONE FINDS THAT THE FLUCTUATIONS IN THE POWER FLUX DENSITY ARE: $\overline{\Delta I^2} = \overline{I}^2$

THREE DIFFERENT WAYS TO DERIVE THE SIZE OF THE FLUCTUATION IN THE THERMAL LIMIT

STOCHASTIC DESCRIPTION E-M WAVE

THERMODYNAMIC See Lena Chapter 6.2

$$\overline{\Delta P^2}(\nu) = (kT)^2$$

SOME (COMPUTATIONAL) MATH

STIRLING'S APPROXIMATION $\ln x! = x \ln x - x$ IN CODE USE GAMMA FUNCTION $\Gamma(z+1) = z!$ $\Gamma(z+1) = z\Gamma(z)$ $\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$

GAMMA FUNCTION HAS A COMPUTATIONALLY SIMPLE ACCURATE APPROXIMATION NUMERICAL RECIPES CHAP 6.1-6.2

CHAPT 5.1 & NUMERICAL RECIPES CHAP 6.1-6.2

INCOMPLETE GAMMA FUNCTIONS:

$$P(a,x) \equiv \frac{\gamma(a,x)}{\Gamma(a)} \equiv \frac{1}{\Gamma(a)} \int_0^x t^{a-1} e^{-t} dt$$

$$Q(a,x) \equiv 1 - P(a,x) \equiv \frac{\Gamma(a,x)}{\Gamma(a)} \equiv \frac{1}{\Gamma(a)} \int_x^\infty t^{a-1} e^{-t} dt$$

ERROR FUNCTIONS:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt = P(\frac{1}{2}, x^2)$$

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt = Q(\frac{1}{2}, x^2)$$

CUMULATIVE DISTRIBUTION
$$F(x) = P\{x \leq y\}$$

FUNCTIONFUNCTION $\frac{dF(x)}{dx} = f(x)$ PROBABILITY DENSITY FUNCTION $\frac{dF(x)}{dx} = f(x)$ \longleftrightarrow GAUSS, POISSON, χ^2 ETC

GAUSSIAN OR NORMAL DISTRIBUTION AND PROBABILITY DENSITY FUNCTION

$$F(x,\eta,\sigma) = 0.5 + erf\frac{x-\eta}{\sigma^2}$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{1}{2}\frac{(x-\eta)^2}{\sigma^2}\right)$$

POISSON CUMULATIVE DISTRIBUTION AND PROBABILITY DENSITY FUNCTION

$$F(x) = 1 - P(a, x) \equiv \frac{1}{\Gamma(a)} \int_{x}^{\infty} e^{-t} t^{a-1} dt$$
$$f(x) = \frac{a^{k}}{k!} e^{-a} \rightarrow (discrete) \ e^{-a} \sum_{k=0}^{\infty} \frac{a^{k}}{k!} \delta(x-k)$$

IN COMPUTER CODES DEALING WITH POISSON AND GAUSSIAN DISTRIBUTIONS INCOMPLETE GAMMA FUNCTIONS ARE USED

ERROR PROPAGATION PAGE 99 0AF-2 BESIDES NOISE INTRINSIC TO THE S.P. NOISE IS ADDED DUE TO THE DETECTOR, BACKGROUND ETC.

→ HOW TO DETERMINE THE RESULTANT VARIANCE

Main assumption is that the average of the function f is well represented by the value for f at the averages for the variables $\bar{f} = f(\bar{u}, \bar{v}, ..)$

TAYLOR EXPANSION TO FIRST ORDER AROUND THE AVERAGE FOR EACH VARIABLE

$$f_i - \bar{f} \approx (u_i - \bar{u})\frac{\partial f}{\partial u} + (v_i - \bar{v})\frac{\partial f}{\partial v} + \dots$$

REMEMBER THAT THE VARIANCE

$$\sigma^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (f_{i} - \bar{f})^{2}$$

FILL-IN THE TAYLOR EXPANSION HERE

ASSUME THAT THE VARIABLES ARE INDEPENDENT SUCH THAT THEIR CROSS PRODUCT CANCEL

$$\sigma_f^2 = \sigma_u^2 (\frac{\partial f}{\partial u})^2 + \sigma_v^2 (\frac{\partial f}{\partial v})^2 + \dots$$

cross products
$$2\sigma_{uv}^2 \frac{\partial f}{\partial u} \frac{\partial f}{\partial v}$$