TODAY’S COURSE

CHAPTER 1.3, 1.4 & 2.2 OAF-2
NUMERICAL RECIPES CHAPTER 13.3

TOPICS:

FOURIER TRANSFORMATIONS

ALIASING & NYQUIST FREQU!

(OPTIMAL) FILTERING

MEASURING MOMENTS OF A
STOCHASTIC PROCESS
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MORE ON THE AUTO-CORRELATION

R(z) = E{f(z)f(z + 1)}

e N——

~ f(@) fla)
it L1 — L9

R(z) = R(z,z) = E{f"(z)} = E{[f(2)["}

AVERAGE GENERALLY NOT ZERO
> AUTOCOVARIANCE

C(r1,72) = E{(f(21) — n(x1))(f(z2) — n(22))"}

C(z) = R(z) — [n(t)]* = o* ()

C(X)=m=AVERAGE POWER IN THE
FLUCTUATIONS AROUND THE MEAN




WIDE-SENSE STATIONA
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NOT ALL SIGNALS ARE WSS:
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FIGURE FROM KASLIWAL ET AL. 2007

NATURE OF THE SOURCE UNCERTAIN:
GRB, SGR, BH-X-RAY BINARY?
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NOT ALL SIGNALS ARE WSS:
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SWIFT BAT DETECTOR LIGHT CURVE
of a Gamma Ray Burst
FIGURE FROM CHINCARINI ET AL. 2008
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CONVOLUTION:

/ f £U1

J

SIMILA

RLY FOR CROSS COR

—ZU

CONVOLUTION THEOREM
F'(f(x)* g(x
f(x) x g(a

) = F(f(z))F(g(x))
) & F(s)G(s)

RELATIONS

F(f®g)=F(f)F(9)




) CONVOLUTE IMAGES .

2 B-BAND IMAGES OF THE
PHOENIX DWARF GALAXY

DIFFERENCE IMAGE AFTER
CONVOLUTING THE BETTER-
SEEING IMAGE WITH A
SMOOTHING KERNEL AND
SCALING THE FLUXES

J
FROM PHILLIPS & DAVIS 1995
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CONTINUOUS FoOU R TRANSFORMATIONS

FIGURE FROM WIKIPEDIA

< f(x)

/ f —27T’L:Utdx

/ F(t)627maztdt

/ . ) . .
Euler's relation : et = cosx + 1sinx

USED IN RESTORATION AND/OR SPECTRAL
ANALYSIS OF THE SIGNAL
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RMATIONS

CONVOLUTION THEOREM  M(\)
F(M(A) = F(S

J

FIGURE FROM GRAY



CONVOLUTION USING FTsS IN PRACTICE

CONVOLUTION

f@)g(a) = [ " f@)glar — 2)da

CONVOLUTION ALWAYS
BROADENSTHE INPUT
FUNCTION

aill

FIGURE FROM GRAY



CENTRAL LIMIT THEOREM

MANY CONVOLUTIONS #SMOOTHING UNTIL GAUSSIAN PDF
px(x) = px, () * px, () * px, () * - - -px,, (x)
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MANY PHYSICAL PROCESSES/MEASUREMENTS YIELD A
GAUSSIAN PROBABILITY DENSITY FUNCTION




RECONSTRUCTION OF THE
INPUT=SOURCE SPECTRUM

M(N) = S(\) « R(\)
Convolution theorem

F(M(X)) = F(S(A)) - F(R(A)

F(M(\) = M(s) (etc




SOME SPECIAL FUNCTIONS:
Sampling SHAH’S FUNCTION/DIRAC COMB

( ™

I1I(t) = f: 5(t — nT)

n=—oo

Finite stretch of data
BOX/WINDOW FUNCTION
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B(t) =1 for
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From Fourier animation of harmonic decomposition remember that:
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THE WIDTH OF THE SPECTRA
SAMPLING: NO LOSS OF INFO
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OPTICAL SPECTRA: BANDWIDTH SET BE

