
Chapter 1.3, 1.4 & 2.2 OAF-2 

Numerical Recipes Chapter 13.3

Today’s course

Topics:

Aliasing & Nyquist frequency

(Optimal) Filtering

measuring moments of a 

stochastic process

Fourier transformations



detection of astronomical signals (s.p.) 

plus noise is convoluted by instrument 

transfer function and data sampling

statistical moments characterise the 

signal (plus noise) 

Recap lecture 1

Assume WSS s.p. (mean does not depend on 

time, or much slower than measuring 

process, auto-correlation depends on 

offset only)

Noise can be due to the detector, 

background, and/or intrinsic to the signal

Convolutions and cross-correlations



if x1 = x2

R(x) = E{f(x)f(x + t)}
︸︷︷︸ ︸ ︷︷ ︸

f(x1) f(x2)

R(x) = R(x, x) = E{f2(x)} = E{|f(x)|2}

Average generally not zero

autocovariance

C(x1, x2) = E{(f(x1)− η(x1))(f(x2)− η(x2))∗}

C(x) = R(x)− |η(t)|2 = σ2(x)

C(x) => average power in the 

fluctuations around the mean

More on the auto-correlation
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Wide-sense stationary S.P.

t2 - t1 = ! WSS

WSS: mean time independent

& autocorrelation depends on 

time difference

 R(!) = E{X(t) X*(t+!)}  µ = E{X(t)}
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Not all signals are WSS:

Figure from Kasliwal et al. 2007

Nature of the source uncertain: 

GRB, SGR, BH-X-ray binary?
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Not all signals are WSS:

Figure from Chincarini et al. 2008
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of a Gamma Ray Burst



convolution:

Convolution Theorem

f(x) ∗ g(x) =
∫ ∞

−∞
f(x)g(x1 − x)dx

f(x) ∗ g(x) ⇔ F (s)G(s)

F (f ⊗ g) = F (f)F (g)

similarly for cross correlations

F (f(x) ∗ g(x) = F (f(x))F (g(x))
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convolute images

From Phillips & Davis 1995

2 B-band images of the

Phoenix dwarf galaxy

Difference image after 

convoluting the better-

seeing image with a 

smoothing kernel and 

scaling the fluxes 
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Continuous Fourier Transformations

Figure from Wikipedia

Euler′s relation : eix = cosx + isinx

F (t)⇔ f(x)

F (t) =
∫ ∞

−∞
f(x)e−2πixtdx

f(x) =
∫ ∞

−∞
F (t)e2πixtdt

Used in restoration and/or spectral 

analysis of the signal



Convolution using Fourier 

transformations 

figure from Gray

Convolution theorem M(λ) = S(λ) ∗ R(λ)
F (M(λ)) = F (S(λ)) · F (R(λ))



Convolution using FTs in practice

Convolution always 

broaden the input 

function

figure from Gray

f(x) ∗ g(x) =
∫ ∞

−∞
f(x)g(x1 − x)dx

Convolution

S



Central limit theorem

many convolutions !smoothing until Gaussian PDF

lim
n→∞

pX(x) =
1√

(2π)σ
exp− (x− η)2

2σ2

many physical processes/measurements yield  a 

Gaussian probability density function

pX(x) = pX1(x) ∗ pX2(x) ∗ pX3(x) ∗ · · ·pXn(x)

σ2 =
n∑

i=1

σ2
i

η =
n∑

i=1

ηi



Reconstruction of the 

input=source spectrum

M(λ) = S(λ) ∗R(λ)
Convolution theorem

F (M(λ)) = F (S(λ)) · F (R(λ))
F (M(λ)) ≡ M(s) (etc)

M(s) = S(s) · R(s)

S(s) =
M(s)
R(s)

S(λ) = F−1

(
M(s)
R(s)

)



Some special functions:

Shah’s function/Dirac comb

III(t) =
∞∑

n=−∞
δ(t− nT )

Box/window function

B(t) = 0 for − W

2
> t >

W

2

B(t) = 1 for − W

2
< t <

W

2t

Sampling

Finite stretch of data



Fourier transformations of these 

special functions

Sinc function

sin(πx)
πx

∞∑

n=−∞
δ(t− nT )⇔ 1

T

∞∑

k=−∞
δ(f − k

T
)



Optical spectra: bandwidth set by 

the width of the spectral lines

 A sharp narrow signal needs more/

higher frequencies to be described 

in the Fourier Transform than broad 

shallow signal 
cf. the number of sin+cos necessary to describe the signal

Sampling: no loss of information 

if the input process has no 

frequencies > 1
2∆tcrit

Continuous signal h(t) fully described 

by the samples

Sampling theorem

≡ fNyquist

From Fourier animation of harmonic decomposition remember that:



