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ADDITIONAL READING

NUMERICAL RECIPES

PRESS ET AL. 1992
CHAPTERS 12-0,1, 13, 14
(www.haoli.org/nr/bookfpdf.html or)cHECK : www.NR.COM

OBSERVATIONAL ASTROPHYSICS
LENA, P., LEBRUN, F., MIGNARD, F.

CHAPTER 2: THE OBSERVATION AND
ANALYSIS OF STELLAR PHOTOSPHERES:
GRAY, D.F., C.U.P.,1992

DATA REDUCTION AND ERROR ANALYSIS
BEVINGTON & ROBINSON 1992

CHAPTER 1.1, 1.2, 1.3 & 2.1, 2.2 (NOT 2.2.2),
2.3 OAF-2 & CHAPTERS 3 & 5 OF OAF-1
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MEASUREMENTS IN GENERAL

(Parent distribution)

FIG FROM NUMERICAL RECIPES
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Characterization of the instrumental response

An instrument is a measuring system/device, designed such that measurements or
observations can yield answers to some scientifically compelling questions (driven by
requirements from scientific community)

Its reponse can be described by a multi-dimensional parameter space in which each
parameter has an important impact on the quality of the measurement

Each instrument has different system optimizations driven by the scientific goals.
In general not all parameters can be optimized simultaneously due to various boundary
conditions e.qg. financial, size, mass of instrument, technology not available, etc.

Important system parameters are:

a) Bandwidth : interval in energy/frequency or wavelength over which the
(eg, M\, vv)  the instrument has a good detection efficiency —
effective/sensitive area Ay (E,)
b) Field of view : Solid angle subtended on the sky by telescope
(FOV) configuration. Wide (many sources simultaneously) / narrow
(one/couple of sources) field imaging.

Intermezzo: difference precision/resolution

a) Precision: accuracy with which the exact value of a quantity can be
established
b) Resolution: capability of measuring the separation between two closely space

features
The precision can be much larger than the resolution!



Precision

Resolution

g
Adjacent
Signal

Within the bandwidth and FOV of the instrument the following
parameters play an important role:

a) Angular resolution: minimum angular separation between
(AD) two equally bright point-sources

Resolving power Ry =1/ A6
b) Spectral/energy resolution: minimum separation in (photon)

(AN, Ag,AV) energy to resolve two equally strong
spectral lines

Spectral resolving power Rc=¢ /Ae = v /Av = A/ A\

C) Time resolution: Minimum time interval between to consecutive
(AT) uncorrelated/independent events (processes)

wiich the centroid of a point (line) spread function can be determined. The panel below shows
that the resolution is the inferval which two signals of equal strength should be apart to be

recognised separately. It is harder fo resolve a wealk signal adjacent to a strong one |panel

rioration of precision in the presence of noise. Figure

below). The bottom panel shows the dete
taken from Harwitt (1984).




DATA IS DISCRETELY SAMPLED

J

OPTICAL SPECTRUM RECORDED WITH A CCD CAMERA
CF. HORNE AND HARRIS PAPERS FOR PRESENTATION
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( Stochastic )

non-deterministic in that a system’s subsequent state is determined

\_

Wikipedia:“A stochastic process is one whose behaviour is

both by predictable actions and by a random element

J

A random phenomenon: the outcome is not predictable in a
deterministic sense, but it has a smooth distributiop of outcomes
if the experiment is repeatéd many times

In the limit of infinite measurements this distribution
tends to the parent distribution

-

~

These phenomena are addressed by statistics:"° A mathematical science

pertaining to the collection, analysis, interpretation or explanation
and presentation of data
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=D BY A CCD CAMERA
BEHIND 5 TELESCOPES FOR A
SOURCE OF MAGNITUDE My=15
x((1) = 10013
x((2) = 10453
x((3) = 1099.1334
x((q) = 9532

CIZ(C5) = 988.55

*WHAT ARE THESE?
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Mazur (prof at Harvard): Peer InStrUCtiOn

Provide to your neighbor one example
of a stochastic process in astronomy




AVERAGE PULSE PROFILE &
NDIVIDUAL PULSES

TN

PSR J0O437-4715 JANET ET AL. 1998
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AVERAGE PULSE PROFILE &
NDIVIDUAL PULSES

PSR J0O437-4715 JANET ET AL. 1998
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A GAUSSIAN DISTRIBUTION

GAUSSIAN OR

NORMAL PROBABILITY DENSITY
DISTRIBUTION
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[The mean” and variance O'ZJ

Average of squares of
deviations from the mean

For symmetric distributions 7) = 7)1
2



( Poisson distribution J

A\ke=A
k!