THE WIDTH OF THE SPECTRAL LINES

BASSA ET AL. 2006




OPTICAL SPECTRA: BAN

DWIDTH SET E

THE WIDTH OF THE SPECTRAL LINES

UVES PARANAL OBSERVATORY PROJECT
£SO PROGRAM 268.D—-5855(A)
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OPTICAL SPECTRA: E
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DTH SET BY

THE WIDTH OF THE SPECTRAL LINES
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PARANAL OBSERVATORY PROJECT
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Mazur: Peer Instruction

Besides spectral frequencies there are
also temporal and angular frequencies

Discuss with your neighbor a
possible example of these




ANOTHER MATH TOOL
POWER SPECTRAL DENSITY

(< AMPLITUDE OF INDIVIDUAL SINUSOIDS)

(WILL RETURN IN MORE DEPTH IN CHAPTER 6)

CONTINUOUS FT: F(f) :/OO f(t) e 2™/t gt
P(f)=F(f)F(j

CONTINUOUS PSD:

FO

(F)E(f)*

R WSS SIGNALS: P(f) :/ R(T)e 2™ dr

— OO

HENCE:



Discrete Fourier Transform

» Now estimate Fourier transform of discretely sampled function with N consecutive sample values
with interval A

h k= hlf.i!-. '1

» N input values — no more than N output values, seek estimates of Fourier transform only at
discrete frequencies values in the range [-f_f_] :

N—-1

» Approximate integral by discrete sum: g /1 h(t)e2™ntdt e N by e2Tifntx A —
o TS ) ALF A "f__. Ll C

I —(]

Discrete Fourier Transform of h(t) : mapping N (complex)
numbers (h,'s) onto N complex H_'s

» We also have the discrete inverse Fourier Transform,
which recovers the N h. s from the N H_’'s
(using periodicity of n with period N)

N—1
» Discrete form of Parseval’s theorem: > R |* =

=

N




Measuring process in the time / in the frequency domain

TIME SERIES TRANSFORM

Example freq signal
WINDOW TRANSFORM

WINDOW FUNCTION

Sinc function
WINDOWED TRANSFORM

WINDOWED TIME SERIES

FOWER

convolution of 2

-
&
e
A
Fl_'
Z

SAMPLING TRANSFORM | 4

Li(e) | SAMPLING FUNCTION

Shah flunctior
a(v) « W(v) * I(v) WINDOWED AND SAMPLED TRANSFORM

(Ow(t)i(t) WINDOWED AND SAMPLED TIME SERIES

FREQUENCY

il AL LU ALV

Fig. 2.2. b) The discrete Fourier transform a;j of xy is obtained out of the contin-
uous Fourter transform a(v) by a double convolution. The figure shows the power
spectra corresponding to the various Fourier transforms. Vertical dashed lines in-
dicate the Nyquist frequency.

TIME

Fig. 2.2. o) Obtaining the discrete time series a1 as o discretely sampled section
of z(t) involves a double multiplication.

Timing domain (t) Frequency (v) domain




Maximum signal frequency vs maximum passed frequency of measuring

apparatus
4 )

ENTIRE

ENTIRE

LOG(PSD)

J

————> FREQUENCY (S)

WINDOWING & NOISE, BRAULT & WHITE 1971, A&A



DATA SAMPLING

DATA IS DISCRETE NOT CONTINUOUS
DOMAIN MULTIPLY S.P. WITH SHAH FUNCTION

m(x)%ﬂl(%) — Z m(nt)dé(x — n7)

N—1
2mink /N
Msamp,k: — E Msamp,n € /

n=0

2

“TE PSD: P] — —\aj|2 POWER % AMPLITUDE SQUARED:
ag

N—1
ag — Msamp,k:O — E Msamp,n = NO

n=0
N—1

2mink /N
A — Msamp,k — E Msamp,n € /

n=0




NYQUIST THEOREM: CONT’D

SAMPLING CAUSES REPLICATION OE SIGNAL

., 7

NYQUISTiFREQ

|

SAMPLING; BRAULT & WHITE 1971, A&A, 13, 169 (IN LIST OF
PRESENTATION PAPERS!)




ALIASING
SIGNAL: CONTINUOUS DRAWN

>
!