Optical spectra: bandwidth set by 

the width of the spectral lines

Bassa et al. 2006

Low-mass White Dwarf spectrum



Optical spectra: bandwidth set by 

the width of the spectral lines

Bassa et al. 2006

Low-mass White Dwarf spectrum



Optical spectra: bandwidth set by 

the width of the spectral lines

Bassa et al. 2006

Low-mass White Dwarf spectrum
F8 Iab



Mazur: Peer Instruction

Besides spectral frequencies there are 
also temporal and angular frequencies

Discuss with your neighbor a 
possible example of these



Another math tool 

Power Spectral Density

 (∝ amplitude of individual sinusoids) 

(will return in more depth in Chapter 6)

P (f) = ˜F (f) ˜F (f)∗

Continuous FT:

P (f) =
∫ ∞

−∞
R(τ)e−2πifτdτ

F (f) =
∫ ∞

−∞
f(t) e−2πiftdt

for wss signals:

Continuous PSD:

hence:

˜F (f)F (f) = |F (f)|2 =
∫ ∞

−∞
R(τ)e−2πifτdτ

∼∼
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Shah function

convolution of 3*4



Windowing & noise, Brault & White 1971, A&A

! frequency (s)

fl
u

x

l
o

g
(
p
s
d

)
 

entire

entire

Important concept in PSD=Nyquist theorem
Maximum signal frequency vs maximum passed frequency of measuring 

apparatus



in time domain multiply s.p. with shah function

Data sampling

Discrete PSD: power ∝ amplitude squared:Pj =
2
a0

|aj |2

ms(x) = m(x)
1
τ

ΠI(
x

τ
) =

∑

n

m(nτ)δ(x− nτ)msamp,n =

Discrete FT:

a0 = Msamp,k=0 =
N−1∑

n=0

msamp,n ≡ N0

ak = Msamp,k =
N−1∑

n=0

msamp,n e2πink/N

Msamp,k =
N−1∑

n=0

msamp,n e2πink/N

Data is discrete not continuous



Nyquist theorem: cont’d

Sampling;  Brault & White 1971, A&A, 13, 169 (in list of 

presentation papers!)

Nyquist Freq

Sampling causes replication of signal



Aliasing

Aliasing Page 496 Num Res

FT[continuous signal]

signal: continuous drawn

FT[sampled signal]

signal: samples dots



Aliasing: cont’d

Convolution with shah function in freq space: 

replication

Fourier    Transformations



Mazur: Peer Instruction

Explain to your neighbor the process 
of aliasing



(Optimal) Filtering
Num Res Chapter 13.0-13.3

deconvolve measured signal and 

response function of sampled data

Num Res Chapter 13.1

r(t) ∗ s(t)

(de)convolution of sampled date



(Optimal) Filtering
Num Res Chapter 13.0-13.3

deconvolve measured signal and 

response function of sampled data

Num Res Chapter 13.1



(Optimal) Filtering
Num Res Chapter 13.0-13.3

deconvolve measured signal and 

response function of sampled data

Num Res Chapter 13.1



Discrete convolution theorem

(r ∗ s)j ≡
M/2∑

k=−M/2+1

sj−krk ⇔ SnRn

M only non-zero values of rk



Discrete convolution theorem





Discrete convolution 

theorem

(r ∗ s)j ≡
M/2∑

k=−M/2+1

sj−krk ⇔ SnRn

Discrete deconvolution

F̃ (r ∗ s)j

Rn
= Sn

However noise and uncertainties in 

response can make this process 

unreliable 

F(r ∗ s)j
Rn

= Sn



Filtering

Frequency Filtering

y(t) =
∫ ∞

−∞
x(t− θ)h(θ)dθ

y(t) = x(t) ∗ h(t)

Filtering of process x with filter h

Y (f) = X(f)H(f)

Sampling: high frequencies are filtered out

leads to band limited data

Window: low frequencies are filtered out

Aka

Recap



Gaussian response function

R(λ)
1√

(2π)σ
exp− (

λ2

2σ2
)

σ

frequency



Gaussian response function

Full resolution spectrum



Gaussian response function

Full resolution spectrum

Gaussian smoothed 

spectrum

Convolved with Gaussian response function=



Filtering

Time Filtering

measure a process x(t) over interval T assumed 

zero outside T

≡ y(t) = Π(
t

T
)x(t)

Y (f) = X(f) ∗ Tsinc(Tf)
all information about frequencies <1/T is lost!

Sampling: high frequencies are filtered out

leads to band limited data

Window: low frequencies are filtered out

Leakage: convolution with a sinc 

function mixes frequencies in the transform

Recap



data sampling: ideal case nyquist criterium 

is fulfilled        sampling does not lead to 

loss of information

Recap

Conditions: 

band-limited response of the detector 

removes highest noise powers and the 

sampling is fast enough to cover the band 

limit of the detector

Signal is band-limited also and

Filtering: 
one can design an optimal filter such that 

the filtered measured data-set is as close 

as possible (in least-square sense) to the 

uncorrupted signal 

νsampling > νmax,detector > νmax,signal

RV completely described by the samples

either:

or:
and