\ expectation or
expected value

f(k; \) =

k observed number of events
(integer: fie not defined elsewhere!)

f(k, )\) probability of observing k
number of events when
expectation value is \

Mean= )\
Variance=

Cumulative distribution

k

Probability density distribution




EXPECTATION VALUES

B{oa)} = [ " (@) f(2)da

DISCRETE VERSION FE{¢(z)} = Z d(,) P

nN=——aoo




VA

MOMENTS OF A DISTRIBUTION

CENT

RIANCE

MOMENT u}, = E{(z)"}

RAL MOMENT  ux = E{(z — E{z})"}

MEAN n=FE{r} = /_OO xf(x)dx

= CENTRAL MOMENT OF 2ND ORDE

o = B{@—n?} = [ " (@ = n)2f(2)de = o

0’ = BE{z*} — n° = BE{z”} — (E{z})’




EXAMPLE OF USE OF MOMENTS:
GRB DISTRIBUTION

\_

J

BLOOM ET AL. 2002, BLINNIKOV ET AL. 2004, FRUCHTER ET AL. 2006
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CUMULATIVE DISTRIBUTIONS BLINNIKOV ET AL.2004
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Skewness:

Kurtosis of Gaussian
distribution =0

Examples from Wikipedia



CORRELATION, AUTO-CORRELATION
CORRELATION

bla) = f(@) @) k@)= [ flglu+a)du

IF X AND Y ARE TWO INDEPENDENT RANDOM
VARIABLES WITH PROBABILITY DISTRIBUTIONS F
AND G, RESPECTIVELY, THEN THE PROBABILITY

DISTRIBUTION OF THE DIFFERENCE Y - X IS GIVEN
BY THE CROSS-CORRELATION FXKG.

THE CONVOLUTION F * G GIVES THE PROBABILITY
DISTRIBUTION OF THE SUM X + Y
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CORRELATION, AUTO-CORRELATION

Co

RRELATION




AUTO-CORRELATION

R(@) = (@) f() = | " Fu)f(u+ o)du

~N

“/ Example from Wikipedia




GIVEN A RANDOM GALAXY IN A LOCATION
THE CORRELATION FUNCTION DESCRIBES THE PROBABILITY
THAT ANOTHER GALAXY WILL BE FOUND WITHIN A GIVEN
DISTANCE (PEEBLES 1980)
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CROSS-CORRELATING COSMIC-
RAY EVENTS WITH THE
POSITION OF NEARBY AGN

DATA FROM THE PIERRE AUGER COLLABORATION
SEE ASTRO-PH O711.2256




CROSS-CORRELATING SPECTRA
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CROSS-CORRELATING SPECTRA
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MORE ON THE AUTO-CORRELATION

R(z) = E{f(z)f(z + 1)}

e N——

~ f(@) fla)
it L1 — L9

R(z) = R(z,z) = E{f"(z)} = E{[f(2)["}

AVERAGE GENERALLY NOT ZERO
> AUTOCOVARIANCE

C(r1,72) = E{(f(21) — n(x1))(f(z2) — n(22))"}

C(z) = R(z) — [n(t)]* = o* ()

C(X)=m=AVERAGE POWER IN THE
FLUCTUATIONS AROUND THE MEAN
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NOT ALL SIGNALS ARE WSS:
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Time since burst trigger (hrs)

FIGURE FROM KASLIWAL ET AL. 2007

NATURE OF THE SOURCE UNCERTAIN:
GRB, SGR, BH-X-RAY BINARY?
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NOT ALL SIGNALS ARE WSS:

BAT COUNT RATE (C/S)
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SWIFT BAT DETECTOR LIGHT CURVE
of a Gamma Ray Burst
FIGURE FROM CHINCARINI ET AL. 2008
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CONVOLUTION:

/ f £U1

J

SIMILA

RLY FOR CROSS COR

—ZU

CONVOLUTION THEOREM
F'(f(x)* g(x
f(x) x g(a

) = F(f(z))F(g(x))
) & F(s)G(s)

RELATIONS

F(f®g)=F(f)F(9)




) CONVOLUTE IMAGES .

2 B-BAND IMAGES OF THE
PHOENIX DWARF GALAXY

DIFFERENCE IMAGE AFTER
CONVOLUTING THE BETTER-
SEEING IMAGE WITH A
SMOOTHING KERNEL AND
SCALING THE FLUXES

J
FROM PHILLIPS & DAVIS 1995
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