< T >
@ SIGNAL: SAMPLES DOTS

A
H(f)

NN

0 f
FT[CONTINUOUS SIGNAL]

>
7

|
FT[SAMPLED SIGNAL ]

ALIASING PAGE 496 NUM RES



ALIASING: CONT’D

FOURIER TRANSFORMATIONS

-
CONVOLUTION WITH SHAH FUNCTION IN FREQ SPACE:
REPLICATION




Mazur: Peer Instruction

Explain to your neighbor the process
of aliasing




(de)convolution of sampled date
NUM REs CHAPTER 13.0-13.3

DECONVOLVE MEASURED SIGNAL AND
RESPONSE FUNCTION OF SAMPLED DATA

4 )

r(t) * g(t)

\_ J
NUM RESs CHAPTER 13.1




(OPTIMAL) FILTERING

NUM REs CHAPTER 13.0-13.3

DECONVOLVE MEASURED SIGNAL AND
RESPONSE FUNCTION OF SAMPLED DATA

4 )

Y,
NUM RESs CHAPTER 13.1




(OPTIMAL) FILTERING

NUM REs CHAPTER 13.0-13.3

DECONVOLVE MEASURED SIGNAL AND
RESPONSE FUNCTION OF SAMPLED DATA

4 )

Y,
NUM RESs CHAPTER 13.1




DISCRETE CONVOLUTION THEO

M/2

(r*s); = Z Si_kTk & SnlRy
k=—M/2+1

M ONLY NON-ZERO VALUES OF Rk




DISCRETE CONVOLUTION THEO







DISCRETE CONVOLUTION
THEOREM

M/2

(r*s); = Z Sj_

k=—M/2+1

DISCRETE

KTk < San

DECONVOLUTION

HOWEVER NOISE AND UNCERTAINTIES IN

UN

RELIAB

RESPONSE CAN MAKE THIS PROCESS

LE




Recap

SAMPLING: HIGH FREQUENCIES ARE FILTERED OUT
WINDOW: LOW FREQUENCIES ARE FILTERED OUT

LEA

DS TO B

—>
AND LIMITED DATA

Aka FILTERING
—» FREQUENCY FILTERING Y (f)=X(f)H(f)

- / Lt — 0)h(0)d6

y(t)

— O

y(t) = x(t) * h(t)

FILTERING OF PROCESS X WITH FILTER H



GAUSSIAN RESPONSE FUNCTION

\




GAUSSIAN RESPONSE FUNCTION

4 250921-0650 , slot 1 )

o

- FULL RESOLUTION SPECTRUM

o

O [ [
8000 8400 8600 9000
Wavelength (&)

peterj 10—Sep—2008 13:51 J




GAUSSIAN RESPONSE FUNCTION

4 250921-650 , slot 101 )

GAUSSIAN SMOOTHED
SPECTRUM

Convolved with Gaussian response function

o

O [ [
8000 8200 8400 8600 8800 9000
Wavelength (R)

peter] 10—Sep—2008 13:53 y,




Recap

SAMPLING: HIGH FREQUENCIES ARE FILTERED OUT

WINDOW: LOW FREQUENCIES ARE FILTERED OUT

—>
LEADS TO BAND LIMITED DATA

FILTERING

=—» TIME FILTERING

MEASURE A PROCESS X(T) OVER INTERVAL T ASSUMED
ZERO OUTSIDE T

Y (f) = X(f) * Tsinc(T'f)

ALL INFORMATION ABOUT FREQUENCIES <1/T IS LOST!



RECAP
DATA SAMPLING: IDEAL CASE NYQUIST CRIT]

—

=RIUM
IS FULFILLED = SAMPLING DOES NOT LEAD TO

LOSS OF INFORMATION RV completely described by the samples

CONDITIONS either:
> BAND-LIMITED RESPONSE OF THE D

ETECTOR
REMOVES HIGHEST NOISE POWERS AND THE

—

SAMPLING IS FAST ENOUGH TO COVER THE BAND
LIMIT OF THE DETECTOR or.

2> SIGNAL IS BAND-LIMITED and

S—

Vsampling > Vmax,detector > Vmax,signal